MET’s BKC IOE, NASHIK

CHAPTER – 1
INTRODUCTION
1. INTRODUCTION
The registry is the heart and soul of Microsoft Windows Operating System. The registry contains the configuration data that makes the operating system work. The registry is everything-it is the brain of the operating system. The registry enables developers to organize configuration data in ways that are impossible with other mechanisms, such as INI files. More importantly, it enables you to customize Windows Operating System in ways you can’t through the user interface. Windows Operating System and every application that runs on Microsoft’s latest desktop operating system do absolutely nothing without consulting the registry first. When you double-click a file, Windows consults the registry to figure out what to do with it. When you install a device, Windows assigns resources to the device based on information in the registry and then stores the device’s configuration in the registry. When you run an application such as Microsoft Word, the application looks up your preferences in the registry. If you were to monitor the registry during a normal session, you‘d see the registry serves up thousands of values within minutes.

The registry is an invaluable too 1 for the IT professional deploying, managing, and supporting Windows Operating System. Most policies in Group Policy and system policies are really settings in the registry. Scrip ting registry edits is one of the best ways to deploy settings to users. Some deployment problems can be solved only by using the registry.

CHAPTER 2

REGISTRY BASICS

2. REGISTRY BASICS
The registry has a subtle but important role in Microsoft Windows Operating System. On one hand, the registry is passive—it’s just a big collection of settings sitting on your hard disk. On the other h and, it plays a key role in all those activities. The settings in the registry determine how Windows appears and how it behaves. They even control applications running on your computer. This gives the registry great potential as a tool for power users or IT professionals, enabling them to customize settings that aren‘t available in the user interface. Windows stores configuration data in the registry. The registry is a hierarchical database, which you can describe as a central repository for configuration or a configuration database. A hierarchical database has characteristics that make it ideally suited to storing configuration data. This allows settings to be referenced using paths, similar to file paths in Windows Operating System. The registry’s hierarchical organization makes all settings easy to reference.

Mastering the registry has concrete advantages for power users, though. Because it is the operating system’s configuration database, backing up your settings is a bit easier than it would be without the registry. And unlike in the old days when settings were stored in INI files, you always know where to begin looking when you need to find a value. You can customize Windows and the applications that run on it in ways that aren‘t otherwise possible. Windows has thousands of settings that you’ll never see in any dialog box but that you might want to customize. IT professionals can manage the registry’s security, which lets users run legacy applications in their restricted accounts instead of logging on to their computers as Administrator. You can manage the registry’s security directly or using a tool such as Security Configuration and Analysis to automate the process. Also, IT professionals can use a combination of scripts and the registry to auto mate customizations. You can address most needs with a good script. An indirect but important benefit of the registry to IT professionals is application compatibility. Microsoft defines standards for where different types of settings belong in the registry. The comp any has standards for file associations, Plug and Play configuration data, printer settings, application settings, and much more. Applications that follow these standards are mo re likely to work well with the operating system, not to mention other applications, because they’re all looking for the same settings in the same places.

The registry enables too many other management features:
• Deployment customization
• Folder redirection

• Hardware profiles

• Offline files

• Performance monitoring

• Roaming user profiles

• Windows Management Instrumentation
2.1 The Past

MS-DOS got its configuration data from Config.sys and Autoexec.bat. The primary purpose of Config.sys was to load device drivers, and the primary purpose of Autoexec.bat was to prepare MS-DOS for use by running programs, setting environment variables, and so on. Every application that ran on MS-DOS was responsible for man aging its own settings. Microsoft Windows 3.0 alleviated the limitations of Autoexec.bat and Config.sys a bit by providing INI files for storing settings. While the performance with these files left something to be desired, they formed the basis for today’s registry. INI files are text files that contain one o r more sections with one or more settings in each section. The problem with INI files is that they provide no hierarchy, storing binary values in them is cumbersome (although not impossible), and they provide no standard for storing similar types of settings. INI files have other subtle problems, all related to the configuration file’s inability to build complex relationships between applications and the operating system. A bigger problem with INI files and early versions of Windows was the sheer number of them that floated around the average computer. Every application had its own INI files.

