
 A Seminar report on
Remote Server Monitoring System for Corporate Data Centers
BACHELOR OF TECHNOLOGY

IN

Computer Science & Engineering
Submitted By
T.Naveena
08TQ1A0530
Under the Guidance of

 B.Vasanth
 Head Of The Department of CSE
[image: image1.jpg]

 Department of Computer Science and Engineering,

SIDDHARTHA INSTITUTE OF TECHNOLOGY AND SCIENCE

(College Of Engineering)

Affiliated to Jawaharlal Nehru Technological University.
2011

 Siddhartha Institute Technology and Science
 Department of Computer Science and Engineering

[image: image2.jpg]

 CERTIFICATE

This is to certify that the seminar report titled ‘REMOTE SERVER MONITORING SYSTEM FOR CORPORATE DATA CENTERS’is being submitted by T.Naveena bearing 08TQ1A0530, in IVB.TECH I semester Computer Science & Engineering is a record bonafide work carried out by them. The results embodied in this report have not been submitted to any other University for the award of any degree.
Internal Guide

HOD

 External
ACKNOWLEDGMENT
 This is my pleasure to express my sincere gratitude to all those people who have been associated with this assignment and have helped me with it and made it a worth while experience

Firstly i extend my thanks to the various people who have shared their opinions and experiences through which i received the required information crucial the project.
 .
Finally, i express my thanks to Dr.Lateef Khan garu Principal, Siddhartha Institute of Technology And Sciences who gave the opportunity to learn the subject in a practical approach and and Prof. B.Vasanth garu (H.O.D) who guided and gave valuable suggestions regarding the project.

T.Naveena

08TQ1A0530
 CONTENTS

Abstract

List of Figures

List of Tables

List of Screens
Symbols and Abbreviations
1.INTRODUCTION

 8-11

 1.1. INTRODUCTION TO PROJECT 8
1.2.ORGANIZATION PROFILE 8
1.3.PURPOSE OF THE PROJECT 10
1.4.PROBLEM IN EXISTING SYSTEM 10
1.5.SOLUTION OF THESE PROBLEMS 11
 2.SYSTEM ANALYSIS 12-15
2.1. INTRODUCTION 12
2.2. SYSTEM WORKFLOW 12
2.3. STUDY OF THE SYSTEM 13
2.4. HARDWARE & SOFTWARE REQUIRMENT 14

 3.FEASIBILITY REPORT 16-18
 3.1. TECHNICAL FEASIBILITY 16
 3.2. OPERATIONAL FEASIBILITY 17
 3.3. ECONOMIC FEASIBILITY 18
 4.SELECTED SOFTWARE 19-46
4.1. INTRODUCTION TO .NET FRAMEWORK 19
4.2. ASP.NET 22
4.3. C#.NET 41
4.4. SQL SERVER 42
5.SYSTEM DESIGN 47-65
5.1. INTRODUCTION 47
5.2. NORMALIZATION 48
5.3. DATA FLOW DIAGRAMS 49
5.4. UML DIAGRAMS 54
5.5 DATA DICTIONARY 60
6.SCREENS 66-74
7.SYSTEM TESTING 75-79
7.1. LEVELS OF TESTING 75
7.2. TESTING PROCESS
 75
8.SYSTEM SECURITY

 80-82
8.1. INTRODUCTION 80
8.2. SECURITY IN SOFTWARE 81
 9.CONCLUSION 82-84
 10.BIBLIOGRAPHY

 84

 ABSTRACT
SMS BASED REMOTE SERVER MONITORING
Functional Overview
Problem Statement
 For Organizations with huge data centers having a lot of servers hosting
numerous applications, it is always a major problem to monitor if each of the servers is up and functional all the time. The problem is more acute during late night shifts when the usual numberof network/systems engineers working is less.

 Usually, when organizations host the applications on their servers on behalf of their clients, they sign-up a service level agreement (SLA), specifying the allowed down time for each of the applications. Any lack of commitment on the part of the organizations in meeting the SLA could result in loss of business or legal action or both.

So, it becomes very important for the organizations to know if a server is down or non-functional and take corrective action immediately. Unfortunately, for some less time critical applications, it is usually the client who informs that there is a problem with the server when he/she tries to logon to the application Organizations would be very interested in knowing about these server failures immediately and take corrective action before the client starts complaining.
Proposed Solution

There is a need for a web based application which can capture all the organization and data center details and remotely check if each of servers is up and running all the time. This monitoring piece of the application keeps pinging each of the servers at the specific intervals and based on the rules setup and response received it sends out an

SMS to a predefined list of specialists whenever there is a failure. This SMS will also contain the information related to the server that has failed and also the time at which it had failed.

Processes Involved

·
Access Management process to provide Admin privileges to selected personnel

·
Organization and Servers information capturing Process

·
Server Monitoring Criteria setup Process

·
Automated Server Monitoring Process

·
Server Monitoring status and failure logging process
·
Failure Notification SMS process

·
Corrective Action Completion Process

·
Monthly Management Reporting Process

·
Historical data archiving and cleanup process

Modules Involved

Organization Information management Module: Allows Admin users to capture
and update Organization information related to Users, Specialists, Servers, IP
addresses etc

·
Access management Module: Allows Admin users to give admin privileges to other users as well as managing the userid/passwords of all the Network/System engineers

·
Automated Server Monitoring Module: Runs continuously to check if each of the servers is up and running and logs failures into a database.

·
SMS Failure Notification Module: Sends out SMS to the specified list of mobile numbers along with the failed server information.

·
Corrective Action Module: Allows Network/Systems engineers to put in the corrective action they have taken to rectify the failure.

·
Management Reporting: Allows Admin users to run reports based on Organization, Servers, Specialists and Corrective action taken.

·
Archiving and cleanup Module: Allows Admin users to Archive/Cleanup old data on the system

Application Development: System Requirements

1. Windows Operating System

2 Front-end: Microsoft .Net Framework and Visual Studio (Express Edition)

3 Back-end: SQL Server Database

4Mobile Phone and Mobile Phone Simulator applications.
FIGURES

DFD diagrams for Remote Server Monitoring System For corporate data centers
 1. Context Level

 2.First Level.

 3. Second Level
UML diagrams for Remote Server Monitoring System For corporate data centers

 4.Class Diagram

 5.Use case Diagram

 6.Sequence Diagram

 7.Collaboration Diagram

 Tables

· ADO.NET Data Providers

· ADO.NET Connection Strings

 Screenshots
· Admin Login
· Admin Organization
· Admin Users
· Admin Servers
· Admin Notification
· Admin Logout
· Emp Home
· Emp view or Update
· Emp Logout
Symbols and Abbreviations

· OCIO

:
Office of the Chief Information Officer

· RSMSCD :
Remote Server Monitoring System For

 Corporate Data Centers
· RAD

:
Rapid Application Development

· DBMS

:
Database Management Systems
· RDBMS
:
Relational Database Management System
· DSS

:
Decision Support Systems
· OLTP

:
Online Transaction Processing
· DFD

:
Data Flow Diagram

· UML

:
Unified Modeling Language
· SDLC

:
Software Development Life Cycle
 CHAPTER-1
INTRODUCTION
INTRODUCTION

1.1. Introduction to project

 In the current economic situation corporations as well as small companies are looking at various ways to cut down costs. One of the main ways to achieve this in developed countries is to outsource the work to developing countries. This outsourcing can be software development, R&D, Business Process Outsourcing or Knowledge Process Outsourcing.
 In similar lines, executives are trying to outsource the activities of the personal assistants to developed countries. These activities involve scheduling appointments, managing calendars, filtering emails and making travel arrangements.

 All these tasks can be performed by anyone without being in the same office of the executive with the technological advanced made today. But there is no appropriate system to streamline the processes involved and allow seamless between the executive and the assistant even though they are on two different continents.

 For this purpose a web based applications is developed, which allows executives and assistants to pair up.

1.2.Organization profile

About Live Projects Program:

 ORGANIZATION PROFILE
HAS SOFT TECHNOLOGIES
 HAS Soft Technologies Pvt Ltd is a leading US based software company providing strategies consulting, software development services, technology integration and managed services for global companies and government organizations. HAS Soft helps customers with their software needs, provide innovative solutions including managed services to reduce costs and also license software, implement and support as per customer needs.

Our Vision is to become the top technology company offering Software as

Service for all customers across the globe under one platform helping Customers gain Real and Sustainable Value Partners with increased customers Employees with significant growth opportunities
Headquartered in Pleasanton, California, U.S.A and branch offices in Houston and Dallas Texas. In India, HAS is primarily located in Hyderabad with branch offices in Bangalore, Warangal, and Vishakapatnam. HAS SOFT has plans to further expand its offices to another six locations in major cities of India during the year 2009.
HAS Soft Technologies Pvt Ltd is a young company with experience board of directors and advisors having talent, passion and vision to bring technology into varied streams of education across the globe. HAS Soft Technologies Pvt Ltd core competencies include Software Development and IT Consulting Services.

Some of our Major Products List includes the following
Profile ManagementTop of Form
Ability to store complete profile of a student, parent and staff members including photogrpahs.

Easily updatable by students, parents and institutions authorised staff members.

Serves as Stystem of Record for SMS feature.

Attendance Management

Track the attendance of all the students for the class .

Ability to send SMS to parents of absentee student.

Integrates with most of the 'Security Systems' to provide comprehensive reporting capability.

Integrates into progress cards automatically.

Infrastructure Management

Reporting

Provides complete comprehensive various flavours reports according to the needs on all the above functionality.

More than 50+ canned reports available with charts and graphs to assess the performance of the institution

Bottom of Form

vv1.3. Purpose of project

Organizations with huge data centers having a lot of servers hosting numerous applications, it is always a major problem to monitor if each of the servers is up and functional all the time. The problem is more acute during late night shifts when the usual number of network/systems engineers working is less.
Usually, when organizations host the applications on their servers on behalf of their clients, they sign-up a service level agreement (SLA), specifying the allowed down time for each of the applications. Any lack of commitment on the part of the organizations in meeting the SLA could result in loss of business or legal action or both.

So, it becomes very important for the organizations to know if a server is down or non-functional and take corrective action immediately. Unfortunately, for some less time critical applications, it is usually the client who informs that there is a problem with the server when he/she tries to logon to the application.

Organizations would be very interested in knowing about these server failures immediately and take corrective action before the client starts complaining.
1.4. Problem in existing system
· Access Management process to provide Admin privileges to selected personnel

·
Organization and Servers information capturing Process

·
Server Monitoring Criteria setup Process

·
Automated Server Monitoring Process

·
Server Monitoring status and failure logging process

·
Failure Notification SMS process

·
Corrective Action Completion Process

·
Monthly Management Reporting Process

·
Historical data archiving and cleanup process

1.5. Solutions of this problems
There is a need for a web based application which can capture all the organization and data center details and remotely check if each of servers is up and running all the time.

This monitoring piece of the application keeps pinging each of the servers at the specific intervals and based on the rules setup and response received it sends out an

SMS to a predefined list of specialists whenever there is a failure. This SMS will also contain the information related to the server that has failed and also the time at which it had failed.

