

2
SELF HEALING ROBOTS

Table of Contents
Chapter 	 TITLE								PAGE NO.
									
Abstract
1 		Introduction		 3
1.1 	Robots
1.2. 	Error recovery							 4
2 		Self healing or self modeling robots					 5
2.1 	The starfish robot
 	2.1.1 	Characterizing the target system
2.2	Self modeling briefly 						 8
3 		Algorithm
3.1 	Algorithm overview							 11
3.2 	Experimental setup							
 	3.2.1 	The robots							 12
3.2.2 	The controllers						 15
3.3 	Algorithm implementation						 17
3.4	 Results of estimation-exploration algorithm 		 20	
4 		From theory to reality							
4.1 	Characterizing the target system					 23
4.2 	Characterizing the space of models
4.3 	Characterizing the space of controllers				 25
4.4 	Results: parametric identification					 26
4.5	 Results: topological identification					 27
5		Conclusion									 30	
								
		Bibliography 							 31								

ABSTRACT
When people or animals get hurt, they can usually compensate for minor injuries and keep limping along, but for robots, even slight damage can make them stumble and fall. Now a robot scarcely larger than a human hand has demonstrated a novel ability: It can recover from damage -- an innovation that could make robots more independent.
The new robot, which looks like a splay-legged, four-footed starfish, deduces the shape of its own body by performing a series of playful movements, swiveling its four limbs. By using sensors to record resulting changes in the angle of its body, it gradually generates a computerized image of itself. The robot then uses this to plan out how to walk forward.
The researchers hope similar robots will someday respond not only to damage to their own bodies but also to changes in the surrounding environment. Such responsiveness could lend autonomy to robotic explorers on other planets like Mars -- a helpful feature, since such robots can't always be in contact with human controllers on earth. Aside from practical value, the robot's abilities suggest a similarity to human thinking as the robot tries out various actions to figure out the shape of its world.

Chapter 1
INTRODUCTION
1.1 ROBOTS
A robot is a mechanical or virtual, artificial agent. It is usually an electromechanical system, which, by its appearance or movements, conveys a sense that it has intent or agency of its own.
A typical robot will have several, though not necessarily all of the following properties:
· Is not 'natural' i.e. has been artificially created.
· Can sense its environment.
· Can manipulate things in its environment.
· Has some degree of intelligence or ability to make choices based on the environment or automatic control / pre-programmed sequence.
· Is programmable.
· Can move with one or more axes of rotation or translation.
· Can make dexterous coordinated movements.
· Appears to have intent or agency (reification, anthropomorphisation or Pathetic fallacy).
Robotic systems are of growing interest because of their many practical applications as well as their ability to help understand human and animal behavior, cognition, and physical performance. Although industrial robots have long been used for repetitive tasks in structured environments, one of the long-standing challenges is achieving robust performance under uncertainty. Most robotic systems use a manually constructed mathematical model that captures the robot’s dynamics and is then used to plan actions. Although some parametric identification methods exist for automatically improving these models, making accurate models is difficult for
complex machines, especially when trying to account for possible topological changes to the body, such as changes resulting from damage.
1.2. ERROR RECOVERY
Recovery from error, failure or damage is a major concern in robotics. A majority of effort in programming automated systems is dedicated to error recovery. The need for automated error recovery is even more acute in the field of remote robotics, where human operators cannot manually repair or provide compensation for damage or failure.
Here, its explained how the four legged robot automatically synthesizes a predictive model of its own topology (where and how its body parts are connected) through limited yet self-directed interaction with its environment, and then uses this model to synthesize successful new locomotive behavior before and after damage. These findings may help develop more robust robotics, as well as shed light on the relation between curiosity and cognition in animals and humans.

