	Page 1

OPENMOSIX
A SEMINAR REPORT
Submitted by
MD NASIM ALAM
in partial fulfillment for the award of the degree
of
BACHELOR OF TECHNOLOGY
In
COMPUTER SCIENCE & ENGINEERING
SCHOOL OF ENGINEERING
COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY
COCHIN – 682022
AUGUST 2008

	Page 2

DIVISION OF COMPUTER SCIENCE AND ENGINEERING
SCHOOL OF ENGINEERING
COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY
COCHIN – 682022
Certificate

Certificate

Certificate

Certificate

Certified that this is bonafide record of seminar entitled

OpenMosix
Presented by following student

Md Nasim Alam
Of the VII

th

semester ,Computer Science and Engineering in the year 2008 in the

partial fulfillment of the requirements to the award of Degree of Bachelor of

Technology in Computer Science of Engineering of Cochin University of Science

and Technology

.

Vini Vijayan

Seminar Guide
Computer Science and Engineering,

School of Engineering

Dr. David Peter S

Head of the Department
Computer Science and Engineering,

School of Engineering

Date:

	Page 3

i

ACKNOWLEDGEMENT
It is with greatest pleasure and pride that I present this report before you. At this

moment of triumph, it would be unfair to neglect all those who helped me in the

successful completion of this seminar.

First of all, I would like to place myself at the feet of God Almighty for

his everlasting love and for the blessings & courage that he gave me, which made

it possible to me to see through the turbulence and to set me in the right path.

I would also like to thank our Head of the Department, Mr. David Peter S for all

the help and guidance that she provided to me.

I am grateful to my seminar guide, Vini Vijayan, for his guidance and

whole hearted support and very valued constructive criticism that has driven to

complete the seminar successfully.

I would take this opportunity to thank my friends who were always a source of

encouragement.

MD NASIM ALAM

	Page 4

ii

ABSTRACT
OpenMosix is a Linux kernel extension for single-system image clustering.

This kernel extension turns a network of ordinary computers into a cluster

computer for Linux applications. Once we have installed OpenMosix, the

nodes in the cluster start talking to one another and the cluster adapts itself to

the workload. Processes originating from any one node, if that node is too busy

compared to others, can migrate to any other node. With OpenMosix' Auto

Discovery, a new node can be added while the cluster is running and the cluster

will automatically begin to use the new resources.

There is no need to program applications specifically for OpenMosix.

Since all OpenMosix extensions are inside the kernel, every Linux application

automatically and transparently benefits from the distributed computing

concept of OpenMosix.

OpenMosix is a free cluster management system was originally forked from

MOSIX by Moshe Bar. It allows program processes (not threads) to migrate to

machines in the node's network that would be able to run that process faster

(process migration). It is particularly useful for running parallel and intensive

input/output (I/O) applications. It is released as a Linux kernel patches, but is

also available on specialized Live CDs.

	Page 5

Table of Contents
Chapter No.
Title
Page No.
1

Introduction

1

2

Clustering

3

2.1Beowulf cluster

3

2.2Single System Image cluster

4

3

What is OpenMosix?
5

4

OpenMosix Role

6

5

OpenMosix Technology

7

4.1 The Resource Sharing Algorithms

9

4.2 Pre- emptive Process Migration

11

6

OpenMosix Design

13

7

File System

15

8

The OpenMosix API

16

9

Migration Constraints

17

10

Installing OpenMosix

19

11

Graphical User Interface of OpenMosix

20

12

OpenMosix view

21

13

Pros of OpenMosix

24

14

Conclusion

25

15

References

26

	Page 6

List of figures
Sl. No.
Images
Page No.
4.1

OpenMosix Design

13

4.2

OpenMosix Migmon

22

	Page 7

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
1

1. INTRODUCTION
OpenMosix is a kernel extension for Single System Image Clustering. It is a tool for Linux

kernel consisting of adaptive resource sharing algorithms. It allows multiple uniprocessors

(UP) and symmetric multiprocessors (SMPnodes) running in the same kernel to work in

close co-operation. The goal is to improve the cluster-wide performance and to create a

convenient mutiuser, time sharing environment for the execution of both sequential and

parallel applications. The standard run time environment of OpenMosix is a computing

cluster, in which the cluster wide resources are available to each node.

