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Minimizing File Download Time in Stochastic
Peer-to-Peer Networks

Yuh-Ming Chiu and Do Young Eun

Abstract—The peer-to-peer (P2P) file-sharing applications are
becoming increasingly popular and account for more than 70%
of the Internet’s bandwidth usage. Measurement studies show
that a typical download of a file can take from minutes up to
several hours depending on the level of network congestion or the
service capacity fluctuation. In this paper, we consider two major
factors that have significant impact on average download time,
namely, the spatial heterogeneity of service capacities in different
source peers and the temporal fluctuation in service capacity of
a single source peer. We point out that the common approach of
analyzing the average download time based on average service
capacity is fundamentally flawed. We rigorously prove that both
spatial heterogeneity and temporal correlations in service capacity
increase the average download time in P2P networks and then
analyze a simple, distributed algorithm to effectively remove these
negative factors, thus minimizing the average download time. We
show through analysis and simulations that it outperforms most of
other algorithms currently used in practice under various network
configurations.

Index Terms—Network performance, peer-to-peer network,
peer selection strategy.

I. INTRODUCTION

PEER-TO-PEER (P2P) technology is heavily used for con-
tent distribution applications. The early model for content

distribution is a centralized one, in which the service provider
simply sets up a server and every user downloads files from it.
In this type of network architecture (server-client), many users
have to compete for limited resources in terms of bottleneck
bandwidth or processing power of a single server. As a result,
each user may receive very poor performance. From a single
user’s perspective, the duration of a download session, or the
download time for that individual user is the most often used
performance metric.

P2P technology tries to solve the issue of scalability by
making the system distributed. Each computer (peer) in the
network can act as both a server and a client at the same
time. When a peer completes downloading some files from
the network, it can become a server to service other peers in
the network. It is obvious that as time goes on, the service
capacity of the entire network will increase due to the increase
in the number of servicing peers. With this increasing service
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capacity, theoretical studies have shown that the average down-
load time for each user in the network is much shorter than that
of a centralized network architecture in ideal cases [2], [3]. In
other words, users of a P2P network should enjoy much faster
downloads.

However, the measurement results in [4] show that a file
download session in a P2P network is rather long and varies a
lot from user to user. For instance, downloading an 100 MB file
in a Gnutella network can range from several hours to a whole
week. While theoretical studies provide performance bounds
for ideal cases, there are many factors that make the real world
performance much worse than the theoretical prediction. Some
of the major challenges facing a P2P network in the real world
include peer selection [5]–[8] and data search and routing
[9]–[13].

Due to the distributed nature of the P2P network, searching
and locating data of interest in the network has been an impor-
tant issue in the literature. In reality, data searching time only
contributes a very small portion of a download session while the
most delay is caused by actually transferring the file from source
peers as shown in [14]. Thus, if we want to minimize the down-
load time for each user, reducing the actual file transfer time
would make more noticeable difference. Most recent studies,
however, have focused on reducing the total download duration,
i.e., the time required for all users to finish their download. This
total download time is a system-wide performance metric. On
the other hand, there are very few results in analyzing the perfor-
mance of each individual user. As the measurement study shows
[4], the per-user performance in a P2P network may be even
worse than that of a centralized network architecture. Those re-
sults suggest that there is much room for improvement in the
P2P system in terms of per-user performance, i.e., the file down-
load time of each user.

However, there have been very few results in minimizing the
download time for each user in a P2P network. In recent work
[5], [6], the problem of minimizing the download time is formu-
lated as an optimization problem by maximizing the aggregated
service capacity over multiple simultaneous active links (par-
allel connections) under some global constraints. There are two
major issues in this approach. One is that global information of
the peers in the network is required, which is not practical in
real world. The other is that the analysis is based on the aver-
aged quantities, e.g., average capacities of all possible source
peers in the network. The approach of using the average ser-
vice capacity to analyze the average download time has been a
common practice in the literature [2], [3], [5], [6], [15]–[17].

A. Limitations of Approach via Average Service Capacity

We here illustrate limitations of the approach based on aver-
aged quantities in a P2P network by considering the following
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examples. Suppose that a downloading peer wants to download
a file of size from possible source peers. Let be the av-
erage end-to-end available capacity between the downloading
peer and the th source peer . Notice that the
actual value of is unknown before the downloading peer actu-
ally connects to the source peer . The average service capacity
of the network, , is give by . Intuitively, the
average download time, , for a file of size would be

(1)

In reality, however, (1) is far different from the true average
download time for each user in the network. The two main rea-
sons to cause the difference are (i) the spatial heterogeneity in
the available service capacities of different end-to-end paths and
(ii) the temporal correlations in the service capacity of a given
source peer. We first consider the impact of heterogeneity. Sup-
pose that there are two source peers with service capacities of

kbps and kbps, respectively, and there is
only one downloading peer in the network. Because the down-
loading peer does not know the service capacity of each source
peer1 prior to its connection, the best choice that the down-
loading peer can make to minimize the risk is to choose the
source peers with equal probability. In such a setting, the av-
erage capacity that the downloading peer expects from the net-
work is kbps. If the file size is 1 MB, we
predict that the average download time is 64 seconds from (1).
However, the actual average download time is 1/2(1 MB/100
kbps) 1/2(1 MB/150 Mbps) 66.7 seconds! Hence, we see
that the spatial heterogeneity actually makes the average down-
load time longer.