 CHAPTER-2

 SYSTEM ANALYSIS

SYSTEM ANALYSIS

2.1 Introduction

 After analyzing the requirements of the task to be performed, the next step is to analyze the problem and understand its context. The first activity in the phase is studying the existing system and other is to understand the requirements and domain of the new system. Both the activities are equally important, but the first activity serves as a basis of giving the functional specifications and then successful design of the proposed system. Understanding the properties and requirements of a new system is more difficult and requires creative thinking and understanding of existing running system is also difficult, improper understanding of present system can lead diversion from solution.

2.2. Analysis model

The model that is basically being followed is the SOFTWARE DEVELOPMENT LIFE CYCLE MODEL, which states that the phases are organized in a linear order. First of all the feasibility study is done. Once that part is over the requirement analysis and project planning begins. If system exists one then modification and addition of new module is needed, analysis of present system can be used as basic model.

The design starts after the requirement analysis is complete and the coding begins after the design is complete. Once the programming is completed, the testing is done. In this model the sequence of activities performed in a software development project are: -

 Project Planning

Requirements Definition

Design

Development

Integration & Test

Installation & Acceptance

 The relationship of each stage to the others can be roughly described as a

Waterfall, where the outputs from a specific stage serve as the initial inputs for the

following stage.

2.3.Study of the system
GUI’S

 In the flexibility of the uses the interface has been developed a graphics concept in mind, associated through a browses interface. The GUI’S at the top level have been categorized as
1. Administrative user interface

2. The operational or generic user interface

The administrative user interface concentrates on the consistent information that is practically, part of the organizational activities and which needs proper authentication for the data collection. The interfaces help the administrations with all the transactional states like Data insertion, Data deletion and Date updation along with the extensive data search capabilities.

The operational or generic user interface helps the users upon the system in transactions through the existing data and required services. The operational user interface also helps the ordinary users in managing their own information helps the ordinary users in managing their own information in a customized manner as per the assisted flexibilities.

Number of models
 The system after careful analysis has been identified to be presented with the following modules:

· Organization Information management Module

· Access management Module

· Automated Server Monitoring Module

· SMS Failure Notification Module

· Corrective Action Module

· Management Reporting

· Archiving and cleanup Module

2.4. Hardware and software requirements

 Requirement Specification plays an important role to create quality software solution; Requirements are refined and analyzed to assess the clarity.

 Requirements are represented in a manner that ultimately leads to successful software implementation. Each requirement must be consistent with the overall objective. The development of this project deals with the following requirements:

· Hardware Requirements

· Software Requirements

Hardware requirements:

 The selection of hardware is very important in the existence and proper working of any software. In the selection of hardware, the size and the capacity requirements are also important.

Software requirements:

 The software requirements specification is produces at the culmination of the analysis tasks. One of the most difficult tasks is that, the selection of the software, once system requirement is known by determining whether a particular software package fits the requirements.

 CHAPTER-3
 FEASIBILITY REPORT

FEASIBILITY REPORT

Preliminary investigation examine project feasibility, the likelihood the system will be useful to the organization. The main objective of the feasibility study is to test the Technical, Operational and Economical feasibility for adding new modules and debugging old running system. All system is feasible if they are unlimited resources and infinite time. There are aspects in the feasibility study portion of the preliminary investigation:

· Technical Feasibility

· Operation Feasibility

· Economical Feasibility

3.1. Technical Feasibility

The technical issue usually raised during the feasibility stage of the investigation includes the following:

· Does the necessary technology exist to do what is suggested?

· Do the proposed equipments have the technical capacity to hold the data required to use the new system?

· Will the proposed system provide adequate response to inquiries, regardless of the number or location of users?

· Can the system be upgraded if developed?

· Are there technical guarantees of accuracy, reliability, ease of access and data security?

Earlier no system existed to cater to the needs of ‘Secure Infrastructure Implementation System’. The current system developed is technically feasible. It is a web based user interface for audit workflow at NIC-CSD. Thus it provides an easy access to the users. The database’s purpose is to create, establish and maintain a workflow among various entities in order to facilitate all concerned users in their various capacities or roles. Permission to the users would be granted based on the roles specified. Therefore, it provides the technical guarantee of accuracy, reliability and security. The software and hard requirements for the development of this project are not many and are already available in-house at NIC or are available as free as open source. The work for the project is done with the current equipment and existing software technology. Necessary bandwidth exists for providing a fast feedback to the users irrespective of the number of users using the system.

3.2. Operational Feasibility
Proposed projects are beneficial only if they can be turned out into information system. That will meet the organization’s operating requirements. Operational feasibility aspects of the project are to be taken as an important part of the project implementation. Some of the important issues raised are to test the operational feasibility of a project includes the following: -

· Is there sufficient support for the management from the users?

· Will the system be used and work properly if it is being developed and implemented?

· Will there be any resistance from the user that will undermine the possible application benefits?

This system is targeted to be in accordance with the above-mentioned issues. Beforehand, the management issues and user requirements have been taken into consideration. So there is no question of resistance from the users that can undermine the possible application benefits.

The well-planned design would ensure the optimal utilization of the computer resources and would help in the improvement of performance status.
3.3. Economic Feasibility

A system can be developed technically and that will be used if installed must still be a good investment for the organization. In the economical feasibility, the development cost in creating the system is evaluated against the ultimate benefit derived from the new systems. Financial benefits must equal or exceed the costs.

The system is economically feasible. It does not require any addition hardware or software. Since the interface for this system is developed using the existing resources and technologies available at NIC, There is nominal expenditure and economical feasibility for certain.
 CHAPTER-4
 SELECTED SOFTWARE

	Initial Catalog
	Database name.

	Integrated Security
	Set to SSPI to make connection with user's Windows login

	User ID
	Name of user configured in SQL Server.

 SELECTED SOFTWARE

	Password
	Password matching SQL Server User ID.

 Integrated Security is secure when you are on a single machine doing development. However, you will o
4.1. Introduction to .NET Framework

The .NET Framework is a new computing platform that simplifies application development in the highly distributed environment of the Internet. The .NET Framework is designed to fulfill the following objectives:

· To provide a consistent object-oriented programming environment whether object code is stored and executed locally, executed locally but Internet-distributed, or executed remotely.

· To provide a code-execution environment that minimizes software deployment and versioning conflicts.

· To provide a code-execution environment that guarantees safe execution of code, including code created by an unknown or semi-trusted third party.

· To provide a code-execution environment that eliminates the performance problems of scripted or interpreted environments.

· To make the developer experience consistent across widely varying types of applications, such as Windows-based applications and Web-based applications.

· To build all communication on industry standards to ensure that code based on the .NET Framework can integrate with any other code.

The .NET Framework has two main components: the common language runtime and the .NET Framework class library. The common language runtime is the foundation of the .NET Framework. You can think of the runtime as an agent that manages code at execution time, providing core services such as memory management, thread management, and Remoting, while also enforcing strict type safety and other forms of code accuracy that ensure security and robustness. In fact, the concept of code management is a fundamental principle of the runtime. Code that targets the runtime is known as managed code, while code that does not target the runtime is known as unmanaged code. The class library, the other main component of the .NET Framework, is a comprehensive, object-oriented collection of reusable types that you can use to develop applications ranging from traditional command-line or graphical user interface (GUI) applications to applications based on the latest innovations provided by ASP.NET, such as Web Forms and XML Web services.

Client Application Development

Client applications are the closest to a traditional style of application in Windows-based programming. These are the types of applications that display windows or forms on the desktop, enabling a user to perform a task. Client applications include applications such as word processors and spreadsheets, as well as custom business applications such as data-entry tools, reporting tools, and so on. Client applications usually employ windows, menus, buttons, and other GUI elements, and they likely access local resources such as the file system and peripherals such as printers.

Another kind of client application is the traditional ActiveX control (now replaced by the managed Windows Forms control) deployed over the Internet as a Web page. This application is much like other client applications: it is executed natively, has access to local resources, and includes graphical elements.

In the past, developers created such applications using C/C++ in conjunction with the Microsoft Foundation Classes (MFC) or with a rapid application development (RAD) environment such as Microsoft® Visual Basic®. The .NET Framework incorporates aspects of these existing products into a single, consistent development environment that drastically simplifies the development of client applications.

The Windows Forms classes contained in the .NET Framework are designed to be used for GUI development. You can easily create command windows, buttons, menus, toolbars, and other screen elements with the flexibility necessary to accommodate shifting business needs.

For example, the .NET Framework provides simple properties to adjust visual attributes associated with forms. In some cases the underlying operating system does not support changing these attributes directly, and in these cases the .NET Framework automatically recreates the forms. This is one of many ways in which the .NET Framework integrates the developer interface, making coding simpler and more consistent.

Unlike ActiveX controls, Windows Forms controls have semi-trusted access to a user's computer. This means that binary or natively executing code can access some of the resources on the user's system (such as GUI elements and limited file access) without being able to access or compromise other resources. Because of code access security, many applications that once needed to be installed on a user's system can now be safely deployed through the Web. Your applications can implement the features of a local application while being deployed like a Web page.

4.2. ASP.NET

Server Application Development

Server-side applications in the managed world are implemented through runtime hosts. Unmanaged applications host the common language runtime, which allows your custom managed code to control the behavior of the server. This model provides you with all the features of the common language runtime and class library while gaining the performance and scalability of the host server.

The following illustration shows a basic network schema with managed code running in different server environments. Servers such as IIS and SQL Server can perform standard operations while your application logic executes through the managed code.

Server-Side Managed Code

ASP.NET is the hosting environment that enables developers to use the .NET Framework to target Web-based applications. However, ASP.NET is more than just a runtime host; it is a complete architecture for developing Web sites and Internet-distributed objects using managed code. Both Web Forms and XML Web services use IIS and ASP.NET as the publishing mechanism for applications, and both have a collection of supporting classes in the .NET Framework.

XML Web services, an important evolution in Web-based technology, are distributed, server-side application components similar to common Web sites. However, unlike Web-based applications, XML Web services components have no UI and are not targeted for browsers such as Internet Explorer and Netscape Navigator. Instead, XML Web services consist of reusable software components designed to be consumed by other applications, such as traditional client applications, Web-based applications, or even other XML Web services. As a result, XML Web services technology is rapidly moving application development and deployment into the highly distributed environment of the Internet.

If you have used earlier versions of ASP technology, you will immediately notice the improvements that ASP.NET and Web Forms offers. For example, you can develop Web Forms pages in any language that supports the .NET Framework. In addition, your code no longer needs to share the same file with your HTTP text (although it can continue to do so if you prefer). Web Forms pages execute in native machine language because, like any other managed application, they take full advantage of the runtime. In contrast, unmanaged ASP pages are always scripted and interpreted. ASP.NET pages are faster, more functional, and easier to develop than unmanaged ASP pages because they interact with the runtime like any managed application.

