                        SUNYANI POLYTECHNIC
(ELECTRICAL/ELECTRONIC ENGINEERING DEPARTMENT)
                      (TELECOMMMUNICATION OPTION)

 TOPIC:
 DESIGNING NETWORK MONITORING SYSTEM          COMMUNICATION.               
                    
                  A CASE STUDY IN SUNYANI POLYTECHNIC INTERNET CAFE

PRESENTED BY:                           
                          NAME:       ARYEE BENJAMIN
                          INDEX NO:  06081371                                          
                              



                              TABLE CONTENT
1. INTRODUCTION
· BACKGROUND OT THE STUDY

· STATEMENT OF THE STUDY

· PURPOSE OF THE STUDY

· SPECIFIC OBJECTIVES

· SIGNIFICANT OF THE PROBLEM

· DEFINITION OF TERMS

2. LITERATURE REVIEW

3. METHODOLOGY

4. ANALYSIS OF DATA

5. SCOPE AND LIMITATION

6. ORGANIZATION OF CHAPTERS

                               INTRODUCTION

1. O        BACKGROUNG OF THE STUDY
In information technology, a computer network or Data communications (Datacom), often simply referred to as a network, is a collection of computers and devices connected by communications channels that facilitates communications among users and allows users to share resources with other users. Networks may be classified according to a wide variety of characteristics.

  Computer networking is sometimes considered a sub-discipline of telecommunications, computer science, information technology and or computer engineering since it relies heavily upon the theoretical and practical application of these scientific and engineering disciplines. The three types of networks are: the Internet, the intranet, and the extranet. Examples of different network methods are:
· Local area network (LAN), which is usually a small network constrained to a small geographic area. An example of a LAN would be a computer network within a building.
· Metropolitan area network (MAN), which is used for medium size area. Examples for a city or a state.
· Wide area network (WAN) that is usually a larger network that covers a large geographic area.
· Wireless LANs and WANs (WLAN & WWAN) are the wireless equivalent of the LAN and WAN.
All networks are interconnected to allow communication with a variety of different kinds of media, including twisted-pair copper wire cable, coaxial cable, optical fiber, power lines and various wireless technologies.[2] The devices can be separated by a few meters (e.g. via Bluetooth) or nearly unlimited distances (e.g. via the interconnections of the Internet).
Before the advent of computer networks that were based upon some type of telecommunications system, communication between calculation machines and early computers was performed by human users by carrying instructions between them. Many of the social behaviors seen in today's Internet were demonstrably present in the nineteenth century and arguably in even earlier networks using visual signals.
In September 1940 George Stibitz used a teletype machine to send instructions for a problem set from his Model at Dartmouth College in New Hampshire to his Complex Number Calculator in New York and received results back by the same means. Linking output systems like teletypes to computers was an interest at the Advanced Research Projects Agency (ARPA) when, in 1962, J.C.R. Licklider was hired and developed a working group he called the "Intergalactic Network “Bold text, a precursor to the ARPANET.
In 1964, researchers at Dartmouth developed the Dartmouth Time Sharing System for distributed users of large computer systems. The same year, at MIT, a research group supported by General Electric and Bell Labs used a computer DEC's to route and manage telephone connections.
Throughout the 1960s Leonard Kleinrock, Paul Baran and Donald Davies independently conceptualized and developed network systems which used datagram or packets that could be used in a network between computer systems.
1965 Thomas Merrill and Lawrence G. Roberts created the first wide area network (WAN).
The first widely used PSTN switch that used true computer control was the Western Electric introduced in 1965.
In 1969 the University of California at Los Angeles, SRI (in Stanford), University of California at Santa Barbara, and the University of Utah were connected as the beginning of the ARPANET network using 50 kbit/s circuits. Commercial services using X.25 were deployed in 1972, and later used as an underlying infrastructure for expanding TCP/IP networks.
Computer networks and the technologies needed to connect and communicate through and between them, continue to drive computer hardware, software, and peripherals industries. This expansion is mirrored by growth in the numbers and types of users of networks from the researcher to the home user.
Today, computer networks are the core of modern communication. All modern aspects of the Public Switched Telephone Network (PSTN) are computer-controlled, and telephony increasingly runs over the Internet Protocol, although not necessarily the public Internet. The scope of communication has increased significantly in the past decade, and this boom in communications would not have been possible without the progressively advancing computer network.