The current implementation of OpenMosix is designed to run on clusters of

X86/Pentium based workstations, both Ups and SMPs, that are connected by standard

LANs.Possible configuration may range from a small cluster of PCs that are connected by

10Mbps Ethernet, to a high performance system, with a large number of high-end, Pentium

based SMP servers that are connected by Gigabit LAN or Myrinet. Where Myrinet is a cost-

effective, high-performance, packet-communication and switching technology that is widely

used to interconnect clusters of workstations.

OpenMosix is a free cluster management system was originally forked from

MOSIX by Moshe Bar e.g. automatic work distribution among nodes. It allows program

processes (not threads) to migrate to machines in the node's network that would be able to

run that process faster (process migration). It is particularly useful for running parallel and

intensive input/output (I/O) applications. It is released as a Linux kernel patches, but is also

available on specialized Live CDs.

If we have two or more computers, chances are that at any given time, at least one of them is

doing nothing. Unfortunately, when you really do need CPU power - during a C++ compile,

or encoding music files - we need a lot of it at once. The idea behind clustering is to spread

these loads among all available computers, using the resources that are free on other

machines.

	Page 8

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
2

The basic unit of a cluster is a single computer, also called a "node". Clusters can grow in

size i.e. they scale by adding more machines. A cluster as a whole will be more powerful the

faster the individual computers and the faster their connection speeds are. In addition, the

operating system of the cluster must make the best use of the available hardware in response

to changing conditions. This becomes more of a challenge if the cluster is composed of

different hardware types (a "heterogeneous" cluster), if the configuration of the cluster

changes unpredictably (machines joining and leaving the cluster), and the loads cannot be

predicted ahead of time.

	Page 9

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
3

2. CLUSTERING
The clustering refers to technologies that allow multiple computers to work together to solve

common computing problems. The computing problems in question can be anything from

complex CPU-intensive scientific computations to a horde of miscellaneous processes with

no underlying commonality. A cluster is a group of locally connected computers that work

together as a unit. Clusters provide powerful and faster computation. It is scalable and

ensures automatic recovery from failure. When a node fails the cluster automatically re runs

the failed job. There are different types of Linux based clusters. Beowulf cluster and Single

System Image (SSI) cluster. Probably the best known type of Linux –based cluster is the

Beowulf cluster.

2.1Beowulf cluster
A Beowulf cluster consists of multiple machines connected to one another on a high speed

LAN.In order for these systems to be able to pool their computing resources ,special cluster

enabled applications must be written using clustering libraries. The most popular clustering

libraries are PVM and MPI; both are very mature and work well. By using PVM or MPI,

programmers can design applications that can span across an entire cluster’s computing

resources rather than being confined to the resources of a single machine. For many

applications, PVM and MPI allow computing problems to be solved at a rate that scales

almost linearly in relation to the number of machines in the cluster

While Beowulf clusters are extremely powerful, they aren’t

for everyone. The primary drawback of Beowulf clusters is that they require specially

designed software (written with explicit PVM or MPI support) in order to take advantage of

cluster resources. This is not a problem for those in the scientific and research communities

who are used to writing their own special purpose applications from scratch; since they write

their code in-house, they can use the PVM or MPI libraries to create cluster aware

applications.