Chapter 2
SELF HEALING OR SELF MODELLING ROBOTS

2.1 THE STARFISH ROBOT
2.1.1 CHARACTERIZING THE TARGET SYSTEM
The target system in this study is a quadrupedal, articulated robot with eight actuated degrees of freedom. The robot consists of a rectangular body and four legs attached to it with hinge joints on each of the four sides of the robot’s body. Each leg in turn is composed of an upper and lower leg, attached together with a hinge joint. All eight hinge joints of the robot are actuated with Airtronics 94359 high torque servomotors. However, in the current study, the robot was simplified by assuming that the knee joints are frozen: all four legs are held straight when the robot is commanded to perform some action. The following table gives the overall dimensions of the robot’s parts.
[image:]
Table 2.1.1 Overall dimensions of robot
All eight servomotors are controlled using an on-board PC-104 computer via a serial servo control board SV-203B, which converts serial commands into pulse-width modulated signals. Servo drives are capable of producing a maximum of 200 ouncinches of torque and 60 degrees per second of speed.
This four-legged robot can automatically synthesize a predictive model of its own topology (where and how its body parts are connected), and then successfully move around. It can also use this "proprioceptive" sense to determine if a component has been damaged, and then model new movements that take the damage into account.
The robot is equipped with a suite of different sensors polled by a 16-bit 32- channel PC-104 Diamond MM-32XAT data acquisition board. For the current identification task, three sensor modalities were used: an external sensor was used to determine the left/right and forward/back tilt of the robot; four binary values indicated whether a foot was touching the ground or not; and one value indicated the clearance distance from the robot’s underbelly to the ground, along the normal to its lower body surface. All sensor readings were conducted manually, however all three kinds of signals will be recorded in future by on-board accelerometers, the strain gauges built into the lower legs, and an optical distance sensor placed on the robot’s belly.

[image:]
Fig 2.1.1 The starfish robot with reflection

2.2 SELF MODELLING BRIEFLY
Here, its explained how the four legged robot automatically synthesizes a predictive model of its own topology (where and how its body parts are connected) through limited yet self-directed interaction with its environment, and then uses this model to synthesize successful new locomotive behavior before and after damage. These findings may help develop more robust robotics, as well as shed light on the relation between curiosity and cognition in animals and humans A robot’s most formidable enemy is an uncertain and changing environment.
Typically, robots depend on internal maps (either provided or learned), and sensory data to orient themselves with respect to that map and to update their location. If the environment is changing or noisy, the robot has to navigate under uncertainty, and constantly update the probabilities that a particular action will achieve a particular result. The situation becomes even worse if the robot’s own shape and configuration can change, that is, if its internal model becomes inaccurate. In most cases, such an event constitutes the end of that particular robot’s adventure.
Although much progress has been made in allowing robotic systems to model their environment autonomously, relatively little is known about how a robot can learn its own morphology, which cannot be inferred by direct observation or retrieved from a database of past experiences. Without internal models, robotic systems can autonomously synthesize increasingly complex behaviors or recover from damage through physical trial and error, but this requires hundreds or thousands of tests on the physical machine and is generally too slow, energetically costly, or risky. Here, we describe an active process that allows a machine to sustain performance through an autonomous and continuous process of self-modeling. A robot is able to indirectly infer its own morphology through self-directed exploration and then use the resulting self-models to synthesize new behaviors’. If the robot’s topology unexpectedly changes, the same process restructures it’s internal self-models, leading to the generation of qualitatively different, compensatory behavior. In essence, the process enables the robot to continuously diagnose and recover from damage. Unlike other approaches to damage recovery, the concept introduced here does not presuppose built-in redundancy, dedicated sensor arrays, or contingency plans designed for anticipated failures. Instead, our approach is based on the concept of multiple competing internal models and generation of actions to maximize disagreement between predictions of these models. The process is composed of three algorithmic components that are executed continuously by the physical robot while moving or at rest (Fig. 2.2.1): Modeling, testing, and prediction.
[image:]

Fig.2.2.1 Outline of the algorithm.