The .NET Framework also provides a collection of classes and tools to aid in development and consumption of XML Web services applications. XML Web services are built on standards such as SOAP (a remote procedure-call protocol), XML (an extensible data format), and WSDL (the Web Services Description Language). The .NET Framework is built on these standards to promote interoperability with non-Microsoft solutions.

For example, the Web Services Description Language tool included with the .NET Framework SDK can query an XML Web service published on the Web, parse its WSDL description, and produce C# or Visual Basic source code that your application can use to become a client of the XML Web service. The source code can create classes derived from classes in the class library that handle all the underlying communication using SOAP and XML parsing. Although you can use the class library to consume XML Web services directly, the Web Services Description Language tool and the other tools contained in the SDK facilitate your development efforts with the .NET Framework.

If you develop and publish your own XML Web service, the .NET Framework provides a set of classes that conform to all the underlying communication standards, such as SOAP, WSDL, and XML. Using those classes enables you to focus on the logic of your service, without concerning yourself with the communications infrastructure required by distributed software development.

 Finally, like Web Forms pages in the managed environment, your XML Web service will run with the speed of native machine language using the scalable communication of IIS.

Active Server Pages.NET

ASP.NET is a programming framework built on the common language runtime that can be used on a server to build powerful Web applications. ASP.NET offers several important advantages over previous Web development models:

· Enhanced Performance. ASP.NET is compiled common language runtime code running on the server. Unlike its interpreted predecessors, ASP.NET can take advantage of early binding, just-in-time compilation, native optimization, and caching services right out of the box. This amounts to dramatically better performance before you ever write a line of code.

· World-Class Tool Support. The ASP.NET framework is complemented by a rich toolbox and designer in the Visual Studio integrated development environment. WYSIWYG editing, drag-and-drop server controls, and automatic deployment are just a few of the features this powerful tool provides.

· Power and Flexibility. Because ASP.NET is based on the common language runtime, the power and flexibility of that entire platform is available to Web application developers. The .NET Framework class library, Messaging, and Data Access solutions are all seamlessly accessible from the Web. ASP.NET is also language-independent, so you can choose the language that best applies to your application or partition your application across many languages. Further, common language runtime interoperability guarantees that your existing investment in COM-based development is preserved when migrating to ASP.NET.

· Simplicity. ASP.NET makes it easy to perform common tasks, from simple form submission and client authentication to deployment and site configuration. For example, the ASP.NET page framework allows you to build user interfaces that cleanly separate application logic from presentation code and to handle events in a simple, Visual Basic - like forms processing model. Additionally, the common language runtime simplifies development, with managed code services such as automatic reference counting and garbage collection.

· Manageability. ASP.NET employs a text-based, hierarchical configuration system, which simplifies applying settings to your server environment and Web applications. Because configuration information is stored as plain text, new settings may be applied without the aid of local administration tools. This "zero local
· administration" philosophy extends to deploying ASP.NET Framework applications as well. An ASP.NET Framework application is deployed to a server simply by copying the necessary files to the server. No server restart is required, even to deploy or replace running compiled code.

· Scalability and Availability. ASP.NET has been designed with scalability in mind, with features specifically tailored to improve performance in clustered and multiprocessor environments. Further, processes are closely monitored and managed by the ASP.NET runtime, so that if one misbehaves (leaks, deadlocks), a new process can be created in its place, which helps keep your application constantly available to handle requests.

· Customizability and Extensibility. ASP.NET delivers a well-factored architecture that allows developers to "plug-in" their code at the appropriate level. In fact, it is possible to extend or replace any subcomponent of the ASP.NET runtime with your own custom-written component. Implementing custom authentication or state services has never been easier.

· Security. With built in Windows authentication and per-application configuration, you can be assured that your applications are secure.

Language support

The Microsoft .NET Platform currently offers built-in support for three languages: C#, Visual Basic, and JScript.

WHAT IS ASP.NET WEB FORMS?

The ASP.NET Web Forms page framework is a scalable common language runtime programming model that can be used on the server to dynamically generate Web pages.

Intended as a logical evolution of ASP (ASP.NET provides syntax compatibility with existing pages), the ASP.NET Web Forms framework has been specifically
designed to address a number of key deficiencies in the previous model. In particular, it provides:

· The ability to create and use reusable UI controls that can encapsulate common functionality and thus reduce the amount of code that a page developer has to write.

· The ability for developers to cleanly structure their page logic in an orderly fashion (not "spaghetti code").

· The ability for development tools to provide strong WYSIWYG design support for pages (existing ASP code is opaque to tools).

ASP.NET Web Forms pages are text files with an .aspx file name extension. They can be deployed throughout an IIS virtual root directory tree. When a browser client requests .aspx resources, the ASP.NET runtime parses and compiles the target file into a .NET Framework class. This class can then be used to dynamically process incoming requests. (Note that the .aspx file is compiled only the first time it is accessed; the compiled type instance is then reused across multiple requests).

An ASP.NET page can be created simply by taking an existing HTML file and changing its file name extension to .aspx (no modification of code is required). For example, the following sample demonstrates a simple HTML page that collects a user's name and category preference and then performs a form postback to the originating page when a button is clicked:

ASP.NET provides syntax compatibility with existing ASP pages. This includes support for <% %> code render blocks that can be intermixed with HTML content within an .aspx file. These code blocks execute in a top-down manner at page render time.

Code behind web forms
ASP.NET supports two methods of authoring dynamic pages. The first is the method shown in the preceding samples, where the page code is physically declared within the originating .aspx file. An alternative approach--known as the code-behind method--enables the page code to be more cleanly separated from the HTML content into an entirely separate file.

Introduction to ASP.NET server controls
In addition to (or instead of) using <% %> code blocks to program dynamic content, ASP.NET page developers can use ASP.NET server controls to program Web pages. Server controls are declared within an .aspx file using custom tags or intrinsic HTML tags that contain a runat="server" attributes value. Intrinsic HTML tags are handled by one of the controls in the System.Web.UI.HtmlControls namespace. Any tag that doesn't explicitly map to one of the controls is assigned the type of System.Web.UI.HtmlControls.HtmlGenericControl.

Server controls automatically maintain any client-entered values between round trips to the server. This control state is not stored on the server (it is instead stored within an <input type="hidden"> form field that is round-tripped between requests). Note also that no client-side script is required.

In addition to supporting standard HTML input controls, ASP.NET enables developers to utilize richer custom controls on their pages. For example, the following sample demonstrates how the <asp:adrotator> control can be used to dynamically display rotating ads on a page.

· ASP.NET Web Forms provide an easy and powerful way to build dynamic Web UI.

· ASP.NET Web Forms pages can target any browser client (there are no script library or cookie requirements).

· ASP.NET Web Forms pages provide syntax compatibility with existing ASP pages.

· ASP.NET server controls provide an easy way to encapsulate common functionality.

· ASP.NET ships with 45 built-in server controls. Developers can also use controls built by third parties.

· ASP.NET server controls can automatically project both uplevel and downlevel HTML.

· ASP.NET templates provide an easy way to customize the look and feel of list server controls.
· ASP.NET validation controls provide an easy way to do declarative client or server data validation.

ADO.NET overview

 ADO.NET is an evolution of the ADO data access model that directly addresses user requirements for developing scalable applications. It was designed specifically for the web with scalability, statelessness, and XML in mind.

ADO.NET uses some ADO objects, such as the Connection and Command objects, and also introduces new objects. Key new ADO.NET objects include the DataSet, DataReader, and DataAdapter.

The important distinction between this evolved stage of ADO.NET and previous data architectures is that there exists an object -- the DataSet -- that is separate and distinct from any data stores. Because of that, the DataSet functions as a standalone entity. You can think of the DataSet as an always disconnected recordset that knows nothing about the source or destination of the data it contains. Inside a DataSet, much like in a database, there are tables, columns, relationships, constraints, views, and so forth.

 A Data Adapter is the object that connects to the database to fill the DataSet. Then, it connects back to the database to update the data there, based on operations performed while the DataSet held the data. In the past, data processing has been primarily connection-based. Now, in an effort to make multi-tiered apps more efficient, data processing is turning to a message-based approach that revolves around chunks of information. At the center of this approach is the DataAdapter, which provides a bridge to retrieve and save data between a DataSet and its source data store. It accomplishes this by means of requests to the appropriate SQL commands made against the data store.

The XML-based DataSet object provides a consistent programming model that works with all models of data storage: flat, relational, and hierarchical. It does this by having no 'knowledge' of the source of its data, and by representing the data that it holds
as collections and data types. No matter what the source of the data within the DataSet is, it is manipulated through the same set of standard APIs exposed through the DataSet and its subordinate objects.

 While the DataSet has no knowledge of the source of its data, the managed provider has detailed and specific information. The role of the managed provider is to connect, fill, and persist the DataSet to and from data stores. The OLE DB and SQL Server .NET Data Providers (System.Data.OleDb and System.Data.SqlClient) that are part of the .Net Framework provide four basic objects: the Command, Connection, DataReader and DataAdapter. In the remaining sections of this document, we'll walk through each part of the DataSet and the OLE DB/SQL Server .NET Data Providers explaining what they are, and how to program against them.

The following sections will introduce you to some objects that have evolved, and some that are new. These objects are:

· Connections. For connection to and managing transactions against a database.

· Commands. For issuing SQL commands against a database.

· DataReaders. For reading a forward-only stream of data records from a SQL Server data source.

· DataSets. For storing, Remoting and programming against flat data, XML data and relational data.

· DataAdapters. For pushing data into a DataSet, and reconciling data against a database.

When dealing with connections to a database, there are two different options: SQL Server .NET Data Provider (System.Data.SqlClient) and OLE DB .NET Data Provider (System.Data.OleDb). In these samples we will use the SQL Server .NET Data Provider. These are written to talk directly to Microsoft SQL Server. The OLE DB .NET Data Provider is used to talk to any OLE DB provider (as it uses OLE DB underneath).

Connections:

Connections are used to 'talk to' databases, and are represented by provider-specific classes such as

SqlConnection Commands travel over connections and resultsets are returned in the form of streams which can be read by a DataReader object, or pushed into a DataSet object.

Commands:

 Commands contain the information that is submitted to a database, and are represented by provider-specific classes such as SqlCommand. A command can be a stored procedure call, an UPDATE statement, or a statement that returns results. You can also use input and output parameters, and return values as part of your command syntax. The example below shows how to issue an INSERT statement against the Northwind database.

DataReaders:

 The DataReader object is somewhat synonymous with a read-only/forward-only cursor over data. The DataReader API supports flat as well as hierarchical data. A DataReader object is returned after executing a command against a database. The format of the returned DataReader object is different from a recordset. For example, you might use the DataReader to show the results of a search list in a web page.