Beowulf clusters are able to run specially written parallel programs. Suppose

we have to encode ‘.wav’ file into ‘a .mp3 file’. On Linux we can use the ‘lame’ program to

	Page 10

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
4

do this .On a Beowulf cluster of about 10 nodes ,we have to modify the ‘lame’ program to

split the ‘.wav file’ into 10 chunks and run parallel instances of the lame on each of the

nodes. Once done the lame process can then consolidate the results and give one single .mp3

file. Since the work is split and done among the nodes simultaneously, it will take one-tenth

the time it would take lame to run on a single PC.This is the kind of work Beowulf clusters

are capable of, but we need to modify the ‘lame ‘program to take advantage of the Beowulf

cluster .The Beowulf cluster requires specially designed software in order to take advantage

of the cluster resources. Also the implementation is complicated.

2.2Single System Image cluster
In Single System Image cluster configuration, the whole cluster looks like single machine

that has many CPUs and large amount of RAM No special hardware is required for this type

of cluster. We can string together normal PCs and build a cluster that presents the

consolidated power of these system. The PCs need to be networked .So the network

interface card (NIC) on each of the systems is needed. For a cluster consisting of more than

two systems a hub/switch is required to connect them. If there is only two nodes we can use

a cross cable to link the two NICs.The primary goal of the SSI cluster is load balancing and

optimal use of resources.SSI cluster make use of the system resources transparent and will

offer improved system response time and performance. It simplifies the management

because the system administrator does not have to know the underlying system architecture

to use the machines effectively.

SSI cluster or OpenMosix cluster are not used for the type of the parallel

computing found in the Beowulf cluster. Considering the encoding of ‘.wav file’, 10

instances of ‘lame program’ is run on 10 nodes. This convert 10 ‘.wav file’ to 10 different

‘.mp3 files’. There is no need to modify the ‘lame program’ for this.

	Page 11

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
5

3. WHAT IS OPENMOSIX?
OpenMosix is a Linux kernel extension for SSI clustering. The kernel extension turns a

network of ordinary computers into a super computer for Linux applications. Once you

installed OpenMosix, the nodes in the cluster will start talking to each other by exchanging

messages. The cluster adapts itself to the wok load. OpenMosix adds cluster functionality to

any Linux flavor. OpenMosix uses adaptive load balancing techniques; processes that run on

a node can transparently be distributed to another. Due to the complete transparency of

OpenMosix, a process does not have to know where it is running .The process thinks that it

is running locally.

The transparency means that no additional programming is needed to take

advantage of the OpenMosix load balancing technology. OpenMosix turns multiple Linux

hosts into one large virtual SMP.Real SMP systems with two or more physical processors

can exchange large amounts of data, in practice this means that real SMP systems much

faster. With OpenMosix, the speed at which the nodes can exchange data is limited to the

speed of the LAN connection. Using a high bandwidth connection will increase the

effectiveness of the OpenMosix cluster. Another great advantage of OpenMosix is the

ability to build a cluster out of inexpensive hardware giving you a traditional supercomputer.

OpenMosix can also be used with performance enhancing techniques like Hyper-Threading

available on Intel Pentium 4 and Xeon processors. Using this technique we can enhance the

performance of a node. The node can handle multiple co operating threads that cannot be

separated and distributed among OpenMosix nodes.

	Page 12

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
6

4. OPENMOSIX ROLE
The OpenMosix software package automatically balances the load between different nodes

of the cluster, and nodes can join or leave the running cluster without disruption of the

service. The load is spread out among nodes according to their connection and CPU speeds.

Since OpenMosix is part of the kernel and maintains full compatibility

with Linux a user's programs, files, and other resources will all work as before without any

further changes. The casual user will not notice the difference between a Linux and an

OpenMosix system. To us the whole cluster will function as one fast GNU/Linux system.

OpenMosix is a Linux-kernel patch which provides full compatibility

with standard Linux for IA32-compatible platforms. The internal load-balancing algorithm

transparently migrates processes to other cluster members. The advantage is a better load-

sharing between the nodes. The cluster itself tries to optimize utilization at any time.

This transparent process-migration feature makes the whole cluster

look like a BIG SMP-system with as many processors as available cluster-nodes (of course

multiplied with X for X-processor systems such as dual/quad systems and so on).

