LINUX VIRTUAL SERVER

 MAIN PROJECT 2011

PAGE
LINUX VIRTUAL SERVER

MAIN PROJECT 2011

	
I.INTRODUCTION

1.1 General
With the explosive growth of the Internet, Internet servers must cope with greater demands than ever. The potential number of clients that a server must support has dramatically increased, some hot sites have already received hundreds of thousands of simultaneous client connections. With the increasing number of users and the increasing workload, companies often worry about how their systems grow over time. Furthermore, rapid response and 24x7 availability are mandatory requirements for the mission-critical business applications, as sites compete for offering users the best access experience. Therefore, the requirements for hardware and software solution to support highly scalable and highly available services can be summarized as follows:

Scalability, when the load offered to the service increases, system can be scaled to meet the requirement.

24x7 availability, the service as a whole must be available 24x7, despite of transient partial hardware and software failures.

Manageability, although the whole system may be physically large, it should be easy to manage.

Cost-effectiveness, the whole system must be economical to afford and expand.

A single server is usually not sufficient to handle this aggressively increasing load. The server upgrading process is complex, and the server is a single point of failure. The higher end the server is upgraded to, the much higher cost we have to pay.

 Clusters of servers, connected by a fast network, are emerging as a viable architecture for building highly scalable and highly available services. This type of loosely coupled architecture is more scalable, more cost effective and more reliable than a tightly coupled multiprocessor system. However, a number of challenges must be addressed to make a cluster of servers function effectively for scalable network services. Linux Virtual Server is our solution to the requirements. Linux Virtual Server is a software tool that directs network connections to multiple servers that share their workload, which can be used to build highly scalable and highly available services. Prototypes of Linux Virtual Server have already been used to build many sites of heavy load on the Internet, such as Linux portal www.linux.com, sourceforge.net and UK National JANET Web Cache Services.
Linux Virtual Server directs network connections to the different servers according to scheduling algorithms and makes parallel services of the cluster to appear as a virtual service on a single IP address. Client applications interact with the cluster as if it were a single server. The clients are not affected by interaction with the cluster and do not need modification. Scalability is achieved by transparently adding or removing a node in the cluster. High availability is provided by detecting node or daemon failures and reconfiguring the system appropriately.
1.2 Company Profile
IPSR Group
Since the inception in 1999, IPSR has been focusing on quality and consistency which proved to be a forerunner to our success in various spectrum of IT ranging from software application development, Networking & technical infrastructure consultancy & support to high-end IT training and certification services.

IPSR Group now stands out to be one of the leading IT concerns in Kerala and its goodwill is now noted at national level, primarily because behind the venture is a set of prominent Academicians and Industrialists with real commitment.IPSR group is headquartered at Kottayam and now belongs to the distinct class of total IT solutions Provider with its prominent presence in diversified areas of IT.
Training & Corporate Services Division
IPSR is offering training and certification in various networking courses.
Red Hat

RHCE (Red Hat Certified Engineer)

RHCSS (Red Hat Certified Security Specialist)

RHCDS (Red Hat Certified Data center Specialist)

RHCVA (Red Hat Certified Virtualization Administrator)

RHCA (Red Hat Certified Architect)
Cisco
CCNA (Cisco Certified Network Associate)

CCNP (Cisco Certified Network Professional)

CCVP (Cisco Certified Voice Professional)

CCIE (Cisco Certified Internetwork Expert)
Microsoft
MCP (Microsoft Certified Professional)

MCSA (Microsoft Certified Systems Administrator)

MCSE (Microsoft Certified Systems Engineer)

MCTS (Microsoft Certified Technology Specialist)

MCITP (Microsoft Certified Information Technology Professional)

IPSR is now the only institution in India offering the top rated Certifications, RHCA & CCIE

Our training services are also offered in the following software courses

 PHP and MySQL training
 Advanced PHP training
 C# and ASP.NET (2008) training
 Java & J2 EE training
IPSR also offers Live Academic projects for students of various IT branches

Corporate Consultancy

IPSR is now in a possession with one of the most successful Linux division in India capable of taking up, implementing and administering corporate level Linux activities that mainly include Corporate training and Linux Server Installation and Maintenance Support.

IPSR IT Finishing School

IPSR IT finishing school is a concept aimed at moulding out truly employable candidates out of students. The new venture of IPSR is an academic-industry association, where a student is provided with training in all the needed hot skills and soft skills and then offered a real time industry experience. We have also set up an Open Source Based Development Centre (OSBDC) at Kochi for undertaking projects in Open Source technologies. Students are provided an opportunity to associate with the projects at OSBDC.

International Centre @ Kochi
IPSR was successful in setting up an international centre at Kochi mainly to offer high level certifications in Red Hat Linux. IPSR is also promoting educational tourism packages in association with the international centre to attract students from abroad.

IPSR Career Centre

Career Center is a new venture initiated by IPSR to provide placement assistance to the aspiring students in the field of Information Technology. The key objective of Career centre is to help IT students in their job-hunt and to inform them on prospective job openings. Students are offered career guidance as per the latest trends and the service also includes free job alerts directly send to the candidates as e-mails. All these services are totally free for all students. More than 2 lakh students are enrolled with ipsr career centre and our association with more than 1000 companies have helped us in catering to the students’ placement needs.
IPSR Publication

Based on our unmatched expertise in dealing with students of various profiles for the past one decade, IPSR has come up with a series of publication for IT and non IT students. The main aim of our publication division is to publish books that are specific for diverse profiles and to make them available for the entire student community at affordable rates.

Tie-ups with professional Colleges

To offer quality training and associated services, IPSR is presently associating with various leading professional colleges in Kerala. The tie up is generating fruitful results by virtue of a real-time academic industry interaction.

Achievements of Training Division:

IPSR training division is presently engaged in offering Projects, training and certification in Windows, Linux & CISCO platforms. We could also achieve several milestones in the field of Linux training in India

· Winner of Red Hat GLS National Awards for the years 2004, 2005, 2006, 2007
& 2008.

· Winner of prestigious Red Hat Asia Pacific International Award 2008 &
2009
· Produced highest number of RHCEs in the World (2500+)

· Consistent pass rate of 95 - 100% in RHCE exams

· 1 out of 20 RHCEs in the world is from IPSR

· 1 out of 6 RHCSSs in South Asia is from IPSR

· Provided corporate consultancy for many organizations
· Launched an exclusive division for foreign students and NRIs

· Produced the World’s youngest & second Youngest RHCEs
Software Development Division
The company has developed a host of software products with a very large client base. The main products include

· eZcom, a complete accounting package

· iCMS a web-content management software

· Quicksite, an easy way to build dynamic websites

· Custom package implementation for CRM, SCM solutions

· E-business solutions

· The company has developed portals and sites for almost 1000 business
concerns across Kerala. Kerala Web Directory is a portal developed and
maintained by IPSR.

Overseas Development Division

ipsr sololutions ltd. has an Overseas Development Division that concentrates exclusively on Overseas Projects. Most of the overseas projects undertaken are Open Source based and the division is currently operating from Kochi.

Hardware & Networking Solutions

The e company has a strong computer hardware & networking Solutions division with almost 2500 customers.

Social Projects

As part of corporate social responsibility, IPSR is now into a lot of social projects as well. Some of the initiatives include

Talent genie Programme : This programme envisions to find out real talents from the campus and to offer placement assistance to them. The selected candidates are also offered handsome gifs and other privileges.