Windows 3.1 introduced the registry as a tool for storing OLE (object linking and embedding) settings, and Windows 95 and Windows NT 3.5 expanded the registry to the configuration database that Windows XP uses now. Even though INI files are no longer necessary because applications no w have a far better way to store settings, you’ll always find a hand full on any computer, including Win.ini. The registry has been around since before 1995. The first registry to app ear in Windows was created to solve a number of problems: poor performance (retrieving information from the original flat-text .ini files was cumbersome), size limitations (the .ini files could be only so large), and maintenance problems (the .ini files were organizationally impaired!). Today, the Windows XP system .ini files contain only a few entries used by a few applications (Most are legacy 16-bit applications, though a few new programs are also placing some items in the win.ini file, too!).
Microsoft now realizes that if every application stores application-specific information in the system registry, then the system registry can grow to an enormous size. That isn’t quite what Microsoft had in mind when they created the registry structure. Microsoft’s policy now states that applications may (and should) use standalone .ini files as needed.

Some advantages to using application-specific .ini files include these:
• Individual applications sometimes need to be restored from backup. With an application-specific .ini file, it is not necessary to back up and restore the entire registry to reinstall any single application. (This eliminates the attendant problem of restoring one part of the registry only to lose another part during the restoration!)
• The system registry has a practical limited size. Granted, the size is large, but some applications have lately been adding substantial content to the registry without regard to the fact (sad as it is) that the registry is a shared resource that everyone, including the system, must use! Once the registry gets too large, some registry operations may take an excessive amount of time.

2.2 Registry Structure

The structure of Windows XP’s registry is so similar to the structure of its file system. In the editor’s left pane, which is called the key pane, you see the registry’s hierarch y, just as you see the file system’s hierarchy in Windows Explorer’s left pane. Each folder in the key pane is a registry key. In the editor’s right pane, which is called the value pane, you see a key’s values, just as you see a folder’s contents in Windows Explorer’s right pane.

In Registry Editor, you can see each of the registry’s root keys under My Computer. You can see the full name of each root key in Registry Editor.
2.2.1 Keys
Keys are so similar to folders that they have the same naming rules. You can nest one or more keys within another key as long as the names are unique within each key. A key’s name is limited to 512 ANSI o r 256 Unicode characters, and you can use any ASC II character in the name other than a backslash (\) , asterisk (*), and question mark (?).HKCU\Control Panel\Desktop\Wallpaper refers to a value called Wallpaper in the root key HKCU in a sub key of Control Panel called Desktop. This notation is a fully qualified path. Windows Operating System stores hardware profiles in HKLM\SYSTEM\CurrentControlSet\Hardware Profiles\. Each hardware profile is a sub key nnnn, where nnnn is an incremental number beginning with 0000. The sub key Current is a link to whichever key is the current hardware profile, and root key HKCC is a link to Current.

[image: image1.png]
Figure 2.1 Windows Registry Editor and Windows Explorer
2.2.2 Values
Each key contains one or more values. In my analogy with Windows Explorer, values are similar to files. A value’s name is similar to a file’s name. A value’s type is similar to a file’s extension; which indicates its type. A value’s data is similar to the file’s actual contents. Click a key in Registry Editor’s key pane, and the program shows the key’s values in the value pane. In the value pane, you see three columns, which correspond to the three p arts of a value:

• Name: Every value has a name. The same rules for naming keys apply to values: up to 512 ANSI or 256 Unicode characters except for the backslash (\), asterisk (*), and question mark (?), with Windows Operating system reserving all names that begin with a period. Within each key, value names must be unique, but different keys can have values with the same name.
• Type: Each value’s type determines the type of data that it contains. For example, a REG_DWORD value contains a double-word number, and a REG SZ value contains a string.