Chapter 3
ALGORITHM
A number of algorithms based on repeated testing for error recovery have been proposed and demonstrated for both robotics, and electronic circuits. However, repeated generate-and-test algorithms for robotics are not desirable for several reasons: repeated trials may exacerbate damage and drain limited energy; long periods of time are required for repeated hardware trials; damage may require rapid compensation (e.g., power drain due to coverage of solar panels); and repeated trials continuously change the state of the robot, making damage diagnosis difficult.
Due to the recent advances in simulation it has become possible to automatically evolve the morphology and the controller of simulated robots together in order to achieve some desired behavior. Here we also use evolutionary algorithms to co-evolve robot bodies and brains, but use an inverse process: instead of evolving a controller given robot morphology, we evolve a root morphology given a controller. Also, instead of evolving to reach a high fitness as a form of design, we evolve towards an observed low fitness (caused by some unknown failure) as a form of diagnosis. By not making a distinction between the robot’s morphology and controller, and by employing an evolutionary algorithm, the algorithm can compensate for damage or failure of the robot’s mechanics, its sensory or motor apparatus, or the controller itself, or some combination of these failure types. This stands in contrast to all other approaches to automated recovery so far, which can only compensate for a few pre-specified failures.
Moreover, by using an evolutionary algorithm for recovery, qualitatively different behaviors (such as hopping instead of walking) evolve in response to failure. More traditional analytic approaches can only produce slightly modified behaviors in response to mild damage.

3.1 ALGORITHM OVERVIEW
Estimation-exploration algorithm
The estimation-exploration algorithm is essentially a co-evolutionary process comprising two populations. One population is of candidate models of the target system, where a model’s fitness is determined by its ability to correctly explain observed data from the target system. The other population is of candidate unlabelled sentences, each of whose fitness is determined by its ability to cause disagreement among model classifications (thereby elucidating model uncertainties), or by exploiting agreement among models to achieve some desired output (thereby capitalizing on model certainties).
The estimation-exploration algorithm has two functions: damage hypothesis evolution (the estimation phase) and controller evolution (the exploration phase). The algorithm also maintains a database, which stores pairs of data: an evolved controller and the fitness produced by the ‘physical’ robot when that controller is used. Two separate evolutionary algorithms—the estimation EA and the exploration EA–are used to generate hypotheses regarding the failure incurred by the physical robot, as well as controllers for the simulated and ‘physical’ robot, respectively. Figure 3 outlines the flow of the algorithm, along with a comparison against an algorithm for evolving function recovery all on a physical robot.
[image:]
Fig. 3.1.1 Flow chart of estimation-exploration phases

Exploration Phase: Controller Evolution. The exploration EA is used to evolve a controller for the simulated robot, such that it is able to perform some task. The first pass through this phase generates the controller for the intact physical robot: subsequent passes attempt to evolve a compensatory controller for the damaged physical robot, using the current best damage hypothesis generated by the estimation phase. When the exploration EA terminates, the best controller from the run is transferred to and used by the physical robot.
Physical Robot Failure: The physical robot uses an evolved controller to walk forwards. An unanticipated failure occurs to the robot, and the broken robot records its own forward displacement for a period of time. The physical robot is then stopped, and the recorded forward displacement (fitness) is inserted into the database along with the evolved controller on-board the robot at that time: these become an input-output pair used to reverse engineer the damage suffered by the robot. During subsequent passes through the algorithm, the damaged robot attempts to function using the compensatory evolved controller produced by the exploration phase.
Estimation Phase: Damage Hypothesis Evolution. The estimation EA is used to evolve a hypothesis about the actual failure incurred by the physical robot. The estimation EA uses the forward displacements produced by the broken physical robot, along with the corresponding controllers running on the physical robot at that time, to measure the correctness of each of the diagnoses encoded by the estimation EA’s genomes. When the estimation EA terminates, the most fit damage hypothesis is supplied to the exploration EA. The robot simulator is updated to model this damage hypothesis: for example if the hypothesis is that one of the legs has fallen off, that leg is broken off of the simulated robot. The exploration EA then evolves a compensatory controller using this updated model.
3.2 EXPERIMENTAL SETUP
The proposed algorithm was applied to the recovery of locomotion of severely damaged legged robots. A robot simulator is used to evolve controllers for the ‘physical’ robot: here the ‘physical’ robot is also simulated. Evolved controllers are uploaded from the simulation to the physical robot, and performance measurements are downloaded from the physical robot to the simulation. The robot simulator is based on Open Dynamics Engine, an open-source 3D dynamics simulation package. The simulated robot is composed of a series of three-dimensional objects, connected with one degree-of freedom rotational joints.