Teen Cyber Project : This project is aimed at identifying children who demonstrate high level of interest for Information technology. Selected children are given free training programmes so as to groom them to become productive professionals and entrepreneurs.
Scholarship Programme : Various scholarship programmes are also offered for the deserving students to aid their formal learning.
1.3 Architecture Diagrams

1.4 Clustering

1.4.1 What is clustering?

Clustering is the use of multiple computers, typically PCs or UNIX workstations, multiple storage devices, and redundant interconnections, to form what appears to users as a single highly available system. Cluster computing can be used for load balancing as well as for high availability. It is used as a relatively low-cost form of parallel processing machine for scientific and other applications that lend themselves to parallel operations.

 Computer cluster technology puts clusters of systems together to provide better system reliability and performance. Cluster server systems connect a group of servers together in order to jointly provide processing service for the clients in the network.

 Cluster can offer,

High performance

Large capacity

High availability

Incremental growth

 [image: image1.png]

Silicon Graphics Cluster-SGI; an example of cluster computing

1.4.2 Cluster Categorizations
High-availability (HA) clusters
 High-availability clusters (also known as Failover Clusters) are implemented primarily for the purpose of improving the availability of services that the cluster provides. They operate by having redundant nodes, which are then used to provide service when system components fail. The most common size for an HA cluster is two nodes, which is the minimum requirement to provide redundancy. HA cluster implementations attempt to use redundancy of cluster components to eliminate single points of failure.
Load-balancing clusters
 Load-balancing is when multiple computers are linked together to share computational workload or function as a single virtual computer. Logically, from the user side, they are multiple machines, but function as a single virtual machine. Requests initiated from the user are managed by, and distributed among, all the standalone computers to form a cluster. This results in balanced computational work among different machines, improving the performance of the cluster systems.

Compute clusters
 Often clusters are used primarily for computational purposes, rather than handling IO-oriented operations such as web service or databases. For instance, a cluster might support computational simulations of weather or vehicle crashes. The primary distinction within compute clusters is how tightly-coupled the individual nodes are. For instance, a single compute job may require frequent communication among nodes - this implies that the cluster shares a dedicated network, is densely located, and probably has homogenous nodes.
1.4.3 Clustering in LINUX

A Linux Enterprise Cluster is a type of commodity cluster that typically runs mission-critical applications to support a community of users. Users of a Linux Enterprise Cluster do not need to sit in front of a Linux workstation; they may connect to the cluster using a web browser, telnet client, or any client application that knows how to communicate with the services running on the cluster nodes.
The term cluster is generally used to describe a broad range of distributed processing systems, but those who use the term in the computer industry have yet to agree upon a definition that has any weight to it. Gregory Pfister proposes the following elegant definition:

”A cluster is a type of parallel or distributed system that consists of a collection of interconnected whole computers is used as a single unified computing resource”

Building a cluster allows you to remove the CPU performance bottleneck and improve the reliability and availability of your user applications. With careful testing and planning, you can build a Linux Enterprise Cluster that can run mission-critical applications with no single point of failure. And with the proper hardware capacity (that is, the right number of nodes) you can maintain your cluster during normal business hours without affecting the performance of end-user applications.

1.4.4 PROPERTIES OF A LINUX ENTERPRISE CLUSTER

If we succeed in building a system that can be used as a "single unified computing resource" using "a local computing system comprising a set of independent computers and a network interconnecting them," then the user, the programmer, the program, and even the networking equipment and the other servers on the network will not know that they are using or communicating with a cluster.

Thus, the four basic properties of a Linux Enterprise Cluster are:

1. Users do not know that they are using a cluster

If users do know they are using a cluster, they are using distinct, distributed servers
and not a single unified computing resource.
2. Nodes within a cluster do not know they are part of a cluster

In other words, the operating system does not need to be modified to run on a cluster node, and the failure of one node in the cluster has no effect on the other nodes inside the cluster. (Each cluster node is whole or complete—it can be rebooted or removed from the cluster without affecting the other nodes.)

A Linux Enterprise Cluster is a commodity cluster because it uses little or no specialty hardware and can use the normal Linux operating system. Besides lowering the cost of the cluster, this has the added benefit that the system administrator will not have to learn an entirely new set of skills to provide basic services required for normal operation, such as account authentication, host-name resolution, and email messaging.

3. Applications running in the cluster do not know that they are running inside a cluster

If an application—especially a mission-critical legacy application—must be
modified to run inside the cluster, then the application is no longer using the cluster
as a single unified computing resource.

Some applications can be written using a cluster-aware application programming interface (API), a Message Passing Interface (MPI), or distributed objects. They will retain some, but not all, of the benefits of using the cluster as a single unified computing resource. But multiuser programs should not have to be rewritten to run inside a cluster if the cluster is a single unified computing resource.

4. Other servers on the network do not know that they are servicing a cluster node

The nodes within the Linux Enterprise Cluster must be able to make requests of servers on the network just like any other ordinary client computer. The servers on the network (DNS, email, user authentication, and so on) should not have to be rewritten to support the requests coming from the cluster nodes.

II.SOFTWARE REQUIREMENT SPECIFICATIONS
2.1 Definitions
Linux Virtual Server: Linux Virtual Server (LVS) is an advanced load balancing solution for Linux systems. The mission of the project is to build a high-performance and highly available server for Linux using Clustering technology, which provides good scalability, reliability and serviceability.
Load Balancing: In computer networking, load balancing is a technique to distribute workload evenly across two or more computers, network links, CPUs, hard drives, or other resources, in order to get optimal resource utilization, maximize throughput, minimize response time, and avoid overload. Using multiple components with load balancing, instead of a single component, may increase reliability through redundancy. The load balancing service is usually provided by a dedicated program or hardware device (such as a multilayer switch or a DNS server).
High Availability: High-availability clusters (also known as HA Clusters or Failover Clusters) are Computer clusters that are implemented primarily for the purpose of providing high availability of services which the cluster provides. They operate by having redundant computers or nodes which are then used to provide service when system components fail. Normally, if a server with a particular application crashes, the application will be unavailable until someone fixes the crashed server. HA clustering remedies this situation by detecting hardware/software faults, and immediately restarting the application on another system without requiring administrative intervention, a process known as Failover. As part of this process, clustering software may configure the node before starting the application on it. For example, appropriate file systems may need to be imported and mounted, network hardware may have to be configured, and some supporting applications may need to be running as well.
Web server: A web server is a computer programs that delivers (serves) content, such as this web page, using the Hypertext Transfer Protocol.
SPOF: A Single Point of Failure, (SPOF), is a part of a system which, if it fails, will stop the entire system from working. They are undesirable in any system whose goal is high availability, be it a network, software application or other industrial system
NAT: In computer Networking, network address translation (NAT) is the process of modifying network address information in datagram packet headers while in transit across a traffic routing device for the purpose of remapping a given address space into another.
Netfilter: Netfilter is a framework that provides hook handling within the Linux Kernel for intercepting and manipulating network packets. Put more concretely, Netfilter is invoked, for example, by the packet reception and send routines from/to network interfaces. As the master Netfilter function is called with a packet, Netfilter runs through the list of registered hooks and calls the extensions in succession, which then handle packets as they desire.
Scheduling Algorithms: In computer science, a scheduling algorithm is the method by which threads, processes or data flows are given access to system resources (e.g. processor time, communications bandwidth). This is usually done to load balance a system effectively or achieve a target quality of service. The need for a scheduling algorithm arises from the requirement for most modern systems to perform multitasking(execute more than one process at a time) and multiplexing (transmit multiple flows simultaneously)
UNIX Shell programming: A shell script is a script written for the shell, or command line interpreter, of an operating system. It is often considered a simple domain-specific programming language. Typical operations performed by shell scripts include file manipulation, program execution, and printing text.
2.2 Resource Requirements
2.2.1 Hardware Requirements

· 5 systems with minimum 512 MB RAM
· Operating System: Red Hat Enterprise Linux
2.2.2 SOFTWARE REQUIREMENTS

· IPVSADM Kernel Patch for Load Balancing

· Heartbeat Package for High Availability

· Perl-5 Modules

· Kernel 2.6 or higher

· Netfilter Package

· HTTP web server Package

· Berkeley Internet Packages For DNS
2.2.3 TECHNOLOGIES TO BE USED

· LVS: Virtual servers

· IPVSADM: Kernel Patch (Load Balancing)

· Heartbeat: High Availability

· Unix Shell Programming: Programming Language

2.3 Operational Requirements
2.3.1 LDIRECTORD

To failover the LVS load-balancing resource from the primary Director to the backup Director and automatically remove nodes from the cluster, we need to use the ldirectord program. This program automatically builds the IPVS table when it first starts up and then it monitors the health of the cluster nodes and removes them from the IPVS table (on the Director) when they fail.