DATASETS AND DATAADAPTERS

DataSets:

The DataSet object is similar to the ADO Recordset object, but more powerful, and with one other important distinction: the DataSet is always disconnected. The DataSet object represents a cache of data, with database-like structures such as tables, columns, relationships, and constraints. However, though a DataSet can and does behave much like a database, it is important to remember that DataSet objects do not interact directly with databases, or other source data. This allows the developer to work with a
programming model that is always consistent, regardless of where the source data resides. Data coming from a database, an XML file, from code, or user input can all be placed into DataSet objects. Then, as changes are made to the DataSet they can be tracked and verified before updating the source data. The GetChanges method of the DataSet object actually creates a second DatSet that contains only the changes to the data. This DataSet is then used by a DataAdapter (or other objects) to update the original data source.

 The DataSet has many XML characteristics, including the ability to produce and consume XML data and XML schemas. XML schemas can be used to describe schemas interchanged via WebServices. In fact, a DataSet with a schema can actually be compiled for type safety and statement completion.

DataAdapters (OLEDB/SQL):

The DataAdapter object works as a bridge between the DataSet and the source data. Using the provider-specific SqlDataAdapter (along with its associated SqlCommand and SqlConnection) can increase overall performance when working with a Microsoft SQL Server databases. For other OLE DB-supported databases, you would use the OleDbDataAdapter object and its associated OleDbCommand and OleDbConnection objects.

 The DataAdapter object uses commands to update the data source after changes have been made to the DataSet. Using the Fill method of the DataAdapter calls the SELECT command; using the Update method calls the INSERT, UPDATE or DELETE command for each changed row. You can explicitly set these commands in order to control the statements used at runtime to resolve changes, including the use of stored procedures. For ad-hoc scenarios, a CommandBuilder object can generate these at run-time based upon a select statement. However, this run-time generation requires an extra round-trip to the server in order to gather required metadata, so explicitly providing the INSERT, UPDATE, and DELETE commands at design time will result in better run-time performance.

· ADO.NET is the next evolution of ADO for the .Net Framework.
· ADO.NET was created with n-Tier, statelessness and XML in the forefront. Two new objects, the DataSet and DataAdapter, are provided for these scenarios.

· ADO.NET can be used to get data from a stream, or to store data in a cache for updates.

· There is a lot more information about ADO.NET in the documentation.

· Remember, you can execute a command directly against the database in order to do inserts, updates, and deletes. You don't need to first put data into a DataSet in order to insert, update, or delete it.

· Also, you can use a DataSet to bind to the data, move through the data, and navigate data relationships.

Introduction To ADO.NET

ADO.NET is an object-oriented set of libraries that allows you to interact with data sources. Commonly, the data source is a database, but it could also be a text file, an Excel spreadsheet, or an XML file. For the purposes of this tutorial, we will look at ADO.NET as a way to interact with a data base.

Data Providers

	Provider Name
	API prefix
	Data Source Description

	ODBC Data Provider
	Odbc
	Data Sources with an ODBC interface. Normally older data bases.

	OleDb Data Provider
	OleDb
	Data Sources that expose an OleDb interface, i.e. Access or Excel.

	Oracle Data Provider
	Oracle
	For Oracle Databases.

	SQL Data Provider
	Sql
	For interacting with Microsoft SQL Server.

	Borland Data Provider
	Bdp
	Generic access to many databases such as Interbase, SQL Server, IBM DB2, and Oracle.

We know that ADO.NET allows us to interact with different types of data sources and different types of databases. However, there isn't a single set of classes that allow you to accomplish this universally. Since different data sources expose different protocols, we need a way to communicate with the right data source using the right protocol. Some older data sources use the ODBC protocol, many newer data sources use the OleDb protocol, and there are more data sources every day that allow you to communicate with them directly through .NET ADO.NET class libraries.

ADO.NET provides a relatively common way to interact with data sources, but comes in
different sets of libraries for each way you can talk to a data source. These libraries are called Data Providers and are usually named for the protocol or data source type they allow you to interact with. table 1 lists some well known data providers, the API prefix they use, and the type of data source they allow you to interact with.

table 1. ADO.NET Data Providers are class libraries that allow a common way to interact with specific data sources or protocols. The library APIs have prefixes that indicate which provider they support.

An example may help you to understand the meaning of the API prefix. One of the first ADO.NET objects you'll learn about is the connection object, which allows you to establish a connection to a data source. If we were using the OleDb Data Provider to connect to a data source that exposes an OleDb interface, we would use a connection object named OleDbConnection. Similarly, the connection object name would be prefixed with Odbc or Sql for an OdbcConnection object on an Odbc data source or a SqlConnection object on a SQL Server database, respectively. Since we are using MSDE in this tutorial (a scaled down version of SQL Server) all the API objects will have the Sql prefix. i.e. SqlConnection.

ADO.NET Objects

ADO.NET includes many objects you can use to work with data. This section introduces some of the primary objects you will use. Over the course of this tutorial, you'll be exposed to many more ADO.NET objects from the perspective of how they are used in a particular lesson. The objects below are the ones you must know. Learning about them will give you an idea of the types of things you can do with data when using ADO.NET.

The SqlConnection Object

To interact with a database, you must have a connection to it. The connection helps identify the database server, the database name, user name, password, and other parameters that are required for connecting to the data base. A connection object is used by command objects so they will know which database to execute the command on.

The SqlCommand Object

The process of interacting with a database means that you must specify the actions you want to occur. This is done with a command object. You use a command object to send SQL statements to the database. A command object uses a connection object to figure out which database to communicate with. You can use a command object alone, to execute a command directly, or assign a reference to a command object to an SqlDataAdapter, which holds a set of commands that work on a group of data as described below.

The SqlDataReader Object

Many data operations require that you only get a stream of data for reading. The data reader object allows you to obtain the results of a SELECT statement from a command
object. For performance reasons, the data returned from a data reader is a fast forward-only stream of data. This means that you can only pull the data from the stream in a sequential manner. This is good for speed, but if you need to manipulate data, then a DataSet is a better object to work with.

The DataSet Object

DataSet objects are in-memory representations of data. They contain multiple Datatable objects, which contain columns and rows, just like normal database tables. You can even define relations between tables to create parent-child relationships. The DataSet is specifically designed to help manage data in memory and to support disconnected operations on data, when such a scenario make sense. The DataSet is an object that is used by all of the Data Providers, which is why it does not have a Data Provider specific prefix.

The SqlDataAdapter Object

Sometimes the data you work with is primarily read-only and you rarely need to make changes to the underlying data source. Some situations also call for caching data in memory to minimize the number of database calls for data that does not change. The data adapter makes it easy for you to accomplish these things by helping to manage data in a disconnected mode. The data adapter

fills a DataSet object when reading the data and writes in a single batch when persisting changes back to the database. A data adapter contains a reference to the connection object and opens and closes the connection automatically when reading from or writing to the database. Additionally, the data adapter contains command object references for SELECT, INSERT, UPDATE, and DELETE operations on the data. You will have a data adapter defined for each table in a DataSet and it will take care of all communication with the database for you. All you need to do is tell the data adapter when to load from or write to the database.

Summary

ADO.NET is the .NET technology for interacting with data sources. You have several Data Providers, which allow communication with different data sources, depending on the protocols they use or what the database is. Regardless, of which Data Provider used, you'll use a similar set of objects to interact with a data source. The SqlConnection object lets you manage a connection to a data source. SqlCommand objects allow you to talk to a data source and send commands to it. To have fast forward-only read access to data, use the SqlDataReader. If you want to work with disconnected data, use a DataSet and implement reading and writing to/from the data source with a SqlDataAdapter.

Creating a SqlConnection Object

A SqlConnection is an object, just like any other C# object. Most of the time, you just declare and instantiate the SqlConnection all at the same time, as shown below:

SqlConnection conn = new SqlConnection(
 "Data Source=(local);Initial Catalog=Northwind;Integrated Security=SSPI");

The SqlConnection object instantiated above uses a constructor with a single argument of type string. This argument is called a connection string. table 1 describes common parts of a connection string.

table 1. ADO.NET Connection Strings contain certain key/value pairs for specifying how to make a database connection. They include the location, name of the

database and security credentials

	Connection String Parameter Name
	Description

	Data Source
	Identifies the server. Could be local machine, machine domain name, or IP Address.

ften want to specify security based on a SQL Server User ID with permissions set specifically for the application you are using. The following shows a connection string, using the User ID and Password parameters:

SqlConnection conn = new SqlConnection(
"Data Source=DatabaseServer; Initial Catalog=Northwind;User ID=YourUserID;Password=YourPassword");

Notice how the Data Source is set to DatabaseServer to indicate that you can identify a database located on a different machine, over a LAN, or over the Internet. Additionally, User ID and Password replace the Integrated Security parameter.

Using a SqlConnection

The purpose of creating a SqlConnection object is so you can enable other ADO.NET code to work with a database. Other ADO.NET objects, such as a SqlCommand and a SqlDataAdapter take a connection object as a parameter. The sequence of operations occurring in the lifetime of a SqlConnection are as follows:

· Instantiate the SqlConnection.

· Open the connection.

· Pass the connection to other ADO.NET objects.

· Perform database operations with the other ADO.NET objects.

· Close the connection.

We've already seen how to instantiate a SqlConnection. The rest of the steps, opening, passing, using, and closing are shown in Listing 1.

Listing 1. Using a SqlConnection

using System;
using System.Data;
using System.Data.SqlClient;

/// <summary>
/// Demonstrates how to work with SqlConnection objects
/// </summary>
class SqlConnectionDemo
{
 static void Main()
 {
 // 1. Instantiate the connection
 SqlConnection conn = new SqlConnection(
 "Data Source=(local);Initial Catalog=Northwind;Integrated Security=SSPI");

 SqlDataReader rdr = null;

 try
 {
 // 2. Open the connection
 conn.Open();

 // 3. Pass the connection to a command object
 SqlCommand cmd = new SqlCommand("select * from Customers", conn);

 //
 // 4. Use the connection
 //

 // get query results
 rdr = cmd.ExecuteReader();

 // print the CustomerID of each record
 while (rdr.Read())
 {
 Console.WriteLine(rdr[0]);
 }
 }
 finally
 {
 // close the reader
 if (rdr != null)
 {

 rdr.Close();
 }

 // 5. Close the connection
 if (conn != null)
 {
 conn.Close();
 }
 }
 }
}

As shown in Listing 1, you open a connection by calling the Open() method of the SqlConnection instance, conn. Any operations on a connection that was not yet opened will generate an exception. So, you must open the connection before using it.

Before using a SqlCommand, you must let the ADO.NET code know which connection it needs. In Listing 1, we set the second parameter to the SqlCommand object with the SqlConnection object, conn. Any operations performed with the SqlCommand will use that connection.

The code that uses the connection is a SqlCommand object, which performs a query on the Customers table. The result set is returned as a SqlDataReader and the while loop reads the first column from each row of the result set, which is the CustomerID column. We'll discuss the SqlCommand and SqlDataReader objects in later lessons. For right now, it is important for you to understand that these objects are using the SqlConnection object so they know what database to interact with.

When you are done using the connection object, you must close it. Failure to do so could have serious consequences in the performance and scalability of your application. There are a couple points to be made about how we closed the connection in Listing 1: the Close() method is called in a finally block and we ensure that the connection is not null before closing it.