1.1 STATEMENT OF THE STUDY
2 1. Know what is happening. Network monitoring solutions
3 keep you informed about the operation and connectivity of
4 your devices and resources on your network. Without these
5 features, you have to wait until someone tells you something
6 is down before you can fix it.
7 2. Plan for upgrades or changes. If a device is constantly
8 down, or the bandwidth to a specific subnet is constantly
9 running near the limit, it may be time to make a change.
10 Network monitoring applications allow you to track this type
11 of data and make appropriate changes with ease.
12 3. Diagnose problems quickly. One of your servers is
13 unreachable from the intranet. Unfortunately, without network
14 monitoring, you may not be able to tell if the problem is the
15 server, the switch the server is connected to, or the router.
16 Knowing exactly where the problem is saves you time.
17 4. Show others what is going on. Graphical reports go a long
18 way in explaining the health of and activity on your network.
19 They’re great tools in proving an SLA or showing that a
20 troublesome device needs replacing.
21 5. Know when to apply your disaster-recovery solutions.
22 With enough warning, you can transfer the operation of
23 important servers to a backup system until the primary
24 system can be repaired and brought back online. Without
25 network monitoring, you may not know there is a problem
26 until it is too late.
27 6. Make sure your security systems are operating properly.
28 Companies spend a lot of money on security software and
29 hardware. Without a network monitoring solution, how can
30 you be sure that your security devices are up and running as
31 configured?
32 7. Keep track of your customer-facing resources. Many
33 devices on your network are really just applications running
34 on a server (HTTP, FTP, mail, and so on). Network monitoring
35 can watch these applications and make sure your customers
36 can connect to the servers and are seeing what they need
37 to see.
38 8. Be informed of your network status from anywhere. Many
39 network monitoring applications provide remote viewing and
40 management from anywhere with an Internet connection.
41 That way, if you’re on vacation and problem crops up, you
42 can log into your Web interface and see what’s wrong.
43 9. Ensure customer uptime. If you have customers depending
44 on your network for their business, you have to be sure
45 they’re up and running at all times. Would you rather know
46 the moment a problem occurs and fix it before your customer
47 finds out, or get that angry phone call?
48 10. Save money! Above all, network monitoring helps you cut
49 down on the total amount of downtime and time it takes
50 to investigate problems. This translates to fewer man-hours
51 and less money when problems occur
The definition of Network monitoring no longer confines to just setting up a solution that
is capable of garnering information from the network. With the corporate world looking
at IT as that critical function having a say on day-to-day business, the choice of a
network monitoring solution must factor-in the business aspects such as increased
employee productivity and saving on infrastructure costs, besides the obvious need of
the solution having to aide the business with all the 'must-have' functionality either builtin
or by way of facilitating useful plug-ins. No two networks are same and so it is only
fair to expect a network monitoring solution to work on a 'one size fits all' principle in the
not-so-perfect IT world.
When we talk about IT directly impacting the business, it could be anything from a
seemingly simple problem like a web page taking eternity to load or a poor LAN
connectivity, to more serious ones like an important email from a prospect not making it
to your inbox, a CRM database crash, or even dealing with a mischief-maker within.
While these issues can be addressed by a variety of vertical solutions in the market,
there is nothing like the convenience of a single-point access to visualize the entire
network to manage the fault, performance, configuration, and security or the other
resources within. While a wide range of IT functionality fit into the 'network monitoring'
umbrella, it is important to look for the 'must-haves' to help align your IT with the
business goals. . It serves to keep in mind that to an administrator, network
performance, security, fault management, and reliability are not mutually exclusive. A
solution that serves all of these on one platter, keeps the administrator and his network
happy! Anything more is a welcome bonus!
The must-haves
Let us take a closer look at the main concerns of an administrator and what data he will
mine for in the minutiae of information gathered by the solution :
• Automatic Discovery
• Smart Classification & Mapping
• Indepth Performance Monitoring
• Security Management
• Intelligent Alerting
• Solution's Scalability
Automatic Discovery
With the corporate networks getting more complex due to huge and
distributed infrastructure, automatic discovery leaves little room for manual errors.
Constant upgrades and additions to the network is nothing new and this calls for a
provision to initiate a discovery on demand too. So, a solution must be capable of
automating the discovery and it must also accommodate a forced discovery.
In the history of software engineering the software engineering has evolved steadily from its founding days in the 1940s until today in the 2010s. Applications have evolved continuously. The ongoing goal to improve technologies and practices, seeks to improve the productivity of practitioners and the quality of applications to users.
	


This part will be different from the History of the computer, no chronological travel trough software-land, but a collection of articles and assays on software. 
Software has a long history and as far as the facts are known to us we will give them to you. When missing stories, data, or other information are shared to us they will be put on this site. If you have any comments of suggestions regarding this page or any other page please do not hesitate to contact us.
A simple question: "What is software?" A very simple answer is: Hardware you can touch, software you can't. But that is too simple indeed.
But when talking about software you talk about programming and programming languages. But about producing and selling the products made by programming (languages) as well.
There are over 300 different ("common") computer languages in existence, apart from the various dialects stemming from one of them. Most of them can be classified in definable groups, but others don’t belong to anything. Some because they are rather new or the use of them was or is never wide spread and only used by a small specialized professionals or groups of scientists requiring these dialects. This is often the case with a specific language that was designed for just one purpose, e.g. telecommunication or supercomputing.
Some languages are even dead languages, some others are revived and expanded upon again, and there are ones that constantly rejuvenate. In the latter case a programmer is sometimes wondering whether he or she is not just upgrading to a newer version but instead learning a complete new language. 
 