How ldirectord Monitors Cluster Nodes (LVS Real Servers)

The ldirectord daemon monitors the health of real servers by sending requests to access cluster resources on the real IP (RIP) of each real server. This is true for all LVS cluster types: LVS-DR, LVS-TUN, and LVS-NAT. Normally, one ldirectord daemon runs for each VIP address on the Director. When a real server does not reply to the ldirectord daemon running on the Director, the ldirectord daemon issues the correct ipvsadm command to remove it from the IPVS table for the VIP address. (Later, when the real server comes back online, ldirectord issues the correct ipvsadm command to add the real server back into the IPVS table.)

To monitor real servers inside a web cluster, for example, the ldirectord daemon uses the HTTP protocol to ask each real server for a specific web page. The Director knows what it should receive back from the real servers if they are healthy. If the reply string, or web page, takes too long to come back from the real server, or never comes back at all, or comes back changed in some way, ldirectord will know something is wrong, and it will remove the node from the IPVS table of valid real servers for a given VIP.
Figure shows the ldirectord request to view a special health check web page (not normally viewed by client computers) on the first real server.
[image: image2.png]

Figure : ldirectord requests a health check URL

The URL in this figure (http://10.1.1.2/.healthcheck.html) relies on a file named .healthcheck.html on real server 1 at RIP 10.1.1.2. The Apache web server daemon running on real server 1 will use this file (which contains only the word OKAY) to reply to the ldirectord daemon as shown in Figure
[image: image3.png]
Figure : Real server 1 sends back the reply

Notice in first Figure that the destination address of the packet is the RIP address of a real server (real server 1). Also notice that the return address of the packet is the Director's IP address (the DIP). In second Figure , the packet sent back from the real server to the Director's DIP is shown.

If anything other than the expected reply (the word OKAY as shown in this example) is received by the ldirectord daemon on the Director, the real server will be removed from the IPVS table. Health checks for cluster resources must be made on the RIP addresses of the real servers inside the cluster regardless of the LVS forwarding method used. In the case of the HTTP protocol, the Apache web server running on the real servers must be listening for requests on the RIP address. contains Apache must be configured to allow requests for the health check web page or health check CGI script on the RIP address.

2.3.2 IPVSADM

Ipvsadm is used to set up, maintain or inspect the virtual server table in the Linux kernel. The Linux Virtual Server can be used to build scalable network services based on a cluster of two or more nodes. The active node of the cluster redirects service requests to a collection of server hosts that will actually perform the services. Supported features include two protocols (TCP and UDP), three packet-forwarding methods (NAT, tunneling, and direct routing), and eight load balancing algorithms (round robin, weighted round robin, least-connection, weighted least-connection, locality-based least-connection, locality-based least-connection with replication, destination-hashing, and source-hashing)
III.SYSTEM ANALISYS
3.1 Block Diagram

[image: image4.png]
3.2 High Availability
As more and more mission-critical applications move on the Internet, providing highly available services becomes increasingly important. One of the advantages of a clustered system is that it has hardware and software redundancy, because the cluster system consists of a number of independent nodes, and each node runs a copy of operating system and application software. High availability can be achieved by detecting node or daemon failures and reconfiguring the system appropriately, so that the workload can be taken over by the remaining nodes in the cluster.

3.2.1 Heartbeat

To ensure client computers always have access to a resource we use a software package called Heartbeat that gives the ability to failover a resource from one computer to another. It is used to monitor a pair of linux directors and ensure that one of them owns the VIP at any given time. It works by each host periodically sending a heartbeat message. If no heartbeat message is received for a predetermined period of time then the host is considered to have failed. When this occurs resources can be taken over.

3.2.2 Heartbeat Diagram
[image: image5.png]
How heartbeat works?

The heartbeat daemons run on both the primary load balancer and the backup, they heartbeat the message each other through the UDP and/or serial line periodically. When the heartbeat daemon of the backup cannot hear the message from the primary in the specified time, it will activate the fake to take over the virtual IP address to provide the load-balancing service; when it receives the message from the primary later, it will deactivate the fake to release the virtual IP address, and the primary will take over the virtual IP address.
3.3 Network Address Translation
3.3.1 What Does NAT Do?

 NAT is like the receptionist in a large office. Let's say you have left instructions with the receptionist not to forward any calls to you unless you request it. Later on, you call a potential client and leave a message for that client to call you back. You tell the receptionist that you are expecting a call from this client and to put her through.

 The client calls the main number to your office, which is the only number the client knows. When the client tells the receptionist that she is looking for you, the receptionist checks a lookup table that matches your name with your extension. The receptionist knows that you requested this call, and therefore forwards the caller to your extension.

3.3.2 NAT Diagram
[image: image6.png]
Developed by Cisco, Network Address Translation is used by a device (firewall, router or computer) that sits between an internal network and the rest of the world. NAT has many forms and can work in several ways:

· Static NAT - Mapping an unregistered IP address to a registered IP address on a
one-to-one basis. Particularly useful when a device needs to be accessible from
 the network.

· Dynamic NAT - Maps an unregistered IP address to a registered IP address from a
 of registered IP addresses.

· Overloading - A form of dynamic NAT that maps multiple unregistered IP
addresses to a single registered IP address by using different ports. This is known
also as PAT (Port Address Translation), single address NAT or port-level
multiplexed NAT

· Overlapping - When the IP addresses used on your internal network are registered IP addresses in use on another network, the router must maintain a lookup table of these addresses so that it can intercept them and replace them with registered unique IP addresses. It is important to note that the NAT router must translate the "internal" addresses to registered unique addresses as well as translate the "external" registered addresses to addresses that are unique to the private network. This can be done either through static NAT or by using DNS and implementing dynamic NAT.

 The internal network is usually a LAN (Local Area Network), commonly referred to as the stub domain. A stub domain is a LAN that uses IP addresses internally. Most of the network traffic in a stub domain is local, so it doesn't travel outside the internal network. A stub domain can include both registered and unregistered IP addresses. Of course, any computers that use unregistered IP addresses must use Network Address Translation to communicate with the rest of the world
3.4 IPTABLES

 Iptables is a user space application program that allows a system administrator to configure the tables provided by the Linux kernel firewall (implemented as different Netfilter modules) and the chains and rules it stores. Different kernel modules and programs are currently used for different protocols; iptables applies to IPv4, ip6tables to IPv6, arptables to ARP, and ebtables as a special for Ethernet frames.

 Iptables requires elevated privileges to operate and must be executed by user root, otherwise it fails to function.
On most Linux systems, iptables is installed as /usr/sbin/iptables and documented in its man page, which can be opened using `man iptables` when installed. It may also be found in /sbin/iptables, but since iptables is not an "essential binary", but more like a service, the preferred location remains /usr/sbin.

 Iptbales is also commonly used to inclusively refer to the kernel-level components. X_tables is the name of the kernel module carrying the shared code portion used by all four modules that also provides the API used for extensions; subsequently, Xtables is more or less used to refer to the entire firewall (v4, v6, Arp, eb) architecture.