OpenMosix also provides a powerful optimized File System (oMFS) for HPC-applications,

which unlike NFS provide cache, time stamp and link consistency.

	Page 13

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
7

5. OPENMOSIX TECHNOLOGY
The OpenMosix technology consists of two parts: a Preemptive Process Migration (PPM)

mechanism and a set of algorithms for adaptive resource sharing. Both parts are

implemented at the kernel level, using a loadable module, such that the kernel interface

remains unmodified. Thus they are completely transparent to the application level. The PPM

can migrate any process, at anytime, to any available node. Usually, migrations are based on

information provided by one of the resource sharing algorithms, but users may override any

automatic system-decisions and migrate their processes manually.

Each process has a Unique Home-Node (UHN) where it was created.

Normally this is the node to which the user has logged-in. The single system image model of

OpenMosix is a CC (cache coherent) cluster, in which every process seems to run at its

UHN, and all the processes of a user's session share the execution environment of the UHN.

Processes that migrate to other (remote) nodes use local (in the remote node) resources

whenever possible, but interact with the user's environment through the UHN.

The PPM is the main tool for the resource management algorithms. As

long as the requirements for resources, such as the CPU or main memory are below a certain

threshold, the user's processes are confined to the UHN. When the requirements for

resources exceed some threshold levels, then some processes may be migrated to other

nodes to take advantage of available remote resources. The overall goal is to maximize the

performance by efficient utilization of the network-wide resources. The granularity of the

work distribution in OpenMosix is the process. Users can run parallel applications by

initiating multiple processes in one node, and then allow the system to assign these

processes to the best available nodes at that time. If during the execution of the processes

new resources become available, the resource sharing algorithms are designed to utilize

these new resources by possible reassignment of the processes among the nodes. This

capability to assign and reassign processes is particularly important for ease-of-use and to

provide an efficient multi-user, timesharing execution environment.

OpenMosix has no central control or master/slave

relationship between nodes: each node can operate as an autonomous system, and it makes

	Page 14

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
8

all its control decisions independently. This design allows a dynamic configuration, where

nodes may join or leave the network with minimal disruptions. Additionally, this allows for

a very great scalability and ensures that the system runs well on large configurations as it

does on small configurations. Scalability is achieved by incorporating randomness in the

system control algorithms, where each node bases its decisions on partial knowledge about

the state of the other nodes, and does not even attempt to determine the overall state of the

cluster or any particular node. For example, in the probabilistic information dissemination

algorithm, each node sends, at regular intervals, information about its available resources to

a randomly chosen subset of other nodes. At the same time it maintains a small window,

with the most recently arrived information. This scheme supports scaling, even information

dissemination and dynamic configurations.

	Page 15

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
9

5.1The Resource Sharing Algorithms
The main resource sharing algorithms of OpenMosix are the load-balancing and the memory

ushering. The dynamic load-balancing algorithm continuously attempts to reduce the load

differences between pairs of nodes, by migrating processes from higher loaded to less

loaded nodes. This scheme is decentralized all the nodes execute the same algorithms and

the reduction of the load differences is performed independently by pairs of nodes. The

number of processors at each node and their speed are important factors for the load

balancing algorithm. This algorithm responds to changes in the loads of the nodes or the

runtime characteristics of the processes. It prevails as long as there is no extreme shortage of

other resources such as free memory or empty process slots.

There are two main resource-sharing algorithms in OpenMosix: The first one,

the memory ushering (depletion prevention) algorithm is geared to place the maximal

number of processes in the cluster-wide RAM, to avoid as much as possible thrashing or the

swapping out of processes. The algorithm is triggered when a node starts excessive paging

due to shortage of free memory. In this case the algorithm overrides the load-balancing

algorithm and attempts to migrate a process to a node that has sufficient free memory, even

if this migration would result in an uneven load distribution.