 3.2.1 THE ROBOTS
The two hypothetical robots tested in this preliminary work—a quadrupedal and hexapedal robot.The quadrupedal robot has eight mechanical degrees of freedom. There are two one degree-of-freedom rotational joints per leg: one at the shoulder, and one at the knee. The quadrupedal robot contains four binary touch sensors, one in each of the lower legs. The touch sensor returns, 1.0 if the lower leg is on the ground and −1.0 otherwise. There are also four angle sensors in the shoulder joints, which return a signal commensurate with the flex or extension of that joint (−1.0 for maximum flexure up to 1.0 for maximum extension). Each of the eight joints is actuated by a torsional motor. The joints have a maximum flex of 30 degrees from their original setting (shown in Figure 3), and a maximum extension of 30 degrees. The hexapedal robot has 18 mechanical degrees of freedom: each leg has a one degree-of-freedom rotational joint at the knee, and one two degree-of-freedom rotational joints connecting the leg to the spine. Each joint is actuated by a torsional motor, and the joint ranges are the same as for the quadrupedal robot. The hexapedal robot contains six touch sensors, one per lower leg, and six angle sensors, placed on the joints connecting the legs to the spine.

3.2.2 THE CONTROLLERS
The robots are controlled by a neural network, which receives sensor data from the robot at the beginning of each time step of the simulation into its input layer, propagates those signals to a hidden layer, and finally propagates the signals to an output layer. The neural network architecture and connectivity is shown in Figure 3.2.1 Neuron values and synaptic weights are scaled to lie in the range [−1.00, 1.00]. A threshold activation function is applied at the neurons. There is one output neuron for each of the motors actuating the robot: the values arriving at the output neurons are scaled to desired angles for the joint corresponding to that motor. For both robots here, joints can flex or extend to π/ 4 away from their default starting rotation, π/ 2. The angles are translated into torques using a PID controller, and the simulated motors then apply the resultant torques. The physical simulator then updates the position, orientation and velocity of the robot based on these torques, along with external forces such as gravity, friction, momentum and collision with the ground plane.
[image:]
Fig. 3.2.1 The neural network architecture used for the quadrupedal robot.