• Data: Each value can be empty, or null, or can contain data. A value’s data can be a maximum of 32,767 bytes, but the practical limit is 2 KB. The data usually corresponds to the type, except that binary values can contain strings, double-words, or anything else for that matter.
Every key contains at least one value, and that’s the default value. When you look at the registry through Registry Editor, you see the default value as (Default). The default value is almost always a string, but ill-behaved programs can change it to other types. In most cases, the default value is null, and Registry Editor displays its data as (value not set). When instructions require that you change a key’s default value, they usually say so explicitly: “Set the key’s default value.”
2.2.3 Types
Windows supports the following types of data in the registry. As you look through this list, realize that REG_BINARY, REG_DWORD, and REG_SZ account for the vast majority of all the settings in the registry:
REG_BINARY: Binary data. Registry Editor displays binary data in hexadecimal notation, and you enter binary data using hexadecimal notation. An example of a REG_BINARY value is 0x02 OxFE OxA9 0 x38 0x92 0x38 OxAB OxD9.
REG_DWORD: Double-word values (32-bits). Many values are REG_DWORD values used as Boolean flags (0 or 1, true or false, yes or no). You also see time stored in REG_DWORD values in milliseconds (1000 is 1 second). 32-bit unsigned numbers range from 0 to 4,294,967,295 and 32-bit signed numbers range from -2,147,483,648 to 2,147,483,647. You can view and edit these values in decimal or hexadecimal notation. Examples of REG_DWORD values are OxFEO20001 and OxlOOl000l.

• REG_DWORD_BIG_ENDIAN: Double-word values with the most significant bytes stored first in memory. The order of the bytes is the opposite of the order in which REGDWORD stores them. For example, the number OxO 1020304 is stored in memory as OxO 1 0x02 0x03 0x04. You don’t see this data type much on Intel-based architectures.

• REG_DWORD_LITTLE_ENDIAN: Double-word values with the least significant bytes stored first in memory (reverse-byte order). This type is the same as REGDWORD, and because Intel-based architectures store numbers in memory in this format, it is the most common number format in Windows XP. For example, the number OxO 1020304 is stored in memory as 0x04 0x03 0x02 OxO1. Registry Editor doesn’t offer the ability to create REG DWORD LITTLE ENDIAN values, because this value type is identical to REG_ DWORD in the registry.

• REG_ EXPAND_SZ: Variable-length text. A value of this type can include environment variables, and the program using the value expands those variables before using it. For example, a REG_EXPAND_SZ value that contains %USERPROFILE%\Favorites might be expanded to C:\Documents and Settings\Jerry\Favorites before the program uses it. The registry API (Application Programming Interface) relies on the calling program to expand the environment variables in REG_ EXPAND_SZ strings, so it’s useless if the program doesn‘t expand them.

• REG_FULL_RESOURCE_DESCRIPTOR: Resource lists for a device or device driver. This data type is important to Plug and Play, but it doesn’t figure much in your work with the registry. Registry Editor doesn’t provide a way to create this type of value, but it does allow you to display it. See HKLM\HARDWARE\DESCRIPTION\Description for examples of this data type.

• REG_LINK: A link. You can’t create REG LINK values.

• REG_MULTI_SZ: Binary values that contain lists of strings. Registry Editor displays one string on each line and allows you to edit these lists. In the registry, a null character (OxOO) separates each string, and two null characters end the list.

• REG_NONE: Values with no defined type.

• REG_QWORD: Quadruple-word values (64-bits). This type is similar to
REG DWORB bu t contains 64 bits instead of 32 bits. The only version of
Windows XP that supports this type of 24value is Windows XP 64-Bit Edition.
You can view and edit these values in decimal or hexadecimal notation. An example of a REG_Q WORD value is 0xFE02000 110010001.
• REG_QWORD_BIG_ENDIAN: Quadruple-word values with the most significant bytes stored first in memory. The order of the bytes is the opposite of the order in which REGQWORD stores them. See REG DWORD BIG ENDIAN for more information about this value type.
• REG_ WORD_LITTLE_ENDIAN: Quadruple-word values with the least significant bytes stored first in memory (reverse-byte order). This type is the same as REG_QWORD. See REG_DWORD_LITTLE_ENDIAN for more information. Registry Editor doesn’t offer the ability to create REG_QWORD_LITTLE_ENDIAN values, because this value type is identical to REG_QWORD in the registry.
• REG_RESOURCE_LIST: List of REG FULL RESOURCE DESCRIPTION values. Registry Editor allows you to view but not edit this type of value.
• REG_RESOURCE_REQUIREMENTS_LIST: List of resources that a device requires. Registry Editor allows you to view but not edit this type of value.
• REG_SZ: Fixed-length text. Other than REG_DWORD values, REG_SZ values are the most common types of data in the registry. An example of a REG_SZ value is Microsoft Windows XP or Jerry Honeycutt. Each string ends with a null character. Programs don’t expand environment variables in REG_SZ values.
Of all the values in the registry, binary values are the least straightforward. When an application reads a binary value from the registry, deciphering its meaning is up to the program. This means that applications can store data in binary values using their own data structures, and those data structures mean no thing to you or any other program. Also, application s often store REGDWORD and REG SZ data in REG_BINARY values, which makes fin ding and deciphering them difficult. In fact, some programs use REG DWORD and four-byte REG BINARY values interchangeably; thus, keeping in mind that Intel-based computers use little-endian architecture, the binary value OxO 1 0x02 0x03 0x04 and the REG DWORD value 0x04030201 are exactly the same thing.