Lately, OpenMosix was given a new algorithm to select on which node a

given program should run. The mathematical model for this scheduling algorithm comes

from the field of economics research. Determining the optimal location for a job is a

complicated problem. The most important complication is that the resources available on a

cluster of Linux computers are heterogeneous. In effect, the costs for memory, CPU, process

communication, and so forth are incomparable. They are not even measured in the same

units. Communication resources are measured in terms of bandwidth, memory in terms of

space, and CPU in terms of cycles. The natural greedy strategy, balancing the resources

across all of the machines, is not even well defined. The new algorithm employed by

OpenMosix is very interesting because it tries to reconcile these differences (and maybe it

could be applied to non-cluster schedulers as well) based on economic principles and

competitive analysis. The key idea of this strategy is to convert the total usage of several

	Page 16

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
10

heterogeneous resources, such as memory and CPU, into a single homogeneous "cost". Jobs

are then assigned to the machine where they have the lowest cost. Just like in a market

oriented economy.

This economic strategy provides a unified algorithm framework for

allocation of computation, communication, memory, and I/O resources. It allows the

development of near-optimal on-line algorithms for allocating and sharing these resources.

	Page 17

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
11

5.2 Pre- emptive Process Migration
OpenMosix supports preemptive and completely transparent process migration (PPM).After

migration, a process continues to interact with its environment regardless of its location. To

implement the PPM, the migrating process is divided into two contexts: the user context,

which can be migrated, and the system context, which is UHN dependent and may not be

migrated.

The user context, called the remote, contains the program code, stack, data,

memory maps, and registers of the process. The remote encapsulates the process when it is

running in the user level. The system context, called the deputy, contains a description of the

resources that the process is attached to, and a kernel-stack for the execution of system code

on behalf of the process. The deputy encapsulates the process when it is running in the

kernel. It holds the site dependent part of the system context of the process; hence it must

remain in the UHN of the process. While the process can migrate many times between

different nodes, the deputy is never migrated. The interface between the user-context and the

system context is well defined. Therefore it is possible to intercept every interaction between

these contexts, and forward this interaction across the network. This is implemented at the

link layer, with a special communication channel for interaction.

The migration time has a fixed component, for establishing a new process

frame in the new (remote) site, and a linear component, proportional to the number of

memory pages to be transferred. To minimize the migration overhead, only the page tables

and the process' dirty pages are transferred. In the execution of a process in OpenMosix,

location transparency is achieved by forwarding site-dependent system calls to the deputy at

the UHN. System calls are a synchronous form of interaction between the two process

contexts. All system calls that are executed by the process are intercepted by the remote

site's link layer. If the system call is site-independent it is executed by the remote locally (at

the remote site).

Otherwise, the system call is forwarded to the deputy, which executes the

system call on behalf of the process in the UHN. The deputy returns the result(s) back to the

remote site, which then continues to execute the user's code. Other forms of interaction

	Page 18

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
12

between the two process contexts are signal delivery and process wakeup events, such as

when network data arrives. These events require that the deputy asynchronously locate and

interact with the remote. This location requirement is met by the communication channel

between them. In a typical scenario, the kernel at the UHN informs the deputy of the event.

The deputy checks whether any action needs to be taken, and if so, inform the remote. The

remote monitors the communication channel for reports of asynchronous events, like

signals, just before resuming user-level execution. This approach is robust, and is not

affected even by major modifications of the kernel. It relies on almost no machine dependent

features of the kernel, and thus does not hinder porting to different architectures.

One drawback of the deputy approach is the extra overhead in the execution, of

system calls. Additional overhead is incurred on file and network access operations.

