Introduction
 	Routing is a fundamental engineering task on the Internet. It consists in finding a path from a source to a destination host. Routing is complex in large networks because of the many potential intermediate destinations a packet might traverse before reaching its destination .
The link weights are assigned by the network operator. The lower the weight, the greater the chance that traffic will get routed on that link . When one sends or receives data over the Internet, the information is divided into small chunks called packets or datagrams. A header, containing the necessary transmission information, such as the destination Internet Protocol (IP) address, is attached to each packet. The data packets are sent along links between routers on Internet. When a data packet reaches a router, the incoming datagrams are stored in a queue to await processing. The router reads the datagram header, takes the IP destination address and determines the best way to forward this packet for it to reach its final destination .
The configuration of network protocols is widely considered a black art and is normally performed based on network administrators’ experience, trial and error, etc... These manual methods are often error-prone and not scalable to large complex networks. The emphasis of the search algorithm should be on finding a better operating point within the limited time frame instead of seeking the strictly global optimum. Network conditions vary with time and the search algorithm should quickly find better network parameters before significant changes in the network occur.
Another feature of these problems; for example, AT&T’s network has 1000s of routers and links. If all OSPF link weights of this network are to be configured, there will be thousands of parameters present in the optimization.

Problem Statement
	Single Source Shortest Path (SSSP) problem in the Internet routing environment especially when time is not a critical resource, the cost of sending packets is very high, and the nature of the application permits the finding of an optimal solution in a large search space. So finding a solution which determines a shortest path from source to destination in a limited time and reaching the optimality is critical concern.

Literature Survey
Many traditional and optimal search techniques are not guaranteed to yield the overall optimal solution, since they are not complete and are only searching a subset of the search space. Other algorithms that focus on enumerative methods are not efficient when the search space is too large. The Dijkstra algorithm is considered as the most efficient method. But when the network is very big, then it becomes inefficient since a lot of computations need to be repeated. Also it cannot be implemented in the permitted time.

We consider the GA search approach throughout. It is recognized that there are a large number of deterministic and heuristic search algorithms can be used to find a high performance solution for large search space problems. However, the approach of this project is to incorporate some heuristic knowledge into the genetic mechanism to improve the overall performance.

Methodology
 	As a special kind of stochastic search algorithms, genetic algorithm is a problem solving method which is based on the concept of natural selection and genetics. I use the following algorithm.
The steps of a GA are:
1. Choose initial population
2. Evaluate the fitness of each individual in the population
3. Repeat

a. Select best-ranking individuals to reproduce
b. Breed new generation through crossover and mutation (genetic operations) and give birth to offspring
c. Evaluate the individual fitnesses of the offspring
d. Replace worst ranked part of population with offspring
4. Until <terminating condition>

Implementation and Results
The steps of my GA algorithm are explained as:-
1. Choose Initial Population:
			First find out all possible paths reaching from source to destination.
I choose some of the path as chromosome in initial population depends upon the size of population.
2. Fitness evaluation:
			The fitness value for each chromosome in a population is calculated by the formula
 			Fitness = no of hops * 10 – total cost of path
 3. Selection:
			The parent is selected randomly. I choose two parents for mate.

4. Crossover:
			Find common point between two parents and makes the crossover from that 	point. It recombines two 'parent' paths to produce two 'children' new paths in the next 	generation. Based on their fitness value any one of the offspring gets selected.
[image:]
5. Mutation:
			I choose mutation rate of 1%. So I ignore this step.

	I set several parameters for the experiment. They are as follows;
Population size = 4
Number of generations= 2
Crossover probability = 0.99
Mutation probability = 0.01
I run the steps selection, crossover which removes a worst chromosome for each generation
The Final output is:-[image: C:\Documents and Settings\Admin\Desktop\GA Project\Report\output.JPG]

Conclusion and Future work
	In this project, I developed a genetic algorithm that finds a shortest path in a limited time. This algorithm is meant to be used in OSPF routing, which is the most commonly used intra-domain Internet routing protocol (IRP). As the future research, I would like to embed this algorithm to system that I am currently working on. There is a tool called Online Simulation (OLS) framework which is developed at the Networks Lab in the Rensselaer Polytechnic Institute. It is used as an automatic network management tool for finding and deploying good OSPF link weights. The OLS architecture is composed of autonomous online simulators that continuously monitor and model the network conditions and topology. Using the topology and traffic input from these measurements, the OLS executes simulations or analysis to evaluate the performance of the network for a given set of protocol parameters. This framework contains several search algorithms, such as, multi-start hill-climbing, simulated annealing, Controlled Random Search and RRS (Recursive Random Search). As the future work, my goal is to embed my genetic algorithm into this framework.

References
1. “Genetic Algorithm Finding the Shortest Path in Networks” Bilal Gonen Department of Computer Science and Engineering University of Nevada, Reno Reno, Nevada 89502 gonenb@cse.unr.edu.
2. A Genetic Algorithm for the Weight Setting Problem in OSPF Routing, M. Ericsson, M.G.C. Resende, and P.M. Pardalos.
3. T.M. Thomas II. OSPF Network Design Solutions. Cisco Press, 1998
4. A Recursive Random Search Algorithm for Network Parameter Optimization, Tao Ye , Shivkumar Kalyanaraman.

5. Genetic Algorithms for Solving Disjoint Path Problem with Proportional Path-Costs,Burcu Ozcam, North Carolina State University.

6. Minimizing Packet Loss by Optimizing OSPF Weights Using Online Simulation, Hema
Tahilramani Kaur, Tao Ye, Shivkumar Kalyanaraman, Kenneth S. Vastola, Electrical Computer and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, NY-12180.
												

Genetic Algorithm Finding the Shortest Path in Networks	Page 8

image1.png
parent P1

parent P2

offspring C1

offspring C2

point selected

j

3 [7]9 [11]12 15| 17| 18| 20
5 |7 | 10| 11] 13[15] 16| 20
3|7 |9 [11]13]|15|16]|20
5 | 7|/10|11{12|15|17|18|20

(A) Crossover Operator

image2.jpeg
path cost:48

path cost:55

After crossover

pathcost:52 fitness:38

of fspringl :1-2-4-!
3 pathcost:47 Fitness:43

of fspring2:1-2-3-!

pfter First Generation

of Fspring2:1-2-3-5-7-9-18 pathcost:47 fitness:d3
chronosoned:1-3-5-6-8-10 path cost:d3 fitness:4?

efore crossover:

of Fspring2:1-2-3-5-7-9-1p
hronosoned:1-3-5-6-8-18

after crossover

offspringd
offspringd

path cost:5l fitness:39
path cost:39 Fitness:sl

After second Generation
offspringd:1-3-5-7-9-18 path cost:39 fitness:5l

shortest path is:1-3-5-7-9-18 with mininun cost:39

R AR G o . .