3.4.1 Operational Summary
 Xtables allows the system administrator to define tables containing chains of rules for the treatment of packets. Each table is associated with a different kind of packet processing. Packets are processed by sequentially traversing the rules in chains. A rule in a chain can cause a goto or jump to another chain, and this can be repeated to whatever level of nesting is desired. (A jump is like a “call”, i.e. the point that was jumped from is remembered.) Every network packet arriving at or leaving from the computer traverses at least one chain.

 Packet flow paths. Packets start at a given box and will flow along a certain path, depending on the circumstances.

 The origin of the packet determines which chain it traverses initially. There are five predefined chains (mapping to the five available Netfilter hooks), though a table may not have all chains. Predefined chains have a policy, for example DROP, which is applied to the packet if it reaches the end of the chain. The system administrator can create as many other chains as desired. These chains have no policy; if a packet reaches the end of the chain it is returned to the chain which called it. A chain may be empty.

· “PREROUTING”: Packets will enter this chain before a routing decision is made.

· “INPUT”: Packet is going to be locally delivered. (N.B.: It does not have anything to do with processes having a socket open. Local delivery is controlled by the “local-delivery” routing table: `ip route show table local`.)

· “FORWARD”: All packets that have been routed and were not for local delivery will traverse this chain.

· “OUTPUT”: Packets sent from the machine itself will be visiting this chain.
· “POSTROUTING”: Routing decision has been made. Packets enter this chain just before handing them off to the hardware.

3.4.2 IPTABLES Packet Flow Diagram

[image: image7.png]
 Each rule in a chain contains the specification of which packets it matches. It may also contain a target (used for extensions) or verdict (one of the built-in decisions). As a packet traverses a chain, each rule in turn is examined. If a rule does not match the packet, the packet is passed to the next rule. If a rule does match the packet, the rule takes the action indicated by the target/verdict, which may result in the packet being allowed to continue along the chain or it may not. Matches make up the large part of rule sets, as they contain the conditions packets are tested for. These can happen for about any layer in the OSI model, as with e.g. the --Mac-source and -p tcp --dport parameters, and there are also protocol-independent matches, such as -m time.

The packet continues to traverse the chain until either

1. a rule matches the packet and decides the ultimate fate of the packet, for example by calling one of the ACCEPT or DROP, or a module returning such an ultimate fate; or

2. a rule calls the RETURN verdict, in which case processing returns to the calling chain; or

3. the end of the chain is reached; traversal either continues in the parent chain (as if RETURN was used), or the base chain policy, which is an ultimate fate, is used.

 Targets also return a verdict like ACCEPT (NAT modules will do this) or DROP (e.g. the “REJECT” module), but May also imply CONTINUE (e.g. the "LOG" module; CONTINUE is an internal name) to continue with the next rule as if no target/verdict was specified at all.

IV.MODULE DESCRIPTION
4.1 Cluster Modules
· Installing the Red hat Enterprise Linux

· Setup the Load Balancer (Director)

· Rebuilding the Kernel

· Analyze the scheduling algorithms

· Install the Patches into the kernel

· Setup the Web server (Nodes)

· Setup the Cluster Master (Load Balancer)

· Install the Heart Beat Packages

· Enable IP-Forwarding on the Master System

· Allow the Nodes to contact the Master Node

· Enable Network Address Translation on the Master

· Enable Firewall rules on the Master Node

· Configuring the Master as Load Balancer

· Configure the High Availability in the Master Node

· Configure the DNS on Master Node

4.1.1 How Network Load Balancing Works

 Network Load Balancing scales the performance of a server-based program, such as a Web server, by distributing its client requests among multiple servers within the cluster. With Network Load Balancing, each incoming IP packet is received by each host, but only accepted by the intended recipient. The cluster hosts concurrently respond to different client requests, even multiple requests from the same client. For example, a Web browser may obtain the various images within a single Web page from different hosts in a load-balanced cluster.

 This speeds up processing and shortens the response time to clients. Each Network Load Balancing host can specify the load percentage that it will handle, or the load can be equally distributed among all of the hosts. Using these load percentages, each Network Load Balancing server selects and handles a portion of the workload.

 Clients are statistically distributed among cluster hosts so that each server receives its percentage of incoming requests. This load balance dynamically changes when hosts enter or leave the cluster. In this version, the load balance does not change in response to varying server loads (such as CPU or memory usage).

 For applications, such as Web servers, which have numerous clients and relatively short-lived client requests, the ability of Network Load Balancing to distribute workload through statistical mapping efficiently balances loads and provides fast response to cluster changes. Network Load Balancing cluster servers emit a heartbeat message to other hosts in the cluster, and listen for the heartbeat of other hosts. If a server in a cluster fails, the remaining hosts adjust and redistribute the workload while maintaining continuous service to their clients.

 Although existing connections to an offline host are lost, the Internet services nevertheless remain continuously available. In most cases (for example, with Web servers), client software automatically retries the failed connections, and the clients experience only a few seconds' delay in receiving a response.

4.1.2 Apply LVS Patches to Kernel

· Two minor kernel patches are required in order for the LVS modules to compile.

· cd linux-2.4.20/

· patch -pq < ../ipvs-1.0.9/linuxkernel_ksyms_c.diff

· patch -pq < ../ipvs-1.0.9/linuxnet_netsyms_c.diff

· A third patch is applied to allow interfaces to be hidden. Hidden interfaces do not
respond to ARP requests and are used on real servers with LVS direct routing.

· patch -pq < ../ipvs-1.0.9/contrib/patches/hidden-2.4.20pre10-1.diff

 Working Examples

 There are several software packages in conjunction with LVS to provide high availability of the whole system, such as Red Hat Piranha, Keepalived, Ultra Monkey, heartbeat plus ldirectord, and heartbeat plus Mon.

 The following examples of building highly available LVS systems are only for reference.

· Using Piranha to build highly available LVS systems

· Using Keepalived to build highly available LVS systems

· Using Ultra Monkey to build highly available LVS systems

· Using heartbeat+mon+coda to build highly available LVS systems

· Using heartbeat+ldirectord to build highly available LVS systems

4.2 LVS Scheduling Methods
Director receives an incoming request from a client computer to access a cluster service on its VIP, it has to decide which cluster node should get the request. The scheduling methods the Director can use to make this decision fall into two basic categories: fixed scheduling and dynamic scheduling.

4.2.1Fixed (or non-dynamic) Scheduling Methods
In the case of fixed, or non-dynamic, scheduling methods, the Director selects the cluster node to use for the inbound request without checking to see how many of the previously assigned connections are active. Here is the current list of fixed scheduling methods:

4.2.1.1 Round-robin (RR)
When a new request is received, the Director picks the next server on its list of servers, rotating through them in an endless loop.

4.2.1.2 Weighted round-robin (WRR)

You assign each cluster node a weight or ranking, based on how much processing load it can handle. This weight is then used, along with the round-robin technique, to select the next cluster node to be used when a new request is received, regardless of the number of connections that are still active. A server with a weight of 2 will receive twice the number of new connections as a server with a weight of 1. If you change the weight of a server to 0, no new connections will be allowed to the server (but currently active connections will not be dropped).