	Page 19

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
13

6. OPENMOSIX DESIGN
Process

Unique Home

Node

Remote Node

a)

Before Migration

UHN

DS

R

Process

Remote

b)

After Migration

DS-Deputy Stub

R-Remote Stub

UHN-Unique Home Node

	Page 20

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
14

Deputy/Remote Mechanisms
The deputy is the representative of the remote process at the UHN. Because the entire user

space memory resides at the remote node, the deputy does not hold a memory map of its

own. Instead, it shares the main kernel map similarly to a kernel thread. In many kernel

activities, such as the execution of system calls, it is necessary to transfer data between the

user space and the kernel This is normally done by the copy to user(), copy from user()

kernel primitives. In OpenMosix, any kernel memory operation that involves access to user

space requires the deputy to communicate with its remote to transfer the necessary data. The

overhead of the communication due to remote copy operations, which may be repeated

several times within a single system call, could be quit substantial, mainly due to the

network latency. In order to eliminate excessive remote copies, which are very common, a

special cache was implemented that reduces the number of require interactions by pre-

fetching as much data as possible during the initial system call request, while buffering

partial data at the deputy to be returned to the remote at the end of the system call. To

prevent the deletion or overriding of memory-mapped files (for demand-paging) in the

absence of a memory map, the deputy holds a special table of such files that are mapped to

the remote memory. The user registers of migrated processes are normally under the

responsibility of the remote context.

However, each register or combination of registers may become temporarily owned for

manipulation by the deputy. Remote (guest) processes are not accessible to the other

processes that run at the same node (locally or originated from other nodes) and vice versa.

They do not belong to any particular user (on the remote node, where they run) nor can they

be sent signals or otherwise manipulated by local processes. Their memory cannot be

accessed and they can only be forced, by the local system administrator, to migrate out. A

process may need to perform some OpenMosix functions while logically stopped or

sleeping. Such processes would run OpenMosix functions "in their sleep," and then resume

sleeping, unless the event they were waiting for has meanwhile occurred. An example is

process migration, possibly done while the process is sleeping. For this purpose, OpenMosix

maintains a logical state, describing how other processes should see the process, as opposed

to its immediate state.

	Page 21

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
15

7. FILE SYSTEM
OpenMosix has its own new Cluster File System for Linux that gives a shared cluster wide

view of all the file systems. Cluster developers saw that all current solutions for a cluster-

wide file system relied on a central file server, but that some new file system technologies

were being developed addressing the very needs of a single system image cluster (SSI) like

OpenMosix.

OpenMosix uses Direct File System Access (DFSA). DFSA was designed to

reduce the extra overhead of executing I/O oriented system-calls of a migrated process. This

was done by allowing the execution of most such system-calls locally - in the process's

current node. In addition to DFSA, a new algorithm that takes into account I/O operation

was added to the OpenMosix process distribution (load-balancing) policy. The outcome of

these provisions is that a process that performs moderate to high volume of I/O is

encouraged to migrate to the node in which it does most of its I/O. one obvious advantage is

that I/O-bound processes have greater flexibility to migrate from their respective home-

nodes for better load-balancing. So, unlike all existing network file systems (say, NFS)

which bring the data from the file server to the client node over the network, the OpenMosix

cluster attempts to migrate the process to the node in which the file actually resides.

Information Collection
Statistics about a process's behavior are collected regularly, such as at every system call and

every time the process accesses user data. This information is used to assess whether the

process should be migrated from the UHN. These statistics decay in time, to adjust for

processes that change their execution profile. They are also cleared completely on the

execve() system calls because the process is likely to change its nature. Each process has

some control over the collection and decay of its statistics. For instance, a process may

complete a stage knowing that its characteristics are about to change, or it may cyclically

alternate between a combination of computation and I/O.

	Page 22

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
16

8. OPENMOSIX API
The OpenMosix API has been traditionally implemented via a set of reserved system calls

that were used to configure, query, and operate OpenMosix. In line with the Linux

convention, the API was modified to be interfaced via the /proc file system. This also

prevents possible binary incompatibilities of user programs between different Linux

versions.

The API was implemented by extending the Linux /proc file system tree with a new

directory: /proc/OpenMosix. The calls to OpenMosix via /proc include: synchronous and

asynchronous migration requests; locking a process against automatic migrations; finding

where the process currently runs; finding out about migration constraints; system setup and

administration; controlling statistic collection and decay; information about available

resources on all configured nodes; and information about remote processes.