Notice that we wrapped the ADO.NET code in a try/finally block. finally blocks help guarantee that a certain piece of code will be executed, regardless of whether or not an exception is generated. Since connections are scarce system resources, you will want to make sure they are closed in finally blocks.

Another precaution you should take when closing connections is to make sure the connection object is not null. If something goes wrong when instantiating the connection, it will be null and you want to make sure you don't try to close an invalid connection, which would generate an exception.

This example showed how to use a SqlConnection object with a SqlDataReader, which required explicitly closing the connection. However, when using a disconnected data model, you don't have to open and close the connection yourself. We'll see how this works in a future lesson when we look at the SqlDataAdapter object.

Summary

SqlConnection objects let other ADO.NET code know what database to connect to and how to make the connection. They are instantiated by passing a connection string with a set of key/value pairs that define the connection. The steps you use to manage the lifetime of a connection are create, open, pass, use, and close. Be sure to close your connection properly when you are done with it to ensure you don't have a connection resource leak.

A SqlCommand object allows you to specify what type of interaction you want to perform with a database. For example, you can do select, insert, modify, and delete commands on rows of data in a database table. The SqlCommand object can be used to support disconnected data management scenarios, but in this lesson we will only use the SqlCommand object alone. A later lesson on the SqlDataAdapter will explain how to implement an application that uses disconnected data. This lesson will also show you how to retrieve a single value from a database, such as the number of records in a table.
Creating a SqlCommand Object

Similar to other C# objects, you instantiate a SqlCommand object via the new instance declaration, as follows:

 SqlCommand cmd = new SqlCommand("select CategoryName from Categories", conn);

The line above is typical for instantiating a SqlCommand object. It takes a string parameter that holds the command you want to execute and a reference to a SqlConnection object. SqlCommand has a few overloads, which you will see in the examples of this tutorial.

Querying Data

When using a SQL select command, you retrieve a data set for viewing. To accomplish this with a SqlCommand object, you would use the ExecuteReader method, which returns a SqlDataReader object. We'll discuss the SqlDataReader in a future lesson. The example below shows how to use the SqlCommand object to obtain a SqlDataReader object:

// 1. Instantiate a new command with a query and connection
SqlCommand cmd = new SqlCommand("select CategoryName from Categories", conn);

// 2. Call Execute reader to get query results
SqlDataReader rdr = cmd.ExecuteReader();

In the example above, we instantiate a SqlCommand object, passing the command string and connection object to the constructor. Then we obtain a SqlDataReader object by calling the ExecuteReader method of the SqlCommand object, cmd.

This code is part of the ReadData method of Listing 1 in the Putting it All Together section later in this lesson.

Inserting Data

To insert data into a database, use the ExecuteNonQuery method of the SqlCommand object. The following code shows how to insert data into a database table:

// prepare command string
 string insertString = @"
 insert into Categories
 (CategoryName, Description)
 values ('Miscellaneous', 'Whatever doesn''t fit elsewhere')";

 // 1. Instantiate a new command with a query and connection
 SqlCommand cmd = new SqlCommand(insertString, conn);

 // 2. Call ExecuteNonQuery to send command
 cmd.ExecuteNonQuery();

The SqlCommand instantiation is just a little different from what you've seen before, but it is basically the same. Instead of a literal string as the first parameter of the SqlCommand constructor, we are using a variable, insertString. The insertString variable is declared just above the SqlCommand declaration.

Notice the two apostrophes ('') in the insertString text for the word "doesn''t". This is how you escape the apostrophe to get the string to populate column properly.

Another observation to make about the insert command is that we explicitly specified the columns CategoryName and Description. The Categories table has a primary key field named CategoryID. We left this out of the list because SQL Server will add this field itself. trying to add a value to a primary key field, such as CategoryID, will generate an exception.

To execute this command, we simply call the ExecuteNonQuery method on the SqlCommand instance, cmd.

This code is part of the Insertdata method of Listing 1 in the Putting it All Together section later in this lesson.

Updating Data

The ExecuteNonQuery method is also used for updating data. The following code shows how to update data:

// prepare command string
 string updateString = @"
 update Categories
 set CategoryName = 'Other'
 where CategoryName = 'Miscellaneous'";

 // 1. Instantiate a new command with command text only
 SqlCommand cmd = new SqlCommand(updateString);

 // 2. Set the Connection property
 cmd.Connection = conn;

 // 3. Call ExecuteNonQuery to send command
 cmd.ExecuteNonQuery();

Again, we put the SQL command into a string variable, but this time we used a different SqlCommand constructor that takes only the command. In step 2, we assign the SqlConnection object, conn, to the Connection property of the SqlCommand object, cmd.

This could have been done with the same constructor used for the insert command, with two parameters. It demonstrates that you can change the connection object assigned to a command at any time.

The ExecuteNonQuery method performs the update command.

This code is part of the UpdateData method of Listing 1 in the Putting it All Together section later in this lesson.

Deleting Data

You can also delete data using the ExecuteNonQuery method. The following example shows how to delete a record from a database with the ExecuteNonQuery method:

// prepare command string
 string deleteString = @"
 delete from Categories
 where CategoryName = 'Other'";

 // 1. Instantiate a new command
 SqlCommand cmd = new SqlCommand();

 // 2. Set the CommandText property
 cmd.CommandText = deleteString;

 // 3. Set the Connection property
 cmd.Connection = conn;

 // 4. Call ExecuteNonQuery to send command
 cmd.ExecuteNonQuery();

This example uses the SqlCommand constructor with no parameters. Instead, it explicity sets the CommandText and Connection properties of the SqlCommand object, cmd.

We could have also used either of the two previous SqlCommand constructor overloads, used for the insert or update command, with the same result. This demonstrates that you can change both the command text and the connection object at any time.

The ExecuteNonQuery method call sends the command to the database.

This code is part of the DeleteData method of Listing 1 in the Putting it All Together section later in this lesson.

Getting Single values

Sometimes all you need from a database is a single value, which could be a count, sum, average, or other aggregated value from a data set. Performing an ExecuteReader and calculating the result in your code is not the most efficient way to do this. The best choice is to let the database perform the work and return just the single value you need. The following example shows how to do this with the ExecuteScalar method:

// 1. Instantiate a new command
 SqlCommand cmd = new SqlCommand("select count(*) from Categories", conn);

 // 2. Call ExecuteNonQuery to send command
 int count = (int)cmd.ExecuteScalar();

The query in the SqlCommand constructor obtains the count of all records from the Categories table. This query will only return a single value. The ExecuteScalar method in step 2 returns this value. Since the return type of ExecuteScalar is type object, we use a cast operator to convert the value to int

 4.3. Introduction to C#

 C#, pronounced c sharp, is a computer language used to give instructions that tell the computer what to do, how to do it, and when to do it. This is a universal language that is used on many operating systems, including Microsoft Windows. C# is one of the languages used in the Microsoft .NET Framework. The Microsoft .NET Framework is a library of objects that create or draw things on the computer.

The programs we will write are meant to give instructions to the computer about what to do, when to do something, and how to do it. You write these instructions in an easy to understand English format, using words we will study. This means that a regular instruction uses normal text with alphabetic characters, numbers, and non-readable symbols. Normally, you can write your instructions using any text editor such as Notepad, WordPad, WordPerfect, or Microsoft Word, etc. When writing your instructions, there are rules your must follow and suggestions you should observe..

The group of instructions used by your program is also referred to as code. To assist you with writing code, Microsoft Visual C# 2008 includes a text editor referred to as the Code Editor. This is the window that displays when you have just created a console application. Besides the Code Editor, the integrated development interface(IDE) of the Microsoft Visual C# 2008 is made of various parts, which we will review when necessary.
4.4. SQL Server
 A database management, or DBMS, gives the user access to their data and helps them transform the data into information. Such database management systems include dBase, paradox, IMS, SQL Server and SQL Server. These systems allow users to create, update and extract information from their database.

A database is a structured collection of data. Data refers to the characteristics of people, things and events. SQL Server stores each data item in its own fields. In SQL Server, the fields relating to a particular person, thing or event are bundled together to form a single complete unit of data, called a record (it can also be referred to as raw or an occurrence). Each record is made up of a number of fields. No two fields in a record can have the same field name.

During an SQL Server Database design project, the analysis of your business needs identifies all the fields or attributes of interest. If your business needs change over time, you define any additional fields or change the definition of existing fields.

SQL Server tables

SQL Server stores records relating to each other in a table. Different tables are created for the various groups of information. Related tables are grouped together to form a database.

Primary keys:

Every table in SQL Server has a field or a combination of fields that uniquely identifies each record in the table. The Unique identifier is called the Primary Key, or simply the Key. The primary key provides the means to distinguish one record from all other in a table. It allows the user and the database system to identify, locate and refer to one particular record in the database.

Relational DataBase:

Sometimes all the information of interest to a business operation can be stored in one table. SQL Server makes it very easy to link the data in multiple tables. Matching an employee to the department in which they work is one example. This is what makes SQL Server a relational database management system, or RDBMS. It stores data in two or more tables and enables you to define relationships between the table and enables you to define relationships between the tables.

Foreign Key

When a field is one table matches the primary key of another field is referred to as a foreign key. A foreign key is a field or a group of fields in one table whose values match those of the primary key of another table.

Referential Integrity

Not only does SQL Server allow you to link multiple tables, it also maintains consistency between them. Ensuring that the data among related tables is correctly matched is referred to as maintaining referential integrity.

Data Abstraction

A major purpose of a database system is to provide users with an abstract view of the data. This system hides certain details of how the data is stored and maintained. Data abstraction is divided into three levels.

Physical level: This is the lowest level of abstraction at which one describes how the data are actually stored.

Conceptual level: At this level of database abstraction all the attributed and what data are actually stored is described and entries and relationship among them.

View level: This is the highest level of abstraction at which one describes only part of the database.

Advantages of RDBMS

· Redundancy can be avoided

· Inconsistency can be eliminated
· Data can be Shared

· Standards can be enforced

· Security restrictions ca be applied

· Integrity can be maintained

· Conflicting requirements can be balanced

· Data independence can be achieved.

Disadvantages of DBMS

A significant disadvantage of the DBMS system is cost. In addition to the cost of purchasing of developing the software, the hardware has to be upgraded to allow for the extensive programs and the workspace required for their execution and storage. While centralization reduces duplication, the lack of duplication requires that the database be adequately backed up so that in case of failure the data can be recovered.

Features of SQL server (RDBMS)

SQL SERVER is one of the leading database management systems (DBMS) because it is the only Database that meets the uncompromising requirements of today’s most demanding information systems. From complex decision support systems (DSS) to the most rigorous online transaction processing (OLTP) application, even application that require simultaneous DSS and OLTP access to the same critical data, SQL Server leads the industry in both performance and capability

SQL SERVER is a truly portable, distributed, and open DBMS that delivers unmatched performance, continuous operation and support for every database.

SQL SERVER RDBMS is high performance fault tolerant DBMS which is specially designed for online transactions processing and for handling large database application.