4.2.1.3 Destination hashing

This method always sends requests for the same IP address to the same server in the cluster. Like the locality-based least-connection (LBLC) scheduling method (which will be discussed shortly), this method is useful when the servers inside the cluster are really cache or proxy servers.
4.2.1.4 Source hashing

This method can be used when the Director needs to be sure the reply packets are sent back to the same router or firewall that the requests came from. This scheduling method is normally only used when the Director has more than one physical network connection, so that the Director knows which firewall or router to send the reply packet back through to reach the proper client computer.
4.2.2 Dynamic Scheduling Methods
Dynamic scheduling methods give you more control over the incoming workload, with little or no penalty, since they only require a small amount of extra processing load on the Director. When dynamic scheduling methods are used, the Director keeps track of the number of active and inactive connections for each cluster node and uses this information to determine which cluster node to use when a new request arrives for a cluster service. An active connection is a TCP network session that remains open (in the ESTABLISHED state) while the client computer and cluster node are sending data to each other. In a Linux Enterprise Cluster, telnet or ssh sessions remain active as long as the user is logged on.

An inactive connection, on the other hand, is any network connection that is not in the ESTABLISHED state. If a TCP inactivity timeout causes the connection to drop, or if the client computer sends a FIN packet to close the connection, LVS keeps the connection in the IPVS table for a brief period in case subsequent packets for the connection arrive to reestablish the TCP connection. This may happen, for example, when packets are resent due to transmission problems. The Director, in other words, attempts to protect the integrity of the connection between the client computer and the cluster node when there are minor network transmission problems

4.2.2.1 Least-Connection (LC)

With the least-connection scheduling method, when a new request for a service running on one of the cluster nodes arrives at the Director, the Director looks at the number of active and inactive connections to determine which cluster node should get the request.

The mathematical calculation performed by the Director to make this decision is as follows: For each node in the cluster, the Director multiplies the number of active connections the cluster node is currently servicing by 256, and then
 it adds the number of inactive connections (recently used connections) to arrive at an overhead value for each node. The node with the lowest overhead value wins and is assigned the new incoming request for service. If the mathematical calculation results in the same overhead value for all of the cluster nodes, the first node found in the IPVS table of cluster nodes is selected.

4.2.2.2 Weighted Least-Connection (WLC)

The weighted least-connection scheduling method combines the least- connection method and a specified weight or ranking for each server to select the cluster node. (This is the default selection method if you do not specify one.) This method was intended for use in clusters with nodes that have differing processing capabilities.

The Director determines which cluster node to assign to a new inbound request for a cluster service by first calculating the overhead value (as described earlier in the discussion of the LC scheduling method) for each cluster node and then dividing this value by the weight you have assigned to the cluster node to arrive at a WLC value for each cluster node. The cluster node with the lowest WLC value wins, and the incoming request is assigned to that node. If the WLC value for all of the nodes is the same, the first node found in the list of cluster nodes is selected.

The WLC scheduling method is a good choice for a Linux Enterprise Cluster because it does a good job of balancing the workload of a typical enterprise.
4.2.2.3 Shortest Expected Delay (SED)

SED is a recent addition to the LVS scheduling methods, and it may offer a slight improvement over the WLC method for services that use TCP and remain in an active state while the cluster node is processing each request (large batch jobs are a good example of this type of request).

The SED calculation is performed as follows: The overhead value for each cluster node is calculated by adding 1 to the number of active connections. The overhead value is then divided by the weight you assigned to each node to arrive at the SED value. The cluster node with the lowest SED value wins.

There are two things to notice about the SED scheduling method:

It does not use the number of inactive connections when determining the overhead of each cluster node. It adds 1 to the number of active connections to anticipate what the over- head will look like after the new incoming connection has been assigned.

For example, let's say you have two cluster nodes and one is three times faster than the other (one has a 1 GHz processor and the other has a 3 GHz processor), so you decide to assign the slower machine a weight of 1 and the faster machine a weight of 3. Suppose the cluster has been up and running for a while, and the slower node has 10 active connections and the faster node has 30 active connections. When the next new request arrives, the Director must decide which cluster node to assign. If this new request is not added to the number of active connections for each of the cluster nodes, the SED values would be calculated as follows:

Slower node (1 GHz processor)

 10 active connections / weight 1 = 10

 Faster node (3 GHz processor)

 30 active connections / weight 3 = 10

Because the SED values are the same, the Director will pick whichever node happens to appear first in its table of cluster nodes. If the slower cluster node happens to appear first in the table of cluster nodes, it will be assigned the new request even though it is the slower node.

If the new connection is first added to the number of active connections, however, the calculations look like this:

Slower node (1 GHz processor)

 11 active connections / weight 1 = 11

Faster node (3 GHz processor)

 31 active connections / weight 3 = 10.34

The faster node now has the lower SED value, so it is properly assigned the new connection request.

A side effect of adding 1 to the number of active connections is that a cluster node may sit idle even though multiple requests are assigned to another cluster node. For example, let's use our same two cluster nodes, but this time we'll assume the slower cluster node has no active connections and the faster node has one active connection. The SED calculation for each node looks like this (recall that 1 is added to the number of active connections):

Slower node (1 GHz processor)

 1 active connection / weight 1 = 1

 Faster node (3 GHz processor)

 2 active connections / weight 3 = .67

 So the new request gets assigned to the faster cluster node even though the slower cluster node is idle. This may or may not be desirable behavior, so another scheduling method was developed, called never queue.
4.2.2.4 Never Queue (NQ)

This scheduling method enhances the SED scheduling method by adding one new feature: if a cluster node has no active connections, it is always assigned the new incoming request for service, regardless of the result of the calculated SED values for each cluster node.

4.2.2.5 Locality-Based Least-Connection (LBLC)

When the LBLC scheduling method is used, the Director attempts to send all the requests destined for a particular IP address (a particular web server) to the same transparent proxy server (cluster node). In other words, the first time a request comes in for a web server on the Internet, the Director will pick one proxy server to service this destination IP address using a slightly modified version of the WLC scheduling method, and all future requests for this same destination IP address will continue to go to the same proxy server. This method of load balancing, like the destination-hashing scheduling method described previously, is, therefore, a type of destination IP load balancing.

The Director will continue to send all requests for a particular destination IP address to the same cluster node (the same transparent proxy server) until it sees that another node in the cluster has a WLC value that is half of the WLC value of the assigned cluster node. When this happens, the Director will reassign the cluster node that is responsible for the destination IP address (usually an Internet web server) by selecting the least loaded cluster node using the modified WLC scheduling method.

In this method, the Director tries to associate only one proxy server to one destination IP address. To do this, the Director maintains a table of destination IP addresses and their associated proxy servers. This method of load balancing attempts to maximize the number of cache hits on the proxy servers, while at the same time reducing the amount of redundant, or replicated, information on these proxy servers.

4.2.2.6 Locality-Based Least-Connection with Replication Scheduling (LBLCR)

The LBLCR scheduling method (which is also a form of destination IP load balancing) attempts to improve on the LBLC scheduling method by maintaining a set of proxy servers that can service each destination IP address. When a new connection request comes in, the Director will select the proxy server with the fewest number of active connections from this set of servers.

At the time of a new connection request from a client computer, proxy servers are added to this set for a particular destination IP address when the Director notices a cluster node (proxy server) that has a WLC value equal to half of the WLC value of the least loaded node in the set. When this happens, the cluster node with the lowest WLC value is added to the set and is assigned the new incoming request.

 Now virtual server is implemented in three ways. There are three IP load balancing techniques (packet forwarding methods) existing together in the Linux Director. They are

· Virtual Server via NAT

· Virtual Server via IP Tunneling

· Virtual Server via Direct Routing
4.3.1 Virtual Server Via NAT

Due to the shortage of IP address in IPv4 and some security reasons, more and more networks use private IP addresses which cannot be used on the Internet. The need for network address translation arises when hosts in internal networks want to access or to be accessed on the Internet. Network address translation relies on the fact that the headers of packets can be adjusted appropriately so that clients believe they are contacting one IP address, but servers at different IP addresses believe they are contacted directly by the clients. This feature can be used to build a virtual server, i.e. parallel services at the different IP addresses can appear as a virtual service on a single IP address.