The registry actually stores all values as binary values. The registry API identifies each type of value b y a number, which programmers refer to as a constant, and which is called type number. You’ll notice this type number mostly when you export keys to REG files. Normally, the type number associated with each value type doesn’t matter because you refer to them by their names.

Table 2.1 Value Types
	Type
	Number

	REG_NONE
	0

	REG_SZ 1
	1

	REG_EXPAND_SZ 2
	2

	REG_BINARY 3
	3

	REG_DWORD 4
	4

	REG_DWORD_LITTLE_ENDIAN 4
	4

	REG_DWORD_BIG_ENDIAN 5
	5

	REG_LINK 6
	6

	REG_MULTI_SZ 7
	7

	REG_RESOURCE_LIST 8
	8

2.3 Registry Organization
Of the five root keys HKLM and HKU are more important than the others. These are the only root keys that Windows Operating System actually stores on disk. The other root keys are links to sub keys in HKLM or HKU. HKCU is a link to a sub key in HKU. HKCR and HKCC are links to sub keys in HKLM. Figure 2.3 illustrates this relationship between root keys and their links to keys.

[image: image2.emf]
Figure 2.2 Links to sub keys in HKU and HKLM

There are two types of concepts are there in windows registry such as per-user and per-computer. Per-user settings are user specific for example, whether or not a user prefers to display Windows Explorer's status bar. Per-computer settings apply to the computer and every user who logs on to the computer for example, network configuration. Per-user settings are in HKCU, and per-computer settings are in HKLM.

2.3.1 HKEY_USERS
HKU contains at least three sub keys:

· DEFAULT contains the per-user settings that Windows uses to display the desktop before any user logs on to the computer. This isn't the same thing as a default user profile, which Windows uses to create settings for users the first time they log on to the computer.

· SID, where SID is the security identifier of the console user (the console user is the user sitting at the keyboard), contains per-user settings. HKCU is linked to this key. This key contains settings such as the user's desktop preferences and Control Panel settings.

· SID Classes, where SID is the security identifier of the console user, contains per-user class registrations and file associations. Windows XP merges the contents of keys HKLM\SOFTWARE\Classes and HKU\SID Classes into HKCR.

· Any other sub keys in HKU belong to secondary users. For example, if you use Windows's Run As command to run a program as a different user, the operating system loads that user account's settings into HKU. This feature, called secondary logon, enables users to run programs with elevated privileges without requiring them to actually log on to a different account.

[image: image3.emf]
Figure 2.3 HKEY_USERS

Figure 2.4 shows a typical HKU and describes each of its sub keys. You'll see the same default and service account settings on your computer that you see in the figure.

The remaining sub keys and their SIDs will be different, depending on the SID of the console user account and whether other accounts have logged on to Windows.

2.3.2 HKEY_CURRENT_USER

HKCU contains the console user's per−user settings. This root key is a link to HKU\SID, where SID is the console user's security identifier. This branch includes environment variables, desktop settings, network connections, printers, and application preferences. Here's a snapshot of some of this root key's sub keys:

· AppEvents: Associates sounds with events. For example, it associates sounds with opening menus, minimizing windows, and logging off Windows.

· Console: Stores data for the console subsystem, which hosts all character-mode applications, including the MS−DOS command prompt. In addition, the Console key can contain sub keys for custom command windows.