3.3 ALGORITHM IMPLEMENTATION
The Exploration EA: The exploration EA is used to generate sets of synaptic weights for the robot’s neural network (Figure 3.3). The fitness function rewards robots for moving forwards as far as possible during 1000 time steps of the simulation. The fitness function is given as f(gi) = d(t1000) - d(t1), where f(g) is the fitness, measured in meters, of the robot whose neural network controller is labeled with the values encoded in genome g. d(t1) is the forward displacement of the robot, measured in meters, at the first time step of the simulation; d(t1000) is the forward displacement of the robot (again in meters) at the final time step of the simulation. The genomes of the exploration EA are strings of floating point values, which encode the synaptic weights. For the quadrupedal robot, there are a total of 68 synapses, giving a genome length of 68. For the hexapedal robot, there are a total of 120 synapses, giving a genome length of 120. The encoded synaptic weights are represented to two decimal places, and lie in the range [-1.00, 1.00]. At the beginning of each run a random population of 100 genomes is generated. If there are any previously evolved controllers stored in the database, these are downloaded into the starting population. A genome is evaluated as follows: the encoded weights are used to label the controller; the robot is then evaluated in the simulator for 1000 time steps using that controller; and the resulting fitness value is returned. Once all of the genomes in the population have been evaluated, they are sorted in order of decreasing fitness, and the 50 least fit genomes are deleted from the population. Fifty new genomes are selected to replace them from the remaining 50, using tournament selection, with a tournament size of 3. Selected genomes undergo mutation: each floating-point value of the copied genome has a 1 per cent chance of undergoing a point mutation. Of the 50 newly generated genomes, 12 pairs are randomly selected and undergo one-point crossover.
The Estimation EA: The estimation EA evolves hypotheses about the failure incurred by the physical robot. The genomes of the estimation EA, like the exploration EA, are strings of floating-point values. Each genome in the estimation EA is composed of four genes: each gene denotes a possible failure. In this preliminary study, the actual robot can undergo three different types of damage—joint breakage, joint jamming, and sensor failure—and can incur zero to four of these damages simultaneously. In joint breakage, any single joint of the robot can break completely, separating the two parts of the robot connected by that joint. In joint jamming, the two objects attached by that joint are welded together: actuation has no effect on the joint’s angle. In sensor failure, any sensor within the robot (either one of the touch or angle sensors) feeds a zero signal into the neural network during subsequent time steps. Any type of failure that does not conform to one of these types is referred to henceforth as an unanticipated failure: in order to compensate for such cases, the estimation EA has to approximate the failure using aggregates of the encoded failure types.
Each of the four genes encoded in the estimation EA genomes is comprised of four floating-point values, giving a total genome length of 16 values. Like the exploration EA, each of the values is represented to two decimal places, and lies in [−1.00, 1.00]. The first floating-point value of a gene is rounded to an integer in [0, 1] and denotes whether the gene is dormant or active. If the gene is dormant, the damage encoded by this particular gene is not applied to the simulated robot during evaluation. If the gene is active, the second floating point value is rounded to an integer in [0, 2], and indicates which of the three damage types should be applied to the simulated robot. If the damage type is either joint breakage or joint jamming, the third value is scaled to an integer in [0, j − 1], where j is the number of mechanical degrees of- freedom of the robot (j = 8 for the quadrupedal robot, and j = 12 for the hexapedal robot). If the damage type is sensor failure, then the third value is scaled to an integer in [0, s − 1], where s is the total number of sensors contained in the robot (s = 8 for the quadrupedal robot and s = 12 for the hexapedal robot). The fourth value is currently not used in this preliminary study, but will be used for additional damage types that are not binary, but occur with a lesser or greater magnitude (i.e. a sensor that experiences 80% damage, instead of completely failing).
For each genome in the estimation EA, the simulated robot is initially broken according to the failure scenario encoded in the genome, and the broken robot is then evaluated using the controller just evolved by the exploration EA and tested on the ‘physical’ robot. The fitness function for the estimation EA is an attempt to minimize the difference between the forward displacement achieved by the ‘physical’ robot using that controller, and the forward displacement achieved by the simulated robot using the encoded damage hypothesis. This is based on the observation that the closer the damage hypothesis encoded in the genome is to the actual damage, the lesser the difference between the two behaviors.
During subsequent passes through the estimation phase, there are additional pairs of evolved controllers and forward displacements in the database: the controllers evolved by the exploration EA and the fitness values attained by the ‘physical’ robot when using those controllers, respectively. In these cases, the simulated robot is evaluated once for each of the evolved controllers, and the fitness of the genome is then the sum of the errors between the forward displacements When the estimation EA terminates, the best evolved damage hypothesis is stored in a database: these hypotheses are used to seed the random population at the beginning of the next run of the estimation EA, rather than starting each time with all random hypotheses.
The estimation EA is similar to the exploration EA, except for the length of the genomes, what those genomes encode, and the fitness function: in the exploration EA, forward displacement is maximized; in the estimation EA, error between the simulated and ‘physical’ robots’ forward displacements is minimized.
[image:]
Table 3.3.1 Damage scenarios tested

