In computer communication theory relating to packet-switched networks, a distance-vector routing protocol is one of the two major classes of routing protocols, the other major class being the link-state protocol. Distance-vector routing protocols use the Bellman-Ford algorithm, Ford–Fulkerson algorithm, or DUAL FSM (in the case of Cisco Systems's protocols) to calculate paths.
A distance-vector routing protocol requires that a router informs its neighbors of topology changes periodically. Compared to link-state protocols, which require a router to inform all the nodes in a network of topology changes, distance-vector routing protocols have less computational complexity and message overhead.[citation needed]
The term distance vector refers to the fact that the protocol manipulates vectors (arrays) of distances to other nodes in the network.
Routers using distance vector protocol do not have knowledge of the entire path to a destination. Instead DV uses two methods:
1. Direction in which or interface to which a packet should be forwarded.
2. Distance from its destination.
Examples of distance-vector routing protocols include RIPv1 and RIPv2 and IGRP. EGP and BGP are not pure distance-vector routing protocols because a distance-vector protocol calculates routes based only on link costs whereas in BGP, for example, the local route preference value takes priority over the link cost.
	Contents
 [hide] 
· 1 Method
· 2 Limitations 
· 2.1 Count-to-infinity problem
· 2.2 Workarounds and solutions
· 3 Example
· 4 References
· 5 Further reading
· 6 External links


[edit] Method
The methods used to calculate the best path for a network are different between different routing protocols but the fundamental features of distance-vector algorithms are the same across all DV based protocols.
Distance Vector means that Routers are advertised as vector of distance and Direction. Direction is simply next hop address and exit interface and Distance means hop count.
Routers using distance vector protocol do not have knowledge of the entire path to a destination. Instead DV uses two methods:
1. Direction in which router or exit interface a packet should be forwarded.
2. Distance from its destination.
As the name suggests the DV protocol is based on calculating the direction and distance to any link in a network. The cost of reaching a destination is calculated using various route metrics. RIP uses the hop count of the destination whereas IGRP takes into account other information such as node delay and available bandwidth.
Updates are performed periodically in a distance-vector protocol where all or part of a router's routing table is sent to all its neighbors that are configured to use the same distance-vector routing protocol. RIP supports cross-platform distance vector routing whereas IGRP is a Cisco Systems proprietary distance vector routing protocol. Once a router has this information it is able to amend its own routing table to reflect the changes and then inform its neighbors of the changes. This process has been described as ‘routing by rumor’ because routers are relying on the information they receive from other routers and cannot determine if the information is actually valid and true. There are a number of features which can be used to help with instability and inaccurate routing information.
[edit] Limitations
[edit] Count-to-infinity problem
The Bellman-Ford algorithm does not prevent routing loops from happening and suffers from the count-to-infinity problem. The core of the count-to-infinity problem is that if A tells B that it has a path somewhere, there is no way for B to know if the path has B as a part of it. To see the problem clearly, imagine a subnet connected like as A-B-C-D-E-F, and let the metric between the routers be "number of jumps". Now suppose that A is taken offline. In the vector-update-process B notices that the route to A, which was distance 1, is down - B does not receive the vector update from A. The problem is, B also gets an update from C, and C is still not aware of the fact that A is down - so it tells B that A is only two jumps from C (C to B to A) , which is false. This slowly propagates through the network until it reaches infinity (in which case the algorithm corrects itself, due to the "Relax property" of Bellman-Ford).
[edit] Workarounds and solutions
RIP uses the Split Horizon with Poison Reverse technique to reduce the chance of forming loops and uses a maximum number of hops to counter the 'count-to-infinity' problem. These measures avoid the formation of routing loops in some, but not all, cases. The addition of a hold time (refusing route updates for a few minutes after a route retraction) avoids loop formation in virtually all cases, but causes a significant increase in convergence times.
More recently, a number of loop-free distance vector protocols have been developed — notable examples are EIGRP, DSDV and Babel. These avoid loop formation in all cases, but suffer from increased complexity, and their deployment has been slowed down by the success of link-state routing protocols such as OSPF.
[edit] Example
In this network we have 4 routers A, B, C, and D: [image: Networkabcd.svg]
We shall mark the current time (or iteration) in the algorithm with T, and shall begin (at time 0, or T=0) by creating distance matrices for each router to its immediate neighbors. As we build the routing tables below, the shortest path is highlighted with the color green, a new shortest path is highlighted with the color yellow. Note that all info is along the diagonal.
	T=0
		from A
	via A
	via B
	via C
	via D

	to A
	
	
	