[bookmark: How]How It All Started 
It shouldn't be a big surprise that the creation or software also went in large but distinguishable steps. Compared with hardware there were fewer developments that went parallel or overlapping. In rare cases developments were reinvented sometimes because the development or invention was not published, even prohibited to be made public (war, secrecy acts etc.) or became known at the same time and after (legal)discussions the "other" party won the honors.
The earliest practical form of programming was probably done by Jaquard (1804, France). He designed a loom that performed predefined tasks through feeding punched cards into a reading contraption. This new technology allowed carpets and tissues to be manufactured with lower skills and even with fewer people. The little kid sitting under the loom changing rods and other things vanished. One single person could now handle a loom. That this met resistance from the weavers leaves no question. The same thing happened in England during the industrial revolution there. Even a movement came up called: Luddites (anti technology or just concerned citizens fighting for their bread?)
[image: http://www.thocp.net/hardware/pictures/storage/jacquards_punchcards.gif]
This picture shows the manufacturing
of punched cards for looms
The technology of punched cards will later be adapted by (IBM's) Recording and Tabulating Company to process data.
	The situation was still a one on one game: a problem needed to be solved thus a machine was built. (Pascal, Babbage, Scheultz & Son) And when some sort of instruction was needed a sequence was designed or written and transferred to either cards or mechanical aids such as wires, gears, shafts actuators etc.. To call that programming? Well, according to our definition yes it was.
First there was Ada Lovelace, writing a rudimentary program (1843) for the Analytical Machine, designed by Charles Babbage in 1827, but the machine never came into operation. 
[bookmark: BOOLEAN_algebra][bookmark: binary_logic]Then there was George Boole (1815-1864), a British mathematician, who proved the relation between mathematics and logic with his algebra of logic (BOOLEAN algebra or binary logic) in 1847. 
This meant a breakthrough for mathematics. Boole was the first to prove that logic is part of mathematics and not of philosophy.
A big step in thinking too. 
But it will take one hundred years before this algebra of logic is put to work for computing.
John Von Neumann working at the Institute for Advanced Study developed in 1945 two important concepts that directly affected the path of computer programming languages: 
The first concept became known as "shared-program technique" (7). This technique states that the actual computer hardware should be simple and not need to be hand-wired for each program. Instead, complex instructions should be used to control the simple hardware, allowing it to be reprogrammed much faster.(8)
The second concept was also extremely important to the development of programming languages. Von Neumann called it "conditional control transfer"(7) (www.softlord.com). This idea gave rise to the notion of subroutines, or small blocks of code that could be jumped to in any order, instead of a single set of chronologically ordered steps for the computer to take. The second part of the idea stated that computer code should be able to branch based on logical statements such as IF (expression) THEN, and looped such as with a FOR statement. "Conditional control transfer" gave rise to the idea of "libraries," which are blocks of code that can be reused over and over.(

	


[bookmark: sofwaregenerations]Software Generations 
[bookmark: First_Generation.]First Generation
During the 1950's the first computers were programmed by changing the wires and set tens of dials and switches. One for every bit sometimes these settings could be stored on paper tapes that looked like a ticker tape from the telegraph - a punch tape - or punched card. With these tapes and or cards the machine was told what, how and when to do something.
To have a flawless program a programmer needed to have a very detailed knowledge of the computer where he or she worked on. A small mistake caused the computer to crash.
 
[bookmark: Second_Generation]Second Generation
Because the first generation "languages" were regarded as very user unfriendly people set out to look for something else, faster and easier to understand.
The result was the birth of the second generation languages (2GL) at the mid of the 1950's
These generation made use of symbols and are called assemblers.
An assembler is a program that translates symbolic instructions to processor instructions. (See above for an example) But deep in the 1950's there was still not a single processor but a whole assembly rack with umpteen tubes and or relays.
A  programmer did no longer have to work with one's and zero's when using an assembly language. He or she can use symbols instead. These symbols are called mnemonics because of the mnemonic character these symbols had (STO = store). Each mnemonic stands for one single machine instruction. 
But an assembler still works on a very low level with the machine. For each processor a different assembler was written.
 