3.4 RESULTS OF ESTIMATION-EXPLORATION ALGORITHM
Control experiments were performed which conforms to the algorithm outlined in the right-hand panel of Figure all evolution is performed on the ‘physical’ robot after damage. In this case, controller evolution is performed by the exploration EA until generation 30 on the quadrupedal robot. The controller is then transferred to the ‘physical’ robot, which then undergoes separation of one of its lower legs (damage case 1). The exploration EA then continues on the ‘physical’ robot for a further 70 generations.
The algorithm proposed here was then applied several times to the quadrupedal and hexapedal robots. During each application of the algorithm, the robots suffered a different damage scenario: the 10 scenarios are listed in Table 3.1 For each run of the algorithm, the exploration EA is run once to generate the initial evolved controller, and then both the estimation and exploration EAs are run three times each after physical robot failure. Each EA is run for 30 generations, using a population size of 100 genomes. Twenty runs of the algorithm were performed (10 damage cases for each of the two robots), in which both the exploration and estimation EAs were initialized with independent random starting populations seed with any previously evolved controllers or damage hypotheses. Damage scenarios 1, 2, 3, 5 and 6 can be described by a single gene in the genomes of the estimation EA. Scenarios 4, 7 and 8 represent compound failures, and require more than one gene to represent them. Case 9 represents the situation when the physical robot signals that it has incurred some damage, when in fact no damage has occurred. Case 10 represents an unanticipated failure: hidden neuron failure cannot be described by the estimation EA genomes.
Figure 6 shows the recovery of the quadrupedal robot after minor damage (scenario 3); after suffering unanticipated damage (scenario 10); and recovery of the hexapedal robot after severe, compound damage (scenario 8). The recovery of both robots for all 10 damage scenarios is shown in Figure.
[image:]
Fig. 3.4.1 Three typical damage recoveries..