· Control Panel: Contains accessibility, regional and desktop appearance settings. You configure most of these settings in Control Panel. However, this key contains a handful of useful settings that have no user interface; you can configure them only through the registry.

· Environment: Stores environment variables users have set. Each value associates an environment variable with the string that Windows substitutes for the variable. The default values for these entries are in the user's profile.Identities. Contains one sub key for each identity in Microsoft Outlook Express.

Outlook Express uses identities to allow multiple users to share a single mail client. With Windows's support for user profiles, one user's settings are separate from other users' settings, so this key is seldom necessary.
· Keyboard Layout: Contains information about the installed keyboard layouts.

· Network: Stores information about mapped network drives. Each sub key in Network is a mapped drive to which Windows connects each time the user logs on to the computer. The sub keys' names are the drive letters to which the drives are mapped. Each drive's key contains settings used to reconnect the drive.

· Printers: Stores user preferences for printers.

· Software: Contains per−user application settings. Windows stores much of its own configuration in this key, too. Microsoft has standardized its organization so that programs store settings in HKCU\Software\Vendor\Program\Version\.

Vendor is the name of the program's publisher, Program is the name of the program, and Version is the program's version number. Often, as is the case with Windows XP, Version is simply CurrentVersion.

· Volatile Environment: Contains environment variables defined when the user logged on to Windows.
2.3.3 HKEY_LOCAL_MACHINE

HKLM contains per-computer settings, which means the settings in this branch apply to the computer's configuration and affect every user who logs on to it. Settings run the gamut from device driver configurations to Windows settings. HKLM contains the following sub keys:

· HARDWARE: Stores data describing the hardware that Windows detects as it starts. The operating system creates this key each time it starts, and it includes information about devices and the device drivers and resources associated with them.

· SAM: Contains Windows's local security database, the Security Accounts Manager (SAM). Windows stores local users and groups in SAM. This key's access control list (ACL) prevents even administrators from viewing it. SAM is a link to the key HKLM\SECURITY\SAM.

· SECURITY: Contains Windows XP's local security database in the sub key SAM, as well as other security settings. This key's ACL prevents even administrators from viewing it, unless they take ownership of it.

· SOFTWARE: Contains per−computer application settings. Windows stores settings in this key, too. Microsoft standardized this key's organization so that programs store settings in HKLM\SOFTWARE\Vendor\Program\Version\.
Vendor is the name of the program's publisher, Program is the name of the program, and Version is the program's version number. Often, as is the case with Windows XP, Version is CurrentVersion. HKCR is a link to the key HKLM\SOFTWARE\Classes.

· SYSTEM: Contains control sets, one of which is current. The remaining sets are available for use by Windows XP. Each sub key is a control set named ControlSetnnn, where nnn is an incremental number beginning with 001. The operating system maintains at least two control sets to ensure that it can always start properly. These sets contain device driver and service configurations. HKLM\SYSTEM\CurrentControlSet is a link to ControlSetnnn, and the key HKLM\SYSTEM\Select indicates which ControlSetnnn is in use.
2.3.4 HKEY_CLASSES_ROOT

HKCR contains two types of settings. The first is file associations that associate different types of files with the programs that can open, print, and edit them. The second is class registrations for Component Object Model (COM) objects. This root key is one of the most interesting in the registry to customize, because it enables you to change a lot of the operating system's behavior. This root key is also the largest in the registry, accounting for the vast majority of the space that the registry consumes.
· Before Windows 2000, HKCR was a link to the key HKLM\SOFTWARE\Classes, but this root key is more complicated now. To derive HKCR, the operating system merges two keys: HKLM\SOFTWARE\Classes, which contains default file associations and class registrations; and HKCU\Software\Classes, which contains per-user file associations and class registrations. HKCU\Software\Classes is really a link to HKU\SID_Classes. If the same value appears in both branches, the value in HKCU\Software\Classes has higher precedence and wins over the value in HKLM\SOFTWARE \Classes. This new merge algorithm has several benefits:

· Programs can register per-computer and per−user program file associations and program classes (One user can have file associations that other users who share the computer don't have). This is probably the biggest benefit of the merge.

· Users who share a single computer can use two different programs to edit the same type of file without affecting each other. Because per-user file associations and class registrations are in the users' profiles, they follow users from computer to computer when using roaming user profiles.