[image: image8.emf]

Figure: Architecture of LVS/NAT
The architecture of Linux Virtual Server via NAT is illustrated in Figure . The load balancer and real servers are interconnected by a switch or a hub. The workflow of LVS/NAT is as follows: When a user accesses a virtual service provided by the server cluster, a request packet destined for virtual IP address (the IP address to accept requests for virtual service) arrives at the load balancer.

The load balancer examines the packet’s destination address and port number, if they are matched for a virtual service according to the virtual server rule table, a real server is selected from the cluster by a scheduling algorithm, and the connection is added into the hash table which records connections. Then, the destination address and the port of the packet are rewritten to those of the selected server, and the packet is forwarded to the server. When an incoming packet belongs to an established connection, the connection can be found in the

hash table and the packet will be rewritten and forwarded to the right server. When response packets come back, the load balancer rewrites the source address and port of the packets to those of the virtual service. When a connection terminates or timeouts, the connection record will be removed in the hash table.

[image: image9.png]
LVS-NAT network communication
Basic Properties of LVS-NAT

The LVS-NAT forwarding method has several basic properties:

· The cluster nodes need to be on the same network (VLAN or subnet) as the Director.

· The RIP addresses of the cluster nodes normally conform to RFC 1918[2] (that is,
they are private, non-routable IP addresses used only for intracluster communication).

· The Director intercepts all communication (network packets going in either direction)
between the client computers and the real servers.

· The cluster nodes use the Director's DIP as their default gateway for reply packets to
the client computers.

· The Director can remap network port numbers. That is, a request received on the
Director's VIP on one port can be sent to a RIP inside the cluster on a different port.

· Any type of operating system can be used on the nodes inside the cluster.

· A single Director can become the bottleneck for the cluster.

At some point, the Director will become a bottleneck for network traffic as the number of nodes in the cluster increases, because all of the reply packets from the cluster nodes must pass through the Director. However, a 400 MHz processor can saturate a 100 Mbps connection, so the network is more likely to become the bottleneck than the LVS Director under normal circumstances.

4.3.2 Virtual Server Via IP Tunnelling
Linux Virtual Server via IP Tunneling IP tunneling (IP encapsulation) is a technique to encapsulate IP datagram within IP datagram, which allows datagrams destined for one IP address to be wrapped and redirected to another IP address. This technique can be used to build a virtual server that the load balancer tunnels the request packets to the different servers, and the servers process the requests and return the results to the clients directly, thus the service can still appear as a virtual service on a single IP address.

[image: image10.png]

Figure: Architecture of LVS/TUN

The architecture of Linux Virtual Server via IP tunneling is illustrated in Figure . The real servers can have any real IP address in any network, and they can be geographically distributed, but they must support IP tunneling protocol and they all have one of their tunnel devices configured with VIP. The workflow of LVS/TUN is the same as that of LVS/NAT. In LVS/TUN, the load balancer encapsulates the packet within an IP datagram and forwards it to a dynamically selected server. When the server receives the encapsulated packet, it decapsulates the packet and finds the inside packet is destined for VIP that is on its tunnel device, so it

[image: image11.png]
LVS-TUN network communication

Basic Properties of LVS-TUN An LVS-TUN cluster has the following properties:

· The cluster nodes do not need to be on the same physical network segment as
the Director.

· The RIP addresses must not be private IP addresses.

· The Director can normally only intercept inbound communication between the
client and the cluster nodes.

· The return packets from the real server to the client must not go through the
Director. (The default gateway can't be the DIP; it must be a router or another
machine separate from the Director.)

· The Director cannot remap network port numbers.

Only operating systems that support the IP tunneling protocol can be servers I
nside the cluster.

The use of LVS-TUN forwarding method is not acceptable in some situations because we want to build a cluster that is reliable enough to run mission-critical applications,
 and separating the Director from the cluster nodes only increases the potential for a catastrophic failure of the cluster.
 Although using geographically dispersed cluster nodes might seem like a shortcut to building a disaster recovery data center, such a configuration doesn't improve the reliability of the cluster, because anything that breaks the connection between the Director and the cluster nodes will drop all client connections to the remote cluster nodes. A Linux Enterprise Cluster must be able to share data with all applications running on all cluster nodes. Geographically dispersed cluster nodes only decrease the speed and reliability of data sharing
4.3.3 Virtual Server Via Direct Routing
Linux Virtual Server via Direct Routing This IP load balancing approach is similar to the one implemented in IBM’s NetDispatcher. The architecture of

LVS/DR is illustrated in Figure. The load balancer and the real servers must have one of their interfaces physically linked by an uninterrupted segment of LAN such as a HUB/Switch. The virtual IP address is shared by real servers and the load balancer. All real servers have their

[image: image12.emf]

Figure: Architecture of LVS/DR

The workflow of LVS/DR is the same as that of LVS/NAT or LVS/TUN. In LVS/DR, the load balancer directly routes a packet to the selected server, i.e. the

load balancer simply changes the MAC address of data frame to that of the server and retransmits it on the LAN. When the server receives the forwarded packet, the server finds that the packet is for the address on its loopback alias interface and processes the request, finally returns the result directly to the user. Note that real servers’ interfaces that are configured with virtual IP address should not do ARP response, otherwise there would be a collision if the interface to accept incoming traffic for VIP and the interfaces of real servers are in the same network.

[image: image13.png]
LVS-DR network communication

Basic Properties of LVS-DR

These are the basic properties of a cluster with a Director that uses the LVS- DR forwarding method:

· The cluster nodes must be on the same network segment as the Director.

· The RIP addresses of the cluster nodes do not need to be private IP addresses
which means they do not need to conform to RFC 1918).

· The Director intercepts inbound (but not outbound) communication between
the client and the real servers.
· The cluster nodes (normally) do not use the Director as their default gateway
for reply packets to the client computers.

· The Director cannot remap network port numbers.

· Most operating systems can be used on the real servers inside the cluster.

· An LVS-DR Director can handle more real servers than an LVS-NAT Director.

LVS-DR is the best forwarding method to use in a Linux Enterprise Cluster because it allows to build cluster nodes that can be directly accessed from outside the cluster. Although this may represent a security concern in some environments (a concern that can be addressed with a proper VLAN configuration), it provides additional benefits that can improve the reliability of the cluster and that may not be obvious at first.

4.4 Shell Script
A shell script is a script written for the shell, or command line interpreter, of an operating system. It is often considered a simple domain-specific programming language. Typical operations performed by shell scripts include file manipulation, program execution, and printing text.

Many shell script interpreters double as command line interface, such as the various UNIX shells, Windows Power Shell or the MS-DOS COMMAND.COM. Others, such as AppleScript or the graphical Windows Script Host (WScript.exe), add scripting capability to computing environments without requiring a command line interface. Other examples of programming languages primarily intended for shell scripting include DCL and JCL.

Advantages and disadvantages
Often, writing a shell script is much quicker than writing the equivalent code in other programming languages. The many advantages include easy program or file selection, quick start, and interactive debugging.
A shell script can be used to provide sequencing and decision-making linkage around existing programs, and for moderately-sized scripts the absence of a compilation step is an advantage. Interpretive running makes it easy to write debugging code into a script and rerun it to detect and fix bugs. Non-expert users can use scripting to tailor the behavior of programs, and shell scripting provides some limited scope for multiprocessing.