Chapter 4
FROM THEORY TO REALITY

Here, we present validation of our algorithm on a physical articulated robot (shown in Figure 1a): the robot evolves an explicit model of its body using sensor data from different modalities. This is the first time explicit, predictive robot models have been intelligently synthesized based on physical interactions. In previous section, we have demonstrated that the EEA can synthesize both the topology and parameters of a hidden system, in which no model is required a priori (Bongard and Lipson, 2005a).
In order to apply the EEA to a new target system, such as the physical robot used in this work, three preparatory steps must be first carried out: characterization of the system to be identified, how models are to be represented and optimized, and how controllers are to be represented and optimized.
4.1 Characterizing the Target System
The target system in this study is a quadrupedal. The Details of the target system has been explained in section 2.2.1
4.2 Characterizing the Space of Models
Models are considered to be three-dimensional simulations of the physical robot (see Figure 5 for three model examples). The simulations are created within Open Dynamics Engine, a three-dimensional dynamics simulator. However in the current work only static identification is performed: the physical robot is commanded to achieve a static pose, and then hold still while sensor data is taken. Every candidate model (as well as the target robot) is assumed to start as a planar configuration of parts; when it begins to move, it can assume a three-dimensional configuration. The geometry and physical properties of the main body part is assumed to be known; the eight upper and lower leg parts are represented as solid cylinders. Each model is evaluated for an arbitrarily set time of 300 time steps of the simulator, which is enough time for most models to come to rest given an arbitrary motor program.
Models are encoded as either vectors or matrices, and these data structures are used to construct a possible articulated robot in the simulation environment. In the first set of experiments, it was assumed that everything about the physical robot is known except the lengths of its four legs. Models are therefore encoded as vectors containing eight real-valued parameters in [0, 1], with each value encoding the estimated length of one of the eight leg parts. We constrain the estimation about the minimum and maximum length of a leg to be between 2 and 40 centimeters, so each value is scaled to a real-value in [1,20]cm.
In the second set of results, we assume that less information about the robot is known: how the eight body parts attach to each other or the main body, and how the hinge joints connecting them are oriented. In that case, models are encoded as 8×4 real-valued matrices. Each row corresponds to one of the eight parts. The first value in row i is scaled to an integer in [0, i−1], indicating which of the previous body parts it attaches to; the second value is scaled to an integer in [0,3], indicating whether the current part attaches to the left, front, right, or back side of the parental part. The third value is scaled to an integer in [0,5], and indicates how the hinge joint connecting the current part to its parent operates: 0 and 1 cause the part to rotate leftward or rightward in response to a positive commanded joint angle (and rightward and leftward in response to a negative commanded angle); 2 and 3 cause the joint to rotate upward or downward in response to a positive commanded angle; and 4 and 5 cause the part to rotate leftward or rightward around its own axis in response to a positive commanded angle. The fourth value is scaled to a value in [1, 20] cm to represent the length of the leg part.
In both types of experiments, a genetic algorithm using deterministic crowding (Mahfoud, 1995) is used to optimize the models. Genomes in the population are simply the vectors or matrices described above. The subjective error of encoded models is minimized by the genetic algorithm. Subjective error is given as the error between the sensor values obtained from the physical robot, and those obtained from the simulated one.
In the first pass through the estimation phase, a random population of models is generated, and optimized for a fixed number of generations. On the second and subsequent passes through the estimation phase, the previously optimized population of models is used as the starting point, but they are re-evaluated according to the new error metric with the additional set of sensor data.

4.3 Characterizing the Space of Controllers
In this work a motor program is a set of four joint angles that either the target robot, or a model robot, is commanded to achieve2. Both the target and model robots begin in a planar configuration, with the joint angles at zero. Joint angles in a given motor program are selected randomly from the range [−30, 30] degrees. This constrains the range of motion of the target robot; without a model of itself, it is possible that the robot could perform some action that would be harmful to itself or complicate the inference process.
At the beginning of an identification run, a random motor program is generated, and sent to the target robot. Its motors are sufficiently strong to reach the desired angles. Once it reaches those angles it holds steady, and the sensor data is taken, and fed into the EEA. The estimation phase then begins, as outlined above. When the estimation phase terminates, a new random motor program is generated. For this work, the exploration phase is not used; i.e., a useful motor program is not sought. Thus, the search for controllers is random.
4.4 Results: Parametric Identification
In the first set of experiments, only the lengths of the eight leg parts were identified: all other aspects of the target robot are assumed to be known. In the estimation phase, a population of 100 random models are created, and in each pass the population is evolved for 10 generations. A total of four random motor programs are used; the population of models is optimized four times, each time with an additional motor program and resulting set of sensor data from the target robot. In total, 30 independent runs were conducted for each of seven experimental variants. In each variant, three or less of the sensor modalities are assumed to be available during model optimization. In the first run, all three sensor modalities— touch, tilt and clearance—were assumed available for identification. In the second run, only touch and tilt information were available. It can be seen that, the first run was more successful than the second: there was a significant error on the estimation of the length of the left leg when only touch and tilt information are used.
The average quality of the optimized models was compared across the seven variants. It was seen that, only the tilt sensor data is required in order to produce good models, where model quality is determined as the mean difference between the length of the model’s leg and the target robot’s leg. This is because for the experiment variants that included tilt information in calculating model quality, evolved models were more accurate than when tilt information was excluded from the calculation. The model quality is determined as the variance across the lengths of a single model’s legs; in a good model all four legs should have the same length.