· IT professionals can limit access to HKLM\SOFTWARE\Classes without preventing users from changing HKCU\Software\Classes, allowing for greater security in the registry without crippling users' ability to change associations.

Create a new key in the root of HKCR, and Windows actually creates it in HKLM\SOFTWARE\Classes. Windows doesn't provide a user interface other than Registry Editor to add class registrations to HKCU\Software\Classes, because the intention is to allow programs to register per-user program classes. When you edit an existing program class, the change is reflected in HKLM or HKCU, depending on where the program class already exists. If the program class exists in both places, Windows updates only the version in HKCU.

2.3.5 HKEY_CURRENT_CONFIG

HKCC is a link to configuration data for the current hardware profile, the key HKLM\SYSTEM\CurrentcontrolSet\Hardware Profiles\Current. In turn, Current is a link to the key HKLM\SYSTEM\CurrentcontrolSet\Hardware Profiles\nnnn, where nnnn is a incremental number beginning with 0000.
2.4 Registry Management Tools

Hundreds of third−party and shareware registry tools are available. Some commonly used tools are:

· Registry Editor: This is the primary tool you use to edit settings in the registry.

· Console Registry Tool for Windows (Reg.exe): This command−line registry tool supports most of the capabilities of Registry Editor. The significance of this tool is that it allows you to script edits in batch files.

· WinDiff: This tool comes with the Windows XP Support Tools, which you install from \Support\Tools on the Windows XP CD. It's the best program for comparing files, a useful technique for tracking down settings in the registry.

· Microsoft Word: This application might not seem like a registry management tool, but Word can be used when WinDiff isn't available to compare files so we can figure out where a program stores a setting in the registry. Word can also be used to edit scripts so that we can take advantage of its built-in version control and revision tracking features.

2.5 Registry Hive Files

Physically, Windows organizes the registry in hives, each of which is in a binary file called a hive file. For each hive file, Windows XP creates additional supporting files that contain backup copies of each hive's data. These backups allow the operating system to repair the hive during the installation and boot processes if something goes terribly wrong. You find hives in only two root keys: HKLM and HKU. The hive and supporting files for all hives other than those in HKU are in %SYSTEMROOT%\System32\config. Hive files for HKU are in users' profile folders.

Table 2.2 Hive File Name Extensions

	Extension
	Description

	None
	Hive file

	.alt
	Not used in Windows XP. In Windows 2000, System.alt is a backup copy of the System hive file

	.log
	Transaction log of changes to a hive

	.sav
	Copy of a hive file made at the end of the text−mode phase of the

Windows XP setup program

CHAPTER 3

USING THE REGISTRY EDITOR

3.1 Running Regedit

You won't find a shortcut to Registry Editor (Regedit) on the Start menu. Windows provides policies that you can use to limit access to Regedit. Regedit and Registry Editor are one and the same. Regedit.exe is the name of Registry Editor's program file and it is easier to type, say, and read. Regedit is in %SYSTEMROOT%. We can set the Disable registry editing tools policy in Group Policy, local or otherwise.
3.2 Exploring Regedit

Its few menus are simple. It has a status bar that displays the name of the current key. Its window contains two panes, split by a divider that you can drag left or right to change the size of both panes. On the left is the key pane; on the right is the value pane. The key pane displays the registry's keys and sub keys, analogous to folders and subfolders. This is the registry's hierarchy. The value pane displays the settings that each key contains. Click a key in the key pane, and you see that key's values in the value pane.

[image: image4.emf]
Figure 3.1 Windows Registry windows
Regedit saves its settings every time you close it. The next time you start Regedit, the window will open to its last position and the window and panes will be the same size. The columns will also be the same size. Regedit reselects the last key that you selected.

The key pane displays the registry's hierarchy. It is organized much like an outline, with each key's child keys, or sub keys, indented immediately below it. At the top, you see My Computer, which represents the local computer. When you connect to another computer's registry over the network, you see that computer's name at the top level of the key pane, too. Immediately under My Computer, you see each of the local registry's root keys. Following each root key are its sub keys. The term branch refers to a key and all its sub keys.
PAGE
26
Windows Registry