	

	to B
	
	3
	
	

	to C
	
	
	23
	

	to D
	
	
	
	



		from B
	via A
	via B
	via C
	via D

	to A
	3
	
	
	

	to B
	
	
	
	

	to C
	
	
	2
	

	to D
	
	
	
	



		from C
	via A
	via B
	via C
	via D

	to A
	23
	
	
	

	to B
	
	2
	
	

	to C
	
	
	
	

	to D
	
	
	
	5



		from D
	via A
	via B
	via C
	via D

	to A
	
	
	
	

	to B
	
	
	
	

	to C
	
	
	5
	

	to D
	
	
	
	




	At this point, all the routers (A,B,C,D) have new "shortest-paths" for their DV (the list of distances that are from them to another router via a neighbor). They each broadcast this new DV to all their neighbors: A to B and C, B to C and A, C to A, B, and D, and D to C. As each of these neighbors receives this information, they now recalculate the shortest path using it. 
For example: A receives a DV from C that tells A there is a path via C to D, with a distance (or cost) of 5. Since the current "shortest-path" to C is 23, then A knows it has a path to D that costs 23+5=28. As there are no other shorter paths that A knows about, it puts this as its current estimate for the shortest-path from itself (A) to D, via C.
	

	T=1
		from A
	via A
	via B
	via C
	via D

	to A
	
	
	
	

	to B
	
	3
	25
	

	to C
	
	5
	23
	

	to D
	
	
	28
	



		from B
	via A
	via B
	via C
	via D

	to A
	3
	
	25
	

	to B
	
	
	
	

	to C
	26
	
	2
	

	to D
	
	
	7
	



		from C
	via A
	via B
	via C
	via D

	to A
	23
	5
	
	

	to B
	26
	2
	
	

	to C
	
	
	
	

	to D
	
	
	
	5



		from D
	via A
	via B
	via C
	via D

	to A
	
	
	28
	

	to B
	
	
	7
	

	to C
	
	
	5
	

	to D
	
	
	
	



	

	Again, all the routers have gained in the last iteration (at T=1) new "shortest-paths", so they all broadcast their DVs to their neighbors; This prompts each neighbor to re-calculate their shortest distances again. 
For instance: A receives a DV from B that tells A there is a path via B to D, with a distance (or cost) of 7. Since the current "shortest-path" to B is 3, then A knows it has a path to D that costs 7+3=10. This path to D of length 10 (via B) is shorter than the existing "shortest-path" to D of length 28 (via C), so it becomes the new "shortest-path" to D.
	

	T=2
		from A
	via A
	via B
	via C
	via D

	to A
	
	
	
	

	to B
	
	3
	25
	

	to C
	
	5
	23
	

	to D
	
	10
	28
	



		from B
	via A
	via B
	via C
	via D

	to A
	3
	
	25
	

	to B
	
	
	
	

	to C
	26
	
	2
	

	to D
	31
	
	7
	



		from C
	via A
	via B
	via C
	via D

	to A
	23
	5
	
	33

	to B
	26
	2
	
	12

	to C
	
	
	
	

	to D
	33
	9
	
	5



		from D
	via A
	via B
	via C
	via D

	to A
	
	
	10
	

	to B
	
	
	7
	

	to C
	
	
	5
	

	to D
	
	
	
	



	

	This time, only routers A and D have new shortest-paths for their DVs. So they broadcast their new DVs to their neighbors: A broadcasts to B and C, and D broadcasts to C. This causes each of the neighbors receiving the new DVs to re-calculate their shortest paths. However, since the information from the DVs doesn't yield any shorter paths than they already have in their routing tables, then there are no changes to the routing tables.
	

	T=3
		from A
	via A
	via B
	via C
	via D

	to A
	
	
	
	

	to B
	
	3
	25
	

	to C
	
	5
	23
	

	to D
	
	10
	28
	



		from B
	via A
	via B
	via C
	via D

	to A
	3
	
	7
	

	to B
	
	
	
	

	to C
	8
	
	2
	

	to D
	31
	
	7
	



		from C
	via A
	via B
	via C
	via D

	to A
	23
	5
	
	15

	to B
	26
	2
	
	12

	to C
	
	
	
	

	to D
	33
	9
	
	5



		from D
	via A
	via B
	via C
	via D

	to A
	
	
	10
	

	to B
	
	
	7
	

	to C
	
	
	5
	

	to D
	
	
	
	



	

	None of the routers have any new shortest-paths to broadcast. Therefore, none of the routers receive any new information that might change their routing tables. So the algorithm comes to a stop.