[bookmark: Third_Generation]Third Generation
At the end of the 1950's the 'natural language' interpreters and compilers were made. But it took some time before the new languages were accepted by enterprises. 
About the oldest 3GL is FORTRAN (Formula Translation) which was developed around 1953 by IBM. This is a language primarily intended for technical and scientific purposes. Standardization of FORTRAN started 10 years later, and a recommendation was finally published by the International Standardization Organization (ISO) in 1968. 
FORTRAN 77 is now standardized
COBOL (= Common Business Oriented Language) was developed around 1959 and is like its name says primarily used, up till now, in the business world.
With a 3GL there was no longer a need to work in symbolics. Instead a programmer could use a programming language what resembled more to natural language. Be it a stripped version with some two or three hundred 'reserved' words. This is the period (1970's) were the now well known so called 'high level' languages like BASIC, PASCAL, ALGOL, FORTRAN, PL/I, and C have been born.
 
[bookmark: Fourth_Generation]Fourth Generation
A 4GL is an aid witch the end user or programmer can use to build an application without using a third generation programming language. Therefore knowledge of a programming language is strictly spoken not needed.
The primary feature is that you do not indicate HOW a computer must perform a task but WHAT it must do. In other words the assignments can be given on a higher functional level.
A few instructions in a 4GL will do the same as hundreds of instructions in a lower generation language like COBOL or BASIC. Applications of 4GL's are concentrating on the daily performed tasks such like screen forms, requests for data, change data, and making hard copies. In most of these cases one deals with Data Base Management Systems (DBMS).
The main advantage of this kind of languages is that a trained user can create an application in a much shorter time for development and debugging than would be possible with older generation programming language. Also a customer can be involved earlier in the project and can actively take part in the development of a system, by means of simulation runs, long before the application is actually finished.
Today the disadvantage of a 4GL lays more in the technological capacities of hardware. Since programs written in a 4GL are quite a bit larger they are needing more disk space and demanding a larger part of the computer's memory capacity than 3GL's. But hardware of technologically high standard is made more available every day, not necessarily cheaper, so in the long run restrictions will disappear.
Considering the arguments one can say that the costs saved in development could now be invested in hardware of higher performance and stimulate the development of the 4GL's.
In the 1990's the expectations of a 4GL language are too high. And the use of it only will be picked up by Oracle and SUN that have enough power to pull it through. However in most cases the 4GL environment is often misused as a documentation tool and a version control implement. In very few cases the use of such programs are increasing productivity. In most cases they only are used to lay the basis for information systems. And programmers use all kinds of libraries and toolkits to give the product its final form.
 
[bookmark: Fifth_Generation.]Fifth Generation
This term is often misused by software companies that build programming environments. Till today one can only see vague contours. When one sees a nice graphical interface it is tempting to call that a fifth generation. But alas changing the makeup does not make a butterfly into an eagle.
Yes some impressions are communicated from professional circles that are making these environments and sound promising.
But again the Fifth generation only exist in the brains of those trying to design this generation, YET!
Many attempts are made but are stranding on the limitations of hardware, and strangely enough on the views and insight of the use of natural language. We need a different speak for this!
But it is a direction that will be taken by these languages: no longer prohibiting for the use of natural language and intuitive approach towards the program (language) to be developed 
The basis of this is laid in the 1990's by using sound, moving images and agents - a kind of advanced macro's of the 1980's. 
And it is only natural that neural networks will play an important role.
Software for the end user will be (may be) based on principles of knowbot-agents. An autonomous self changing piece of software that creates new agents based on the interaction of the end user and interface. A living piece of software, as you may say. And were human alike DNA / RNA (intelligent?) algorithms can play a big role.
2. Problem Statement 
RedButton currently does not have a monitoring tool that will produce graphical and numeric data for the network administrator. This makes it very difficult for the network administrator to monitor the network. If the network had a few (less than 10) hotspot devices, it would not be a problem. It becomes extremely difficult now that the network has more than 400 hotpots devices in the country. Figure 1 shows a picture of how the current RedButton network looks. The rectangle with the laptop and the PDA phone represents a hotspot. In each hotspot, there is a WRT54GL router that broadcasts RedButton’s SSID and signal. Through this setting, the client is able to connect to the internet. 
Figure 1. Current Network 
The router will also allow the client to connect to the central billing server (for authentication and billing).A RedButton technician (network administrator) can also connect to the central server to check faults with the network. This part of the system does not have a visualization tool to represent graphical and numerical values; therefore the administrator does this manually by formulating their own way of determining the fault with the system. 
In this project we would like to design a Wi-Fi Hotspot monitoring tool for RedButton; where the technician can be presented with numerical and graphical data. Figure 2 shows the system that we intend to design and implement. After this project, we would like to represent the RedButton network in this way. 
Figure 2. New Network 
The new system will have a well defined protocol that will probe the hotspots AP devices for the relevant data. The data collected will be populated in database tables that will be designed. The visualization component will pull data stored in the database and represent them in a graphical format that will be understood by the network administrator. The details of the methods and procedures we are going to use will be presented in the next section of the paper.

image1.gif