4.5 Results: Topological Identification
In the second set of experiments, the inference algorithm was required not only to identify the length of the robot’s legs, but how the legs are attached to one another or to the main body, and where they are attached. In these experiments, parametric changes in the genome correspond to topological changes in the body plan of the robot model. In this more difficult task, the population size was expanded to 300, and each pass through the estimation phase was conducted for 40 generations The figure 4.1, given below shows the result of a successful topological identification. Figures 4.1b-d show the best model obtained at the end of the first, fifth and ninth iteration, respectively. Figure 4.1 shows that the final model is indeed a predictive model: given the same motor program (such as the first random motor program), both the model and the physical robot achieve similar poses (compare Figures 4.1a and d).
[image:]
Fig. 4.1.1 Results from a successful topological identification.
a: The pose produced by the physical robot as a result of running the first random motor program.
b: The best model produced after the first iteration of the run reported in figure 4.

Chapter 5
CONCLUSION
Although the possibility of autonomous self-modeling has been suggested, here it was demonstrated for the first time a physical system able to autonomously recover its own topology with little or no prior knowledge, as well as optimize the parameters of those resulting self-models after unexpected morphological change. These processes demonstrate both topological and parametric self-modeling. This suggests that future machines may be able to continually detect changes in their own morphology (e.g., after damage has occurred or when grasping a new tool) or the environment (when the robot enters an unknown or changed environment) and use the inferred models to generate compensatory behavior. Beyond robotics, the ability to actively generate and test hypotheses can lead to general nonlinear and topological system identification in other domains, such as computational systems, biological networks, damaged structures, and even automated science. Aside from practical value, the robot's abilities suggest a similarity to human thinking as the robot tries out various actions to figure out the shape of its world.
These findings may help develop more robust robotics, as well as shed light on the relation between curiosity and cognition in animals and humans: Creating models through exploration, and using them to create new behaviors through introspection. Someday similar robots will someday respond not only to damage to their own bodies but also to changes in the surrounding environment. Such responsiveness could lend autonomy to robotic explorers on other planets, a helpful feature, since such robots can't always be in contact with human controllers on earth.

BIBLIOGRAPHY
[1]. Bongard J., Zykov V., Lipson H. (2006), “Resilient Machines through Continuous Self-Modeling".
[2]. Adami C., (2006) "What Do Robots Dream Of?” Science Vol. 314.
[3]. Bongard J., Lipson H. (2004), “Automated Damage Diagnosis and Recovery for Remote Robotics”, IEEE International Conference on Robotics and Automation
[4]. Bongard J., Zykov V., Lipson H. (2006) “Automated Synthesis of Body Schema using Multiple Sensor Modalities”, Proceedings of the 10th Int. Conference on Artificial Life (ALIFE X).
[5]. Zykov V., Bongard J., Lipson H., (2004) "Evolving Dynamic Gaits on a Physical Robot", proceedings of Genetic and Evolutionary Computation Conference, Late Breaking Paper, GECCO'04
[6]. Lipson, H., Bongard, J., Zykov, V., Malone, E., (2006) “EvolutionaryRobotics for Legged Machines: From Simulation to Physical Reality”, Proceedings of the 9th Int. Conference on Intelligent Autonomous Systems, University of Tokyo, Tokyo, Japan.
[7]. Bongard J., Lipson H. (2005) “Automatic Synthesis of Multiple Internal Models through Active Exploration”, AAAI Fall Symposium: From Reactive to Anticipatory Cognitive Embodied Systems, November 2005.
Websites
[1]. http://ccsl.mae.cornell.edu/research/selfmodels/
[2]. http://www.mae.cornell.edu/ccsl/papers/Science06_Bongard.pdf
[3]. http://www.seminars4you.info
http://www.mae.cornell.edu/ccsl/papers/Nature05

Department of Information Technology 		MLMCE, Ettumanoor

image3.emf

image4.emf

image5.emf

image6.emf

image7.emf

image8.emf

image1.emf

image2.emf