Distance Vector Algorithms
[image: DVA.svg]

A distance vector algorithm uses metrics known as costs in order to help determine the best path to a destination. The path with the lowest total cost is chosen as the best path. When a router utilizes a distance vector algorithm, different costs are gathered by each router. These costs can be completely arbitrary numbers. Costs can also be dynamically gathered values, such as the amount of delay experienced by routers when sending packets over one link as opposed to another. All the costs are compiled and placed within the router's routing table and then they are used by the algorithm to calculate a best path for any given network scenario. Although there are many resources that will offer complex mathematical representations of what distance vector algorithms are and how they compute their decisions, the core concept remains the same - by adding the metrics for every optional path on a network, you will come up with at least one best path. The formula for this is as follows:

M(i,k) = min [M(i,t) + M(t,k)]

This formula states that the best path between two networks (M(i,k)) can be found by finding the lowest (min) value of paths between all network points. Let's look again at the routing information in the table above. Plugging this information into the formula, we see that the route from A to B to C is still the best path:

5(A,C) = min[2(A,B) + 3(B,C)]

Whereas the formula for the direct route A to C looks like this:

6(A,C) = min[6(A,C)]

This example shows how distance vector algorithms use the information passed to them to make informed routing decisions. The algorithms used by routers and routing protocols are not configurable, nor can they be modified. Another major difference between distance vector algorithms and link state protocols is that when distance vector routing protocols update each other, all or part of the routing table (depending on the type of update) is sent from one router to another. By this process, each router is exposed to the information contained within the other router's tables, thus giving each router a more complete view of the networking environment and enabling them to make better routing decisions. Examples of distance vector algorithms include RIP and BGP, two of the more popular protocols in use today. Other popular protocols such as OSPF are examples of protocols which use the link state routing algorithm. Distance vector algorithms are also known as Bellman-Ford routing algorithms and Ford-Fulkerson routing algorithms. In these algorithms, each router has a routing table which shows it the best route for any destination. A typical graph and routing table for router J is shown below.
[image: Pic5.svg]
	Destination
	Weight
	Line

	A
	8
	A

	B
	20
	A

	C
	20
	I

	D
	20
	H

	E
	17
	I

	F
	30
	I

	G
	18
	H

	H
	12
	H

	I
	10
	I

	J
	0
	N/A

	K
	6
	K

	L
	15
	K



The table shows that if router J wants to get packets to router D, it should send them to router H first. When the packets arrive at router H, the current router checks its own table and makes a decision how to send the packets to D. In distance vector algorithms, each router has to follow the following steps:
1. It counts the weight of the links directly connected to it and saves the information to its table.
2. In a particular period of time, the router sends its table to its neighbor routers (not to all routers) and receives the routing table of each of its neighbors.
3. Based on the information the router receives from its neighbors' routing tables, it updates its own.
Let's consider one more example (the figure represented below).

[image: Pic DV 1.svg]
The cost of each link is set to 1. Thus, the least cost path is simply the path with the fewer hops. The table below represents each node knowledge about the distance to all other nodes:

	Information
stored at node
	Distance to reach node

	
	A
	B
	C
	D
	E
	F
	G

	A
	0
	1
	1
	[image: \infty]
	1
	1
	[image: \infty]

	B
	1
	0
	1
	[image: \infty]
	[image: \infty]
	[image: \infty]
	[image: \infty]

	C
	1
	1
	0
	1
	[image: \infty]
	[image: \infty]
	[image: \infty]

	D
	[image: \infty]
	[image: \infty]
	1
	0
	[image: \infty]
	[image: \infty]
	1

	E
	1
	[image: \infty]
	[image: \infty]
	[image: \infty]
	0
	[image: \infty]
	[image: \infty]

	F
	1
	[image: \infty]
	[image: \infty]
	[image: \infty]
	[image: \infty]
	0
	1

	G
	[image: \infty]
	[image: \infty]
	[image: \infty]
	1
	[image: \infty]
	1
	0



Initially, each node sets a cost of 1 to its directly connected neighbors and infinity to all the other nodes. Below is shown the initial routing table at node A:
	Destination
	Cost
	Next Hop