SQL SERVER with transactions processing option offers two features which contribute to very high level of transaction processing throughput, which are

· The row level lock manager

Enterprise wide data sharing

The unrivaled portability and connectivity of the SQL SERVER DBMS enables all the systems in the organization to be linked into a singular, integrated computing resource.

Portability

SQL SERVER is fully portable to more than 80 distinct hardware and operating systems platforms, including UNIX, MSDOS, OS/2, Macintosh and dozens of proprietary platforms. This portability gives complete freedom to choose the database sever platform that meets the system requirements.

Open systems

SQL SERVER offers a leading implementation of industry –standard SQL. SQL Server’s open architecture integrates SQL SERVER and non –SQL SERVER DBMS with industries most comprehensive collection of tools, application, and third party software products SQL Server’s Open architecture provides transparent access to data from other relational database and even non-relational database.

Distributed data sharing

SQL Server’s networking and distributed database capabilities to access data stored on remote server with the same ease as if the information was stored on a single local computer. A single SQL statement can access data at multiple sites. You can store data where system requirements such as performance, security or availability dictate.

Unmatched performance

The most advanced architecture in the industry allows the SQL SERVER DBMS to deliver unmatched performance.

Sophisticated concurrency control

Real World applications demand access to critical data. With most database Systems application becomes “contention bound” – which performance is limited not by the CPU power or by disk I/O, but user waiting on one another for data access. SQL Server employs full, unrestricted row-level locking and contention free queries to minimize and in many cases entirely eliminates contention wait times.

No I/O bottlenecks

SQL Server’s fast commit groups commit and deferred write technologies dramatically reduce disk I/O bottlenecks. While some database write whole data block to disk at commit time, SQL Server commits transactions with at most sequential log file on disk at commit time, On high throughput systems, one sequential writes typically group commit multiple transactions. Data read by the transaction remains as shared memory so that other transactions may access that data without reading it again from disk. Since fast commits write all data necessary to the recovery to the log file, modified blocks are written back to the database independently of the transaction commit, when written from memory to disk

 CHAPTER-5

SYSTEM DESIGN

SYSTEM DESIGN

5.1. Introduction
Software design sits at the technical kernel of the software engineering process and is applied regardless of the development paradigm and area of application. Design is the first step in the development phase for any engineered product or system. The designer’s goal is to produce a model or representation of an entity that will later be built. Beginning, once system requirement have been specified and analyzed, system design is the first of the three technical activities -design, code and test that is required to build and verify software.

The importance can be stated with a single word “Quality”. Design is the place where quality is fostered in software development. Design provides us with representations of software that can assess for quality. Design is the only way that we can accurately translate a customer’s view into a finished software product or system. Software design serves as a foundation for all the software engineering steps that follow. Without a strong design we risk building an unstable system – one that will be difficult to test, one whose quality cannot be assessed until the last stage.

During design, progressive refinement of data structure, program structure, and procedural details are developed reviewed and documented. System design can be viewed from either technical or project management perspective. From the technical point of view, design is comprised of four activities – architectural design, data structure design, interface design and procedural design.

5.2. Normalization
It is a process of converting a relation to a standard form. The process is used to handle the problems that can arise due to data redundancy i.e. repetition of data in the database, maintain data integrity as well as handling problems that can arise due to insertion, updation, deletion anomalies.

Decomposing is the process of splitting relations into multiple relations to eliminate anomalies and maintain anomalies and maintain data integrity. To do this we use normal forms or rules for structuring relation.

Insertion anomaly: Inability to add data to the database due to absence of other data.

Deletion anomaly: Unintended loss of data due to deletion of other data.

Update anomaly: Data inconsistency resulting from data redundancy and partial update

Normal Forms: These are the rules for structuring relations that eliminate anomalies.

First Normal Form
 A relation is said to be in first normal form if the values in the relation are atomic for every attribute in the relation. By this we mean simply that no attribute value can be a set of values or, as it is sometimes expressed, a repeating group.

Second Normal Form

A relation is said to be in second Normal form is it is in first normal form and it should satisfy any one of the following rules.

1) Primary key is a not a composite primary key

2) No non key attributes are present

3) Every non key attribute is fully functionally dependent on full set of primary key.

Third Normal Form
A relation is said to be in third normal form if their exits no transitive dependencies.

Transitive Dependency: If two non key attributes depend on each other as well as on

 the primary key then they are said to be transitively dependent.

The above normalization principles were applied to decompose the data in multiple tables thereby making the data to be maintained in a consistent state
5.3 DATAFLOW DIAGRAMS

[image: image3]

[image: image4]

[image: image5]

[image: image6]
5.4. UML Diagrams
(PASTE YOUR UML DIAGRAMS HERE)

[image: image7.emf]Employee

Login

View or Update

Logout

[image: image8.emf]Login

Admin

Organization

Users

Servers

Notification

Logout

[image: image9.emf]ORGANIZATION

orgID

add()

view()

update()

NOTIFICATIONTEAMS

NotificationID

userID

serverID

add()

view()

update()

MASTERUSERS

userID

orgID

add()

view()

update()

MASTERSERVERS

serverID

orgID

userID

add()

view()

update()

ADMIN
[image: image10.emf] : ADMIN

Login Organization Users Servers Notification DATA BASE

1: UserName/PWD

3: SetupOrganize

2:

4: View/Update

11: Logout

5: SetupUsers

6: View/Update

7: SetupServers

9: SetupNotification

8: View/Update

10: View/Update

[image: image11.emf] : EMPLOYEE

Login Notification

Teams

DATA BASE

1: UserName/PWD

2:

3: SetupNotification

4: View/Update

5: Logout

[image: image12.emf]Login Organiza

tion

Servers Notificati

on

DATA

BASE

2:

3: SetupOrganize

4: View/Update

 : ADMIN

1: UserName/PWD

Users

11: Logout

5: SetupUsers

6: View/Update

7: SetupServers

9: SetupNotification

8: View/Update

10: View/Update

[image: image13.emf] : EMPLOYEE

Login

 Notification

Teams

DATA

BASE

1: UserName/PWD

2:

3: SetupNotification

4: View/Update

5: Logout

5.5. DATA DICTONARY

After carefully understanding the requirements of the client the the entire data storage requirements are divided into tables. The below tables are normalized to avoid any anomalies during the course of data entry.

Users:

Contracts:

	Sno
	Data Field
	DataType
	Constraint

	1
	pickListID
	INT(10)
	Foreign key

	2
	subTaskID
	INT(10)
	Primary key

	3
	subTaskName
	VARCHAR(50)
	

	4
	subTaskOrder
	VARCHAR(50)
	

Subtask:

	Sno
	Data Field
	DataType
	Constraint

	1
	taskID
	INT(10)
	Foreign key

	2
	subTaskName
	VARCHAR(50)
	

	3
	subTaskStatus
	TINYINT(4)
	

Picklist:
Tasks:

	Sno
	Data Field
	DataType
	Constraint

	1
	taskID
	INT(10)
	Primary key

	2
	managerID
	INT(10)
	Foreign key

	3
	assistantID
	INT(10)
	Foreign key

	4
	taskTypeID
	INT(10)
	

	5
	startDate
	DATETIME
	

	6
	endDate
	DATETIME
	

	7
	taskSubject
	VARCHAR(150)
	

	8
	taskNotes
	LONGTEXT
	

	9
	taskStatus
	TINYINT(4)
	

	10
	taskStatusDate
	DATETIME
	

[image: image14.png]icrosoft SQL Server Management Studio

Fle Edt Vew Project TableDesigner DetaboseDiagram Toos Vindow Commurity Help
Aenouery [B H 0 SHS BEHRES

#0004 4 ab Tableview- g, 32 10]33 to0% -
 Diagram - PAY..ing.Diagram_0* | Summary | v x

orgn
UsrerType
Frstiiame
Lastiame
Phane
Mable
Emal

LogniD
PwD
Status

? MasterServers SMSNotification
Organization § ServerlD @ NotificationID
% org0 UserlD UserID.
Mame OrglD MNotificationMsg
addessdetals @@= serveriame o od senemo
Contactpetals padress Serverhame
Status ServerRoomhame: IPAddress. -
Locston Datetine
stais stais
ConpletecDateTime
ConpletzdusertD
Detals

Ready

CODING

using System;

using System.Collections;

using System.Configuration;

using System.Data;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.HtmlControls;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Xml.Linq;

using System.Data.SqlClient;

public partial class SystemAdmin_Users : System.Web.UI.Page

{

 SqlConnection con = new SqlConnection("server=.;database=RemoteServerMonitoring;user ID=sa;password=sa123");

 SqlDataAdapter da;

 DataTable dt;

 protected void Page_Load(object sender, EventArgs e)

 {

 if (!IsPostBack)

 {

 fillddl();

 fillgrid();

 }

 }

 protected void btnSave_Click(object sender, EventArgs e)

 {

 da = new SqlDataAdapter("insert into MasterUsers values('" + ddlOrgID.SelectedValue + "','" + ddlUserType.SelectedValue + "','" + txtFirstName.Text + "','" + txtLastName.Text + "','" + txtPhone.Text + "','" + txtMobile.Text + "','" + txtEmail.Text + "','" + txtLoginID.Text + "','" + txtPWD.Text + "','" + rblStatus.SelectedValue + "')", con);

 dt = new DataTable();

 da.Fill(dt);

 }

 protected void gdvUsers_RowCommand(object sender, GridViewCommandEventArgs e)

 {

 if (e.CommandName == "edt")

 {

 da = new SqlDataAdapter("select * from MasterUsers where UserID='"+e.CommandArgument.ToString()+"'", con);

 dt = new DataTable();

 da.Fill(dt);

 lblUserID.Text = dt.Rows[0].ItemArray[0].ToString();

 ddlOrgID.SelectedValue= dt.Rows[0].ItemArray[1].ToString();

 ddlUserType.SelectedValue= dt.Rows[0].ItemArray[2].ToString();

 txtFirstName.Text = dt.Rows[0].ItemArray[3].ToString();

 txtLastName.Text = dt.Rows[0].ItemArray[4].ToString();

 txtPhone.Text = dt.Rows[0].ItemArray[5].ToString();

 txtMobile.Text = dt.Rows[0].ItemArray[6].ToString();

 txtEmail.Text = dt.Rows[0].ItemArray[7].ToString();

 txtLoginID.Text = dt.Rows[0].ItemArray[8].ToString();

 txtPWD.Text = dt.Rows[0].ItemArray[9].ToString();

 rblStatus.SelectedValue = dt.Rows[0].ItemArray[10].ToString();

 fillgrid();

 }

 }

 void fillddl()

 {

 da = new SqlDataAdapter("select * from Organization", con);

 dt = new DataTable();

 da.Fill(dt);

 ddlOrgID.DataSource = dt;

 ddlOrgID.DataTextField = "Name";

 ddlOrgID.DataValueField = "OrgID";

 ddlOrgID.DataBind();

 }

 void fillgrid()

 {

 da=new SqlDataAdapter("select * from MasterUsers",con);

 dt = new DataTable();

 da.Fill(dt);

 gdvUsers.DataSource=dt;

 gdvUsers.DataBind();

 }

 protected void btnUpdate_Click1(object sender, EventArgs e)

 {

 da = new SqlDataAdapter("update MasterUsers set OrgID='" + ddlOrgID.SelectedValue + "',UsrerType='" + ddlUserType.SelectedValue + "',FirstName='" + txtFirstName.Text + "',LastName='" + txtLastName.Text + "',Phone='" + txtPhone.Text + "',Mobile='" + txtMobile.Text + "',Email='" + txtEmail.Text + "',LoginID='" + txtLoginID.Text + "',PWD='" + txtPWD.Text + "',Status='" + rblStatus.SelectedValue + "' where UserID='" + lblUserID.Text + "'", con);

 dt = new DataTable();

 da.Fill(dt);

 fillgrid();

 }

}

 CHAPTER-6

 SCREENS

SCREENS

(Paste YOUR Screens Here)

[image: image15.png]Untitled Page - Mozilla Firefox

Ele Edt View Hstory Bookmarks Ioos Help

~ Google

6 < @ 3 Gy (1) hipifoabostiiis2/Remoteservertiontoringflogn.asp< 7 -

| 1) untited poge

Home Login
Loglh
User Name: lav123

Password:|e

[CIRemember me next time.