	Page 23

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
17

9. MIGRATION CONSTRAINTS
Certain functions of the Linux kernel are not compatible with process context division.

Some obvious examples are direct manipulations of I/O devices, such as direct access to

privileged bus-I/O instructions, or direct access to device memory. Other examples include

writable shared memory and real-time scheduling. The last case is not allowed because one

cannot guarantee it while migrating, as well as being unfair towards processes of other

nodes. A process that uses any of these functions is automatically confined to its UHN. If

the process has already been migrated, it is first migrated back to the UHN.

The OpenMosix Performance
Unlike MPPs, which allow a single user per partition, CCs are geared for multiuser,

timesharing environments. In order to make CC systems as easy to program, manage, and

use as an SMP, it is necessary to develop means for global (cluster-wide) resource allocation

and sharing that can respond to resource availability, distribute the workload dynamically,

and utilize the available, cluster-wide resources efficiently and transparently. Such

mechanisms are necessary for performance scalability in clusters of servers and to support a

flexible use of workstations because the overall available resources in such systems are

expected to be much larger than the available resources at any workstation or server. The

development of such mechanisms is particularly important to support multiuser, time-

sharing parallel execution environments, where it is necessary to share the resources and at

the same time distribute the workload dynamically, to utilize the global resources efficiently.

	Page 24

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
18

10. INSTALLING OPENMOSIX
OpenMosix is a kernel extension available as a patch to the 2.4 kernel series. An extension to

the 2.6 series is in works. Since there is no configuration involved installing OpenMosix is just

a matter of compiling the kernel and its user land programs. To install OpenMosix at first need

to acquire the OpenMosix 2.4.26 patch, the OpenMosix utilities and the 2.4.26 kernel from the

sites listed at the reference section. Then follow these steps:

First untar the kernel sources and patch it with the OpenMosix

$tar xvjf linux-2.4.26.tar. bz2

$bunzip2 openMosix-2.4.26-1.bz2

$mv openMosix –2.4.26 –1 linux –2.4.26

$patch –pl < openMosix –2.4.26 –1

Then configure, compile© the kernel

$ make menuconfig

$make dep bzImage modules

$sudo make modules install

$sudo cp arch/i386/boot/bzImage/boot/kernel –2.4.26 –om

$sudo cp .config /boot/config –2.4.26 –om

$sudo cp System.map /boot/System.map – 2.4.26 -om

Compile the other tools available in OpenMosix

$tar xvzf openMosix – tools –0.3.6 –2.tar.gz

$cd openMosix –tools –0.3.6 –2

$./configure

	Page 25

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
19

$make && sudo make install

$cd..

$tar xvzf openMosixview –1.5.tar.gz

$cd openMosix –1.5

$./configure

$make && sudo make install

We should know what drivers we need for our system and we have to compile them as

modules or include them in kernel directly.

	Page 26

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
20

11. Graphical User Interface of OpenMosix
1. OpenMosixView:Monitoring

2. OpenMosixViewProcs:Managing Processes

3. OpenMosixViewCollector:Logging

4. OpenMosixViewAnalyzer:Analyse the logs

5. OpenMosixViewHistory:history of the processes

6. OpenMosixMigmon:Drag and Drop migration monitoring tool

	Page 27

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
21

12. OPENMOSIX VIEW
The functionality is explained in the following. OpenMosix view displays a row with a lamp, a

button, a slider, a lcd-number, two progress bars and some labels for each cluster-member.

The lights at the left are displaying the openMosix-Id and the status of the cluster-node. Red if

down, green for available. If you click on a button displaying the ip-address of one node a

configuration-dialog will pop up. It shows buttons to execute the most common used "mosctl"-

commands. (Described later in this How To) With the "speed-sliders" you can set the

openMosix-speed for each host. The current speed is displayed by the lcd-number.