Many disadvantages of using some script languages are caused by design flaws within the language syntax or implementation, and are not necessarily imposed by the use of a text-based command line; there are a number of shells which use other shell programming languages or even full-fledged languages like Scsh (which uses Scheme). Similarly, more complex scripts can run into the limitations of the shell scripting language itself; the limits make it difficult to write quality code and extensions by various shells to ameliorate problems with the original shell language can make problems worse.
V.CODING

5.1 Sample Code
5.1.1 Create LVS
#!/bin/bash

#

LVS script

#

chkconfig: 2345 99 90

description: LVS sample script

#

case "$1" in

start)

Bring up the VIP (Normally this should be under Heartbeat’s control.)

#/sbin/ifconfig eth0:1 172.24.0.254 netmask 255.255.0.0 up

#/sbin/ifconfig eth1:1 192.24.0.254 netmask 255.255.255.0 up

Get the Number of real servers

read -p "Enter the Network for Nat: " nate
Since this is the Director we must be

Able to forward packets.

echo 1 > /proc/sys/net/ipv4/ip_forward

Clear all iptables rules.

/sbin/iptables -F

Reset iptables counters.

/sbin/iptables -Z

Setting up the NAT

/sbin/iptables -t nat -A POSTROUTING -s $nate/255.255.0.0 -j MASQUERADE

/sbin/service iptables save

/sbin/chkconfig iptables on

Clear all ipvsadm rules/services.

/sbin/ipvsadm -C

Add an IP virtual service for VIP 209.100.100.3 port 80

read -p "Enter the Floating IP: " ifip

/sbin/ipvsadm -A -t $ifip:80 –p
Now direct packets for this VIP to

To the Real Server IP (RIP) inside the cluster

read -p "Enter the Number of real servers: " n

i=1

while [$i -le $n]

do

read -p "Enter the webserver$i Ip address: " ws1

/sbin/ipvsadm -a -t $ifip:80 -r $ws1 -m -w 3

i=`expr $i + 1`

done

#restart the ipvsadm services

/sbin/service ipvsadm save

/sbin/chkconfig ipvsadm on
;;

stop)

 # Stop forwarding packets

 echo 0 > /proc/sys/net/ipv4/ip_forward

 # Reset ipvsadm

 /sbin/ipvsadm -C

 # Bring down the VIP interface
 ifconfig eth0:1 down

 ;;

status)

#Nat status

/sbin/iptables -L

/sbin/iptables -t nat -L

/sbin/ipvsadm -L

;;

*) echo "Usage: $0 {start|stop|status}"

;;

esac
5.1.2 Packet handling service

#!/bin/bash

#

Packet Handling Service

#

chkconfig 2345 55 45

description: Starts or stops iptables rules and routing

#Get the values
read -p "Enter the Network address: " net

read -p "Enter the subnet Mask: " subnet

read -p "Enter the default gateway: " gate

case "$1" in

start)

 # Flush (or erase) the current iptables rules

 /sbin/iptables -F

/sbin/iptables --table nat --flush

/sbin/iptables --table nat --delete-chain

Enable the loopback device for all types of packets

(Normally for packets created by local daemons for delivery

to local daemons)

/sbin/iptables -A INPUT -i lo -p all -j ACCEPT

/sbin/iptables -A OUTPUT -o lo -p all -j ACCEPT

/sbin/iptables -A FORWARD -o lo -p all -j ACCEPT

Set the default policies

/sbin/iptables -P INPUT DROP

/sbin/iptables -P FORWARD DROP

/sbin/iptables -P OUTPUT ACCEPT

NAT

/sbin/iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Allow inbound packets from our private network

/sbin/iptables -A INPUT -i eth1 -j ACCEPT

/sbin/iptables -A FORWARD -i eth1 -j ACCEPT

Allow packets back in from conversations we initiated

from the private network.

/sbin/iptables -A FORWARD -i eth0 --match state --state ESTABLISHED,RELATED -j ACCEPT

/sbin/iptables -A INPUT --match state --state ESTABLISHED,RELATED -j ACCEPT

Allow Sendmail and POP (from anywhere, but really what we

are allowing here is inbound connections on the eth0 interface).

(Sendmail and POP are local).

/sbin/iptables -A INPUT --protocol tcp --destination-port 25 -j ACCEPT

/sbin/iptables -A INPUT --protocol tcp --destination-port 110 -j ACCEPT

Routing Rules --

Route packets destined for the $net network using the internal

gateway machine $gate

/sbin/route add -net $net netmask $subnet gw $gate

By default, if we don.t know where a packet should be sent we

assumes it should be sent to the Internet router.

/sbin/route add default gw $gate

Now that everything is in place we allow packet forwarding.

echo 1 > /proc/sys/net/ipv4/ip_forward

 ;;

stop)

 # Flush (or erase) the current iptables rules

 /sbin/iptables -F

Set the default policies back to ACCEPT

(This is not a secure configuration.)

/sbin/iptables -P INPUT ACCEPT

/sbin/iptables -P FORWARD ACCEPT

/sbin/iptables -P OUTPUT ACCEPT

Remove out routing rules.

 /sbin/route del -net $net netmask $subnet gw $gate

 /sbin/route del default gw 192.168.0.254
30

Disable packet forwarding

 echo 0 > /proc/sys/net/ipv4/ip_forward

;;

status)

 enabled=`/bin/cat /proc/sys/net/ipv4/ip_forward`

 if ["$enabled" -eq 1]; then

 echo "Running"

 else

 echo "Down"

 fi

;;

*)

 echo "Requires start, stop or status"

;;

Esac
5.1.3 Webserver Configuration
#!/bin/bash

#output file
OUTPUT=/etc/httpd/conf/httpd.conf

#checking whether the http is installed r not

rpm -qa | grep http

#Installing the web server

if [$? != 0]; then

yum install http*

fi

#Get the information about web server

read -p "Enter the web server IP address: " webip

read -p "Enter the web service Directory: " webdir

read -p "Enter the server Domain Name: " webdomain

#configuring the web server

echo "" >> $OUTPUT

echo "<VirtualHost $webip:80>" >> $OUTPUT

echo " DocumentRoot $webdir" >> $OUTPUT

echo " ServerName $webdomain" >> $OUTPUT

echo "</VirtualHost>" >> $OUTPUT
VI.SCREEN SHOTS
Viewing IP addresses
 [image: image14.png]
Configuring IPTABLES
 [image: image15.png]
Setting virtual IP
 [image: image16.png]
Configuring HEARTBEAT
 [image: image17.png]
Enabling IP forwarding
[image: image18.png]
Authenticating HEARTBEAT
 [image: image19.png]
Editing configuration file of HEARTBEAT

 [image: image20.png]
Configuring HEARTBEAT broadcasts
 [image: image21.png]
Configuring HEARTBEAT “failback”

 [image: image22.png]
VII. TESTING AND DEBUGGING

7.1 Testing of IPVSADM

· Testing can be done by connecting to 172.17.60.201:80 from outside the server network.

· Running a packet tracing tool on the Linux directors and real servers is very useful for debugging purposes. Many setup problems can be resolved by tracing the path of a connection and observing at which step packets fail to appear. Using Tcpdump will be discussed here as an example, there are variety of tools available for various operating systems.

· The following trace shows a connection being opened by an end user 10.2.3.4 to the VIP 172.17.60.201 which is forwarded to the real server 192.168.6.5.