Dore

Untit

[image: image16.png]Ble Edt Vew

Htory Bookmarks Tools Help

20 far | L] httpifflocahost:1152/RemoteServerMonitoring/SystemAdmin/Organization. aspx

Q- c x o0

| 1) untited poge

RemoteServerMonitoring
Home Organization Users Servers NotificationTeams
Organization
OrglD Label
Name Naveena
AddressDetails tamaka
ContactDetails 912345678
Status & Tnactive
O Active
edit_[OrgID| Name |AddressDetails|ConfactDetails|Status|
Eoit)1 |hesz |heheh lghgihet
Edt)2 |ouma gl 21264872
ot 3 i [wgl 234567
Edit Jl4 |ramakanthlhyd 2345667
Edit 5 lrajitha [hyd 2345667
Edit o frama [hyd 2345667
Edt)7 frama [hyd 2345667
Edt B frama [hyd 2345667
Edit o |shipa [hyd 2345667

Logout

Dore

[image: image17.png]Edt Vew Hstory Bookmarks

o -

Tools tielp

C' 0 G | L] htpiiflecahhost:1152/RemoteServerMonitoring/SystemAdmin/Users. aspx

| 1) untited Page

RemoteServerMonitoring -
Home Organization Users Servers NotificationTeams Logout
Users

UserdD Label
OglD [suma v
UserType |ADM ¥
FirstName [« |
Lastllame [lavanya. |
Phone 04024156787 I
Mobile (90144032445
Email laviaj@grmail com
LogilD ~[lav34s
PWD .
Status & Tnactive

O Active

Rdit [UserID|OrgID[Usrer Type[FirstName|LastName| Phone | Mobile Fmail _[LoginID| PWD [Status 1

Edit 5 1 |ADM [itha [Rasmi [1234567890[9876543 lrasmi@gmail [lavl23 |12345

Edit Jl6 1 |ADM |vadti [lavanya [5434635476/6090498594 vadlri@gmail [vanyal 2354364547

Edit |7 1 |ADM |avaya fraj 3345655676[755654 llavraj@email [lav345 23457675

Edi 1o |1 [ADM |amga fpriva 3334344 45767678 lramya@yahoold76557 2345

Edi 111 M a 4 ho@efe 1454 434]

[image: image18.png]Untitled Page - Mozilla Firefox

Ele Edt View Hstory Bookmarks Ioos Help

6 © @ 5 iy (1] htpifocabostil 52/RemoteServerontorngfsystemdrinfServers.

| 1) untited poge

RemoteServerMonitoring
Home Organization Users Servers NotificationTeams Logout
Servers
ServerID Label
UserID ramys v
OrglD vamakanth ¥
ServerName viai
IPAddress 194.35.487.123
ServerRoombame CcsE
Location Korremula.
Olnactive
Status .

Active

Edit_[ServerID[UserID|OrgID[ServerName[IPAddress|ServerRoomName|Location|Status|
Edit J|9 5 1 h234 350f froom1 lhyd
Edit J|10 5 1 123 jasd dfdf fbaf
Edit J|11 5 1 | wewew fssss sdf

Update

Dore

Untit

[image: image19.png]Untitled Page - Mozilla Firefox

Ele Edt View Hstory Bookmarks Ioos Help

O - C X & (O it o

| 1) untited poge

RemoteServerMonitoring

Home Organization Users Servers NotificationTeams Logout

NotificationTeams

NotificationD ~ Label

UserID lalitha. v

NotificationMsg i

ServerID nes v

ServerName racky

IPAddress 145.165.24.84

DateTime

Status Olnactive
© Active

CompletedDateTime [12/4/2011

CompletedUserD | kumarvijay

Details student
Edit_|NotificationI D[UserID|NotificationMsg[ServerID|ServerName|[PAddress| DateTime [Status|CompletedDate Time|Complet
Edit 4 s lmsg23 o 6123 [wewew |16-jun-1112] 16-jun-115 123
Edit |5 12 |msg5o4 o 6123 [wewew |16-jun-1112] 123

Untit

[image: image20.png]Untitled Page - Mozilla Firefox

Fle Edt Vew Hstory Bookmarks Took

Help

g3~ C X &

[httpiffiacalhost:1 152/RemoteServerMoritoringfLogin.aspx.

~ Google 5
Home Login
Logln
TUser Name:
Password:

[CIRemember me next time.

Untit

[image: image21.png]Untitled Page - Mozilla Firefox

Ele Edt Vew Hstory Bookmarks Ioos Help

= € 0 @ |1 hitp:flocahost:1152/RemoteServerbonitoring/Employess/Home. aspx !
|] Untited page. || | unteledpage ||) untitied Page
Employees
Home View/Update Logout
This IS Employes Home Page
< m >
Dare

Untit

[image: image22.png]Untitled Page - Mozilla Firefox =]l

Ele Edt Vew Hgtory

< € X Gy (L) hetpsfflacahost:1152{RemoteServerMonitaringjEmployess/iew or Update NotficationDetais, aspx

Bookmarks Tooks Help

77 -

 HES

TS

|| L] Untied Page

|| L] Untied Page

) unctiedpage

Home

MotificationID

View/Update

UserD

ramya v

NotificationMsg
ServerID
ServerName
TPAddress
DateTime

Status

CompletedDateTime
CompletedUserID
Details

msg2d

s123 v

yogi

646416

21611

©Tnactive
O Active

21611

341

el

Emplogees

View or Update Notification Teams

Logout

Edit_|NotificationID|

[UserID|

[NotificationMsg]

ServerID|

ServerName|

IPAddress|

DateTime [Status|

|CompletedDateTime|

[Complete

Edit Jl4

lmsg23

f123

[wewew

16-jun-1112]

16-jun-115

123

Edit J|5

12

lmsg594

f123

[wewew

16-jun-1112]

123

Update

Dore

Untit

[image: image23.png]Untitled Page - Mozilla Firefox

Fle Edt Vew Hstory Bookmarks Took

Help

g3~ C X &

[httpiffiacalhost:1 152/RemoteServerMoritoringfLogin.aspx.

~ Google 5
Home Login
Logln
TUser Name:
Password:

[CIRemember me next time.

Untit

 CHAPTER-7

TESTING

7.1. Introduction
 Testing is one of the most important phases in the software development activity. In software development life cycle (SDLC), the main aim of testing process is the quality; the developed software is tested against attaining the required functionality and performance.

 During the testing process the software is worked with some particular test cases and the output of the test cases are analyzed whether the software is working according to the expectations or not.

 The success of the testing process in determining the errors is mostly depends upon the test case criteria, for testing any software we need to have a description of the expected behavior of the system and method of determining whether the observed behavior confirmed to the expected behavior.

7.2. Levels of Testing
 Since the errors in the software can be injured at any stage. So, we have to carry out the testing process at different levels during the development. The basic levels of testing are Unit, Integration, System and Acceptance Testing.

 The Unit Testing is carried out on coding. Here different modules are tested against the specifications produced during design for the modules. In case of integration testing different tested modules are combined into sub systems and tested in case of the system testing the full software is tested and in the next level of testing the system is tested with user requirement document prepared during SRS.

 There are two basic approaches for testing. They are

Functional Testing: In Functional Testing test cases are decided solely on the basis of requirements of the program or module and the internals of the program or modules are not considered for selection of test cases. This is also called Black Box Testing

Structural Testing: In Structural Testing test cases are generated on actual code of the program or module to be tested. This is called White Box Testing.

7.3. Testing Process
 A number of activities must be performed for testing software. Testing starts with test plan. Test plan identifies all testing related activities that need to be performed along with the schedule and guide lines for testing. The plan also specifies the levels of testing that need to be done, by identifying the different testing units. For each unit specified in the plan first the test cases and reports are produced. These reports are analyzed.

Test Plan: Test plan is a general document for entire project, which defines the scope, approach to be taken and the personal responsible for different activities of testing. The inputs for forming test plane are

Project plan

Requirements document

System design

Test Case Specification: Although there is one test plan for entire project test cases have to be specified separately for each test case. Test case specification gives for each item to be tested. All test cases and outputs expected for those test cases.

Test Case Execution and Analysis: The steps to be performed for executing the test cases are specified in separate document called test procedure specification. This document specify any specify requirements that exist for setting the test environment and describes the methods and formats for reporting the results of testing.

Unit Testing: Unit testing mainly focused first in the smallest and low level modules, proceeding one at a time. Bottom-up testing was performed on each module. As developing a driver program, that tests modules by developed or used. But for the purpose of testing, modules themselves were used as stubs, to print verification of the actions performed. After the lower level modules were tested, the modules that in the next higher level those make use of the lower modules were tested.

 Each module was tested against required functionally and test cases were developed to test the boundary values.

Integration Testing: Integration testing is a systematic technique for constructing the program structure, while at the same time conducting tests to uncover errors associated with interfacing. As the system consists of the number of modules the interfaces to be tested were between the edges of the two modules. The software tested under this was incremental bottom-up approach.

Bottom-up approach integration strategy was implemented with the following steps.

· Low level modules were combined into clusters that perform specific software sub functions.

· The clusters were then tested.

System Testing: System testing is a series of different tests whose primary purpose is to fully exercise the computer-based system. It also tests to find discrepancies between the system and its original objective, current specifications.