You can influence the load-balancing of the whole cluster by changing

these values. Processes in a OpenMosix-Cluster are migrating easier to a node with more

OpenMosix-speed than to nodes with less speed. Sure it is not the physically speed you can set

but it is the speed OpenMosix "thinks" a node has. E.g. a cpu-intensive job on a cluster-node

which speed is set to the lowest value of the whole cluster will search for a better processor for

running on and migrate away easily.

The progress bars in the middle gives an overview of the load on

each cluster-member. It displays in percent so it does not represent exactly the load written to

the file /proc/hpc/nodes/x/load (by openMosix), but it should give an overview.

The next progress bar is for the used memory the nodes. It shows the

currently used memory in percent from the available memory on the hosts (the label to the

right displays the available memory). How many CPUs your cluster has is written in the box

to the right. The first line of the main windows contains a configuration button for "all-nodes".

we can configure all nodes in your cluster similar by this option.

How good the load-balancing works is displayed by the progress bar in

the top left. 100% is very good and means that all nodes nearly have the same load.

	Page 28

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
22

The OpenMosix migmon
The OpenMosix migmon is a monitor for migrations in your openMosix-cluster.It displays

all your nodes as little penguins sitting in a circle.

-> nodes-circle.

The main penguin is the node on which openMosixmigmon runs and around this node it

shows its processes also in a circle of small black squares.

-> main process-circle

If a process migrates to one of the nodes the node gets an own process-circle and the process

moved from the main process-circle to the remote process-circle. Then the process is

	Page 29

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
23

marked green and draws a line from its origin to its remote location to visualize the

migration.

Tooltips: If you hold your mouse above a process it will show you its PID and command

line in a small tooltip-window.Drag'n Drop! The openMosixmigmon is fully Drag'n Drop

enabled. You can grab (drag) any process and drop them to any of your nodes (those

penguins) and the process will move there. If you double-click a process on a remote node

it will be send home immediately.

	Page 30

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
24

13. PROS & CONS OF OPENMOSIX
13.1 PROS
1

No extra packages are required.

2

No code changes to our application are required.

3

Simple to install/configure.

4

It is a clustering platform with more than 10 products based on it: openMosixView,

openMosixWebView, openMosixApplet, RxLinux, PlumpOS, K12LTSP, LTSP and

many others.

5

OpenMosix is a product developed by the users themselves so it's more close to the user

by definition.

6

Node auto discovery/fail-over daemon already implemented in the user land tools via

multicast messaging.

7

Aliases for hosts with multiple interfaces.

8

Basic routing available (in the rare case where true multicast routing is undesirable).

9

Cluster Mask allows to specify to which nodes a given process can migrate.

12.2 CONS
1 Kernel Dependent

2 There are issues with multiple threads not gaining performance

3 The OpenMosix nodes can handle multiple co operating threads that cannot be separated

and distributed among the nodes

	Page 31

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
25

14. CONCLUSION
OpenMosix uses message passing for communication and supports homogeneous or

heterogeneous environments. The communication architecture’s two main parts are the pre

emptive process migration and adaptive resource sharing algorithms. Nodes in the cluster are

located through multicast messaging

The key benefits are

1) Pre emptive process migration is transparent for the users of the cluster

2) Openmosix responds at run time to unpredictable and irregular resource requirements by

many users

3) Openmosix uses the UDP for internodes communication since there is less overhead

using UDP and since clusters are implemented on closed/private networks the chances of

packets getting dropped are less.

The OpenMosix next goal is to implement migrate able ockets to improve IPC

Performance.Openmosix provides a state of reliable, stable, convenient, high performance

and scalable clusters at negotiable cost

	Page 32

OpenMosix
Division of Computer Science & Engineering, SOE, CUSAT
26

15. REFERENCES
1. “High Performance Linux Clusters” with OSCAR, Rocks, OpenMosix, and MPI

By Joseph D. Sloan

2. http://openmosix.sourceforge.net/documentation.html

3. http://www.linuxdevcenter.com/pub/a/linux/2004/02/19/openmosix.html

4. http://www.linux.org/docs/ldp/howto/openMosix-HOWTO/index.html