· It shows packets being received by the Linux director and then forwarded to the real server and vice versa. Note that the packets forwarded to the real server still have the end user's ip address as the source address. The Linux director only changes the destination IP address of the packet. Similarly replies from the real servers have the destination address set to that of the end user. The Linux director only rewrites the source IP address of reply packets so that it is the VIP.

tcpdump -n -i any port 80

12:40:40.965499 10.2.3.4.34802 > 172.17.60.201.80:

S 2555236140:2555236140(0) win 5840

<mss 1460,sackOK,timestamp 16690997 0,nop,wscale 0>

12:40:40.967645 10.2.3.4.34802 > 192.168.6.5.80:

S 2555236140:2555236140(0) win 5840

<mss 1460,sackOK,timestamp 16690997 0,nop,wscale 0>

12:40:40.966976 192.168.6.5.80 > 10.2.3.4.34802:

S 2733565972:2733565972(0) ack 2555236141 win 5792

<mss 1460,sackOK,timestamp 128711091 16690997,nop,wscale 0> (DF)

12:40:40.968653 172.17.60.201.80 > 10.2.3.4.34802:

S 2733565972:2733565972(0) ack 2555236141 win 5792

<mss 1460,sackOK,timestamp 128711091 16690997,nop,wscale 0> (DF)

12:40:40.971241 10.2.3.4.34802 > 172.17.60.201.80:

. ack 1 win 5840 <nop,nop,timestamp 16690998 128711091>

12:40:40.971387 10.2.3.4.34802 > 192.168.6.5.80:

. ack 1 win 5840 <nop,nop,timestamp 16690998 128711091>

ctrl-c

ipvsadm -L -n can be used to show the number of active connections.

ipvsadm -L -n

IP Virtual Server version 1.0.9 (size=4096)

Prot LocalAddress:Port Scheduler Flags

-> RemoteAddress:Port Forward Weight Active Conn InActConn

TCP 172.17.60.201:80 rr

-> 192.168.6.5:80 Masq 1 7 3
-> 192.168.6.4:80 Masq 1 8 4

ipvsadm -L -stats will show the number of packets and bytes sent and received per second.
ipvsadm -L -n --stats

IP Virtual Server version 1.0.9 (size=4096)

Prot LocalAddress:Port Conns InPkts OutPkts InBytes OutBytes

-> RemoteAddress:Port

TCP 172.17.60.201:80 114 1716 1153 193740 112940

-> 192.168.6.5:80 57 821 567 94642 55842

-> 192.168.6.4:80 57 895 586 99098 57098
ipvsadm -L -rate will show the total number of packets and bytes sent and received.

ipvsadm -L -n --rate

IP Virtual Server version 1.0.9 (size=4096)

Prot LocalAddress:Port CPS InPPS OutPPS InBPS OutBPS

-> RemoteAddress:Port

TCP 172.17.60.201:80 56 275 275 18739 41283

-> 192.168.6.5:80 28 137 137 9344 20634

-> 192.168.6.4:80 28 138 137 9395 20649
ipvsadm -L -zero will zero all the statistics counters.

Steps

· You can start and stop IPVSADM table at any time

· IPVSADM get the information from Ldirectord

· Ldirectord gets the information from the corresponding configuration file say

· /etc/ha.d/conf/ldirectord.cf

· When the Main Load balancer goes down, It automatically detects the situation
using the floating Internet Protocol and gets the information and automatically
 the IPVSADM table

· Starting and stopping IPVSADM will not affect any services

VIII.CONCLUSION AND FUTURE PLANS

8.1Conclusion

 LVS is an effective way to implement clustering of Internet services. Linux Virtual Server extends the TCP/IP stack of Linux kernel to support three IP load balancing techniques, LVS/NAT, LVS/TUN and LVS/DR. Scalability isachieved by transparently adding or removing a node in the cluster. High availability is provided by detecting node or daemon failures and reconfiguring the system appropriately. The solutions require no modification to either the clients or the servers, and they support most of TCP and UDP services. Linux Virtual Server is designed for handling millions of concurrent connections.

With many open source development efforts, LVS-based systems are becoming easy to use. Prototypes of LVS have already been used to build highly loaded real-life Internet sites.

8.2FUTURE PLANS

· Add more load balancing algorithms.

· Develop more advanced/flexible cluster monitoring software

· Explore TCP handoff
8.2.1SOME SITES USING LVS

· UK National JANET Web Cache (wwwcache.ja.net)

· linux.com

· sourceforge.net

· valinux.com

· real.com

· One of largest PC manufacturers etc.

8.2.2LVS logo

 [image: image23.png]
 LVS Logo http://www.linuxvirtualserver.org//

IX.REFERENCES/BIBILIOGRAPHY
9.1 Web References
· http://en.wikipedia.org/wiki/Linux_Virtual_Server
· http://en.wikipedia.org/wiki/Load_balancing_%28computing%29
· http://www.linuxvirtualserverproject.org
· http://www.redhat.com/docs
· http://en.wikipedia.org/wiki/Unix_shell_scripting
· http://linux-ha.org
· http://www.ultramonkey.org
· http://en.wikipedia.org/wiki/Scheduling_algorithm

	9.2 Book Reference

· The Linux Enterprise Cluster

By Karl Kopper
X.APPENDIX
A-1 Auto Restart Web Server

#!/bin/bash

#Apache Process Monitor

#Restart Apache Web Server When It Goes Down

#RHEL

RESTART="/sbin/service httpd restart"

#path to pgrep command

PGREP="/usr/bin/pgrep"

#Httpd daemon name,

#Under RHEL/CentOS/Fedora it is httpd

HTTPD="httpd"

#find httpd pid

$PGREP ${HTTPD}

if [$? -ne 0] # if apache not running

then

#restart apache

 $RESTART

fi
A-2 CONFIGURING LDIRECTORD
#!/bin/bash

output file

OUTPUT=/etc/ha.d/ldirectord.cf

#How long to weight after the timeout before removing real servers

echo "checktimeout=20" > $OUTPUT
Determine the sleep time between the checks

echo "checkinterval=5" >> $OUTPUT

Automatic updation of the IPVS table

echo "autoreload=yes" >> $OUTPUT

set no to avoid crashes between the nodes

echo "quiescent=no" >> $OUTPUT

what type of information is stored in Log file(/var/log/ldirectord.log)

echo "logfile="info"" >> $OUTPUT

Get the information of ipvs table

read -p "Enter the Floating IP: " fip

echo "virtual=$fip:80" >> $OUTPUT

read -p "Enter the Number of real servers: " n

 i=1

 while [$i -le $n]

 do

 read -p "Enter the webserver$i Ip address: " ws

 echo " real=$ws:80 masq 1" >> $OUTPUT

i=`expr $i + 1`

 done

Fallback to the localhost

echo "
fallback=127.0.0.1:80 masq 1" >> $OUTPUT

Type of service and the port number

echo "
service=http" >> $OUTPUT

echo "
request=\"index.html\"" >> $OUTPUT

echo "
receive=\"Test Page\"" >> $OUTPUT

echo "
checkport=80" >> $OUTPUT

echo "
protocol=tcp" >> $OUTPUT

echo "
scheduler=wlc" >> $OUTPUT

echo "
checktype=negotiate" >> $OUTPUT

XI.ABBREVATIONS
Acronyms And Abbrevations
· NAT Network Address Translation

· PAT Port Address Translation

· SPOF Single Point of Failure

· LB Load Balancer

· HA High Availability

· LVS Linux Virtual Server

· VS Virtual Server

· VS-DR Virtual Server Via Direct Routing

· VS-IPT Virtual Server Via Internet Protocol Tunneling

· VS-NAT Virtual Server Via Network Address Translation

192.24.0.101

Web Client 1

192.24.0.104

Web Client 4

192.24.0.103

Web Client 3

192.24.0.102

Web Client 2

External Gateway

192.24.0.254

172.24.0.200

Load Balancer 1

192.24.0.200

172.24.0.201

Redundant LB1

192.24.0.201

Internal Gateway

172.24.0.254

Web Server 2

172.24.0.102

Web Server 1

172.24.0.101

DEPT OF COMPUTER SCIENCE 1 Caarmel Engineering College
PAGE
DEPT OF COMPUTER SCIENCE 79
 Caarmel Engineering College