 CODING

using System;

using System.Collections;

using System.Configuration;

using System.Data;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.HtmlControls;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Xml.Linq;

using System.Data.SqlClient;

public partial class SystemAdmin_Users : System.Web.UI.Page

{

 SqlConnection con = new SqlConnection("server=.;database=RemoteServerMonitoring;user ID=sa;password=sa123");

 SqlDataAdapter da;

 DataTable dt;

 protected void Page_Load(object sender, EventArgs e)

 {

 if (!IsPostBack)

 {

 fillddl();

 fillgrid();

 }

 }

 protected void btnSave_Click(object sender, EventArgs e)

 {

 da = new SqlDataAdapter("insert into MasterUsers values('" + ddlOrgID.SelectedValue + "','" + ddlUserType.SelectedValue + "','" + txtFirstName.Text + "','" + txtLastName.Text + "','" + txtPhone.Text + "','" + txtMobile.Text + "','" + txtEmail.Text + "','" + txtLoginID.Text + "','" + txtPWD.Text + "','" + rblStatus.SelectedValue + "')", con);

 dt = new DataTable();

 da.Fill(dt);

 }

 protected void gdvUsers_RowCommand(object sender, GridViewCommandEventArgs e)

 {

 if (e.CommandName == "edt")

 {

 da = new SqlDataAdapter("select * from MasterUsers where UserID='"+e.CommandArgument.ToString()+"'", con);

 dt = new DataTable();

 da.Fill(dt);

 lblUserID.Text = dt.Rows[0].ItemArray[0].ToString();

 ddlOrgID.SelectedValue= dt.Rows[0].ItemArray[1].ToString();

 ddlUserType.SelectedValue= dt.Rows[0].ItemArray[2].ToString();

 txtFirstName.Text = dt.Rows[0].ItemArray[3].ToString();

 txtLastName.Text = dt.Rows[0].ItemArray[4].ToString();

 txtPhone.Text = dt.Rows[0].ItemArray[5].ToString();

 txtMobile.Text = dt.Rows[0].ItemArray[6].ToString();

 txtEmail.Text = dt.Rows[0].ItemArray[7].ToString();

 txtLoginID.Text = dt.Rows[0].ItemArray[8].ToString();

 txtPWD.Text = dt.Rows[0].ItemArray[9].ToString();

 rblStatus.SelectedValue = dt.Rows[0].ItemArray[10].ToString();

 fillgrid();

 }

 }

 void fillddl()

 {

 da = new SqlDataAdapter("select * from Organization", con);

 dt = new DataTable();

 da.Fill(dt);

 ddlOrgID.DataSource = dt;

 ddlOrgID.DataTextField = "Name";

 ddlOrgID.DataValueField = "OrgID";

 ddlOrgID.DataBind();

 }

 void fillgrid()

 {

 da=new SqlDataAdapter("select * from MasterUsers",con);

 dt = new DataTable();

 da.Fill(dt);

 gdvUsers.DataSource=dt;

 gdvUsers.DataBind();

 }

 protected void btnUpdate_Click1(object sender, EventArgs e)

 {

 da = new SqlDataAdapter("update MasterUsers set OrgID='" + ddlOrgID.SelectedValue + "',UsrerType='" + ddlUserType.SelectedValue + "',FirstName='" + txtFirstName.Text + "',LastName='" + txtLastName.Text + "',Phone='" + txtPhone.Text + "',Mobile='" + txtMobile.Text + "',Email='" + txtEmail.Text + "',LoginID='" + txtLoginID.Text + "',PWD='" + txtPWD.Text + "',Status='" + rblStatus.SelectedValue + "' where UserID='" + lblUserID.Text + "'", con);

 dt = new DataTable();

 da.Fill(dt);

 fillgrid();

 }

}

 CHAPTER8
SYSTEM SECURITY

SYSTEM SECURITY
8.1. Introduction
The protection of computer based resources that includes hardware, software, data, procedures and people against unauthorized use or natural Disaster is known as System Security.

System Security can be divided into four related issues:

· Security

· Integrity

· Privacy

· Confidentiality

System security refers to the technical innovations and procedures applied to the hardware and operation systems to protect against deliberate or accidental damage from a defined threat.

Data security is the protection of data from loss, disclosure, modification and destruction.

System integrity refers to the power functioning of hardware and programs, appropriate physical security and safety against external threats such as eavesdropping and wiretapping.

Privacydefines the rights of the user or organizations to determine what information they are willing to share with or accept from others and how the organization can be protected against unwelcome, unfair or excessive dissemination of information about it.

Confidentiality is a special status given to sensitive information in a database to minimize the possible invasion of privacy. It is an attribute of information that characterizes its need for protection.

8.2.Security in software
System security refers to various validations on data in form of checks and controls to avoid the system from failing. It is always important to ensure that only valid data is entered and only valid operations are performed on the system. The system employees two types of checks and controls:

Client side validation
Various client side validations are used to ensure on the client side that only valid data is entered. Client side validation saves server time and load to handle invalid data. Some checks imposed are:

· VBScript in used to ensure those required fields are filled with suitable data only. Maximum lengths of the fields of the forms are appropriately defined.

· Forms cannot be submitted without filling up the mandatory data so that manual mistakes of submitting empty fields that are mandatory can be sorted out at the client side to save the server time and load.

· Tab-indexes are set according to the need and taking into account the ease of user while working with the system.

Server side validation
Some checks cannot be applied at client side. Server side checks are necessary to save the system from failing and intimating the user that some invalid operation has been performed or the performed operation is restricted. Some of the server side checks imposed is:

· Server side constraint has been imposed to check for the validity of primary key and foreign key. A primary key value cannot be duplicated. Any attempt to duplicate the primary value results into a message intimating the user about those values through the forms using foreign key can be updated only of the existing foreign key values.

· User is intimating through appropriate messages about the successful operations or exceptions occurring at server side.

· Various Access Control Mechanisms have been built so that one user may not agitate upon another. Access permissions to various types of users are controlled according to the organizational structure. Only permitted users can log on to the system and can have access according to their category. User- name, passwords and permissions are controlled o the server side.

CONCLUSION

CONCLUSION

It has been a great pleasure for me to work on this exciting and challenging project. This project proved good for me as it provided practical knowledge of not only programming in ASP.NET and C#.NET web based application and know some extent Windows Application and SQL Server, but also about all handling procedure related with “SMS Based Remote Server Monitoring System”. It also provides knowledge about the latest technology used in developing web enabled application and client server technology that will be great demand in future. This will provide better opportunities and guidance in future in developing projects independently.

 Benefits:
 The project is identified by the merits of the system offered to the user. The merits of this project are as follows: -
· It’s a web-enabled project.

· This project offers user to enter the data through simple and interactive forms. This is very helpful for the client to enter the desired information through so much simplicity.

· The user is mainly more concerned about the validity of the data, whatever he is entering. There are checks on every stages of any new creation, data entry or updation so that the user cannot enter the invalid data, which can create problems at later date.

· Sometimes the user finds in the later stages of using project that he needs to update some of the information that he entered earlier. There are options for him by which he can update the records. Moreover there is restriction for his that he cannot change the primary data field. This keeps the validity of the data to longer extent.

· User is provided the option of monitoring the records he entered earlier. He can see the desired records with the variety of options provided by him.

· From every part of the project the user is provided with the links through framing so that he can go from one option of the project to other as per the requirement. This is bound to be simple and very friendly as per the user is concerned. That is, we can sat that the project is user friendly which is one of the primary concerns of any good project.

· Data storage and retrieval will become faster and easier to maintain because data is stored in a systematic manner and in a single database.

· Decision making process would be greatly enhanced because of faster processing of information since data collection from information available on computer takes much less time then manual system.

· Allocating of sample results becomes much faster because at a time the user can see the records of last years.

· Easier and faster data transfer through latest technology associated with the computer and communication.

· Through these features it will increase the efficiency, accuracy and transparency,

Limitations:

· The size of the database increases day-by-day, increasing the load on the database back up and data maintenance activity.
· Training for simple computer operations is necessary for the users working on the system.

 CHAPTER-10

BIBLIOGRAPHY
BIBLIOGRAPHY
· For .Net Installation
www.support.mircosoft.com
· For development and packing on server:
 www.developer.com
www.15seconds.com
· For SQL

www.msdn.microsoft.com
· For ASP.NET

www.msdn.microsoft.com/net/quickstart/aspplus/default.com
www.asp.net
www.fmexpense.com/quickstart/aspplus/default.comTESTING

Content�
Description�
�
OS�
Windows XP with SP2 or Windows Vista�
�
Database�
MS-SQL server 2005�
�
Technologies�
ASP.NET with C#.NET�
�
IDE�
MS-Visual Studio .Net 2008�
�
Browser�
Mozilla Firefox, IE 6.�
�

Content�
Description�
�
HDD�
20 GB Min

40 GB Recommended�
�
RAM�
1 GB Min

2 GB Recommended�
�

Context Level

Process

Employee

Admin

emp

 database

 logout

 view or update

 login

 employee

admM

Logout

Notification-Teams

Servers

Users

Organization

Login

Data Base

Admin

FirstLevel

admM

View or Update

emp

DataBase

Employees

�

�

�

�

Sno�
Data Field�
DataType�
Constraint�
�
1�
userID�
INT(10)�
Primary key�
�
2�
userType�
VARCHAR(50)�
�
�
3�
isDisabled�
TINYINT(1)�
�
�
4�
firstName�
VARCHAR(50)�
�
�
5�
lastName�
VARCHAR(50)�
�
�
6�
mobileNO�
VARCHAR(50)�
�
�
7�
phoneNO�
VARCHAR(50)�
�
�
8�
emailID�
VARCHAR(50)�
�
�
9�
loginID�
VARCHAR(50)�
�
�
10�
loginPassword�
VARCHAR(50)�
�
�
11�
educationID�
VARCHAR(50)�
�
�
12�
experienceID�
VARCHAR(50)�
�
�
13�
otherDetails�
LONGTEXT�
�
�
14�
rate�
VARCHAR(50)�
�
�
15�
rateTypeID�
VARCHAR(50)�
�
�

Sno�
Data Field�
DataType�
Constraint�
�
1�
contractID�
INT(10)�
Primary key�
�
2�
managerID�
INT(10)�
Foreign key�
�
3�
assistantID�
INT(10)�
Foreign key�
�
4�
contractDetails�
LONGTEXT�
�
�
5�
startDate�
DATETIME�
�
�
6�
endDate�
DATETIME�
�
�
7�
mangerAcceptedStatus�
TINYINT(4)�
�
�
8�
assistantAcceptedStatus�
TINYINT(4)�
�
�
9�
mangerStatusDate�
DATETIME�
�
�
10�
assistantStatusDate�
DATETIME�
�
�
11�
terminatedStatus�
TINYINT(4)�
�
�
12�
terminatedDate�
DATETIME�
�
�
13�
terminatedByUserID�
INT(10)�
�
�
14�
terminatedType�
VARCHAR(50)�
�
�

Sno�
Data Field�
DataType�
Constraint�
�
1�
pickListID�
INT(10)�
Primary key�
�
2�
pickListType�
LONGTEXT�
�
�
3�
pickListName�
VARCHAR(50)�
�
�
4�
pickListOrder�
LONGTEXT�
�
�

Notification-Teams

Servers

Users

Organization

Data Base

Admin

SecondLevel

PAGE
1