	B
	1
	B

	C
	1
	C

	D
	[image: \infty]
	-

	E
	1
	E

	F
	1
	F

	G
	[image: \infty]
	-



During the next step, every node sends a message to its directly connected neighbors. That message contains the node's personal list of distances. Node F, for example, tells node A that it can reach node G at cost of 1; node A also knows that it can reach F at a cost of 1, so it adds these costs to get the cost of reaching G by means of F. Because 2 is less than the current cost of infinity, node A records that it can reach G at a cost of 2 by going trough F. Node A learns from C that node B can be reached from C at a cost of 1, so it concludes that the cost of reaching B via C is 2. Because this is worse than the current cost of reaching B, which is 1, the new information is ignored. The final routing table at node A is shown below:
	Destination
	Cost
	Next Hop

	B
	1
	B

	C
	1
	C

	D
	2
	C

	E
	1
	E

	F
	1
	F

	G
	2
	F


The process of getting consistent routing information to all the nodes is called convergence. The final set of costs from each node to all other nodes is shown in the table below:
	Information
stored at node
	Distance to reach node

	
	A
	B
	C
	D
	E
	F
	G

	A
	0
	1
	1
	2
	1
	1
	2

	B
	1
	0
	1
	2
	2
	2
	3

	C
	1
	1
	0
	1
	2
	2
	2

	D
	2
	2
	1
	0
	3
	2
	1

	E
	1
	2
	2
	3
	0
	2
	3

	F
	1
	2
	2
	2
	2
	0
	1

	G
	2
	3
	2
	1
	3
	1
	0


The cost of each link is set to 1. Thus, the least cost path is simply the path with the fewer hops.
One of the problems with distance vector algorithms is called "count to infinity." Let's examine the following problem with an example:
Consider a network with a graph as shown below. There is only one link between D and the other parts of the network.

[image: Pic13.svg]
with vectors
d [A][A] = 0 d [A][B] = 1 d [A][C] = 2 d [A][D] = 3

	
	A
	B
	C
	D

	A
	0
	1
	2
	3

	B
	1
	0
	1
	2

	C
	2
	1
	0
	1

	D
	3
	2
	1
	0



Now the C to D link crashes So cost [C][D] = ∞ C used to forward any packets with address D directly on the CD link, but now link is down, so C has to recompute its distance vector (and make a new choice of how to forward packets to D) - similarly D has to update its vector. After updating their vectors at C and D, we have

	
	A
	B
	C
	D

	A
	0
	1
	2
	3

	B
	1
	0
	1
	2

	C
	2
	1
	0
	3

	D
	[image: \infty]
	[image: \infty]
	[image: \infty]
	0



C views B as the best route to D, with cost 1 + 2, so C sends new vector to B. B learns that its former choice for sending to D via C now has higher cost, so B should recompute its vector.

	
	A
	B
	C
	D

	A
	0
	1
	2
	3

	B
	1
	0
	1
	4

	C
	2
	1
	0
	3

	D
	[image: \infty]
	[image: \infty]
	[image: \infty]
	0



View of B is that routing to D can either go via A or C with equal cost - B sends updated vector. Both A and C get updated vector from B and learn that their preferred route to D now has higher cost, so they recompute their own vectors.

	
	A
	B
	C
	D

	A
	0
	1
	2
	5

	B
	1
	0
	1
	4

	C
	2
	1
	0
	5

	D
	[image: \infty]
	[image: \infty]
	[image: \infty]
	0



Then A and C send their vectors, B has to update its vector again, sending another round to A and C, obtaining.

	
	A
	B
	C
	D

	A
	0
	1
	2
	7

	B
	1
	0
	1
	6

	C
	2
	1
	0
	7

	D
	[image: \infty]
	[image: \infty]
	[image: \infty]
	0



Notice that the routing table is very slowly converging to the fact that
d [x][D] = ∞ for x = A or x = B or x = C
This process loops until all nodes find out that the weight of link to D is infinity. In this way, experts say that distance vector algorithms have a slow convergence rate. In conclusion, distance vector algorithm is not robust. One way to solve this problem is for routers to send information only to the neighbors that are not exclusive links to the destination. For example, in this case, B should not send any information to C about D, because C is the only way to D.

	



image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