Suppose now that the average service capacity can be known
before the downloading peer makes the connection. Then, an ob-
vious solution to the problem of minimizing the average down-
load time is to find the peer with the maximum average capacity,
i.e., to choose peer with the average capacity ( for
all ), as the average download time over source peer would
be given by . We assume that each peer can find the ser-
vice capacity of its source peers via packet-level measurements
or short-term in-band probing [18].

Consider again the previous two-source peer example with
100 kbps and 150 kbps. As we want to minimize the

download time, an obvious choice would be to choose source
peer 2 as its average capacity is higher. Now, let us assume
that the service capacity of source peer 2 is not a constant,
but is given by a stochastic process taking values 50 or
250 kbps with equal probability, thus giving
150 kbps. If the process is strongly correlated over
time such that the service capacity for a file is likely to be
the same throughout the session duration, it takes on average
(1 MB/50 kbps 1 MB/250 kps)/2 96 seconds, while it
takes only 80 seconds to download the file from source peer 1.
In other words, it may take longer to complete the download
when we simply choose the source peer with the maximum av-
erage capacity! It is thus evident that the impact of correlations

1Although the fluctuation seen by a downloader can be caused by change
both in the status of the end-to-end network path and in the status of the source
peer itself, we use “service capacity of a source peer” to unify the terminology
throughout the paper.

(second-order statistics) or higher-order statistics associated
with the capacity fluctuation in time will need to be taken into
account, even for finding a source peer with minimum average
download time.

B. Our Contribution

The examples in Section I-A give us a motivation to seek
methods that can reduce the download time of each individual
user. The main contribution of this paper is to show that the pre-
dicted value given in (1) is actually achievable without requiring
any global information, regardless of the distribution of service
capacities and correlations in a P2P network.

In this paper, we first characterize the relationship between
the heterogeneity in service capacity and the average download
time for each user, and show that the degree of diversity in ser-
vice capacities has negative impact on the average download
time. After we formally define the download time over a sto-
chastic capacity process, we prove that the correlations in the
capacity make the average download time much larger than the
commonly accepted value , where is the average capacity
of the source peer. It is thus obvious that the average down-
load time will be reduced if there exists a (possibly distributed)
algorithm that can efficiently eliminate the negative impact of
both the heterogeneity in service capacities over different source
peers and the correlations in time of a given source peer.

In practice, most P2P applications try to reduce the down-
load time by minimizing the risk of getting stuck with a ‘bad’
source peer (the connection with small service capacity) by
using smaller file sizes and/or having them downloaded over
different source peers (e.g., parallel download).2 In other
words, they try to reduce the download time by minimizing
the bytes transferred from the source peer with small capacity.
However, we show in this paper that this approach cannot
effectively remove the negative impact of both the correlations
in the available capacity of a source peer and the heterogeneity
in different source peers. This approach may help to reduce
average download time in some cases but not always. Rather,
a simple and distributed algorithm that limits the amount of
time each peer spends on a bad source peer, can minimize the
average download time for each user almost in all cases as
we will show in our paper. Through extensive simulations, we
also verify that the simple download strategy outperforms all
other schemes widely used in practice under various network
configurations. In particular, both the average download time
and the variation in download time of our scheme are smaller
than any other scheme when the network is heterogeneous
(possibly correlated) and many downloading peers coexist with
source peers, as is the case in reality.

The rest of the paper is organized as follows. In Section II,
we provide some background on service capacity characteris-
tics in a P2P network in terms of the heterogeneity over different
connections and correlations over time for a given connection.
In Section III, we analyze the impact of heterogeneity in ser-
vice capacities as well as the correlations in a given connec-
tion on each user’s average download time. In Section IV, we
show that our simple and distributed algorithm and can virtually

2For example, Overnet, BitTorrent, and Slurpie divide files into 9500 KB, 256
KB, and 256 KB file segments (chunks), respectively [19]–[21], and a down-
loader can transfer different chunks from different source peers.
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eliminates all the negative impacts of heterogeneity and corre-
lations. Our scheme thus greatly reduces the average download
time and achieves the simple relation in (1) regardless of net-
work settings. Section V provides simulation results to test our
algorithm and compare with others under various network set-
tings, and we conclude our work in Section VI.

II. BACKGROUND

In this section, we briefly describe the characteristics of the
service capacity that a single user receives from the network
from the user’s perspective. Specifically, we consider the het-
erogeneity of service capacities over different network paths and
the stochastic fluctuation of the capacity over time for a given
source peer.

A. Heterogeneity of Service Capacity

In a P2P network, just like any other network, the service
capacities from different source peers are different. There are
many reasons for this heterogeneity. On each peer side, phys-
ical connection speeds at different peers vary over a wide range
[22] (e.g., DSL, Cable, T1, etc.). Also, it is reasonable to assume
that most peers in a typical P2P network are just personal com-
puters, whose processing powers are also widely different. The
limitation in the processing power can limit how fast a peer can
service others and hence limits the service capacity.

On the network side, peers are geographically located over
a large area and each logical connection consists of multiple
hops. The distance between two peers and the number of hops
surely affect its round-trip time (RTT), which in turns affects
the throughput due to the TCP congestion control. Moreover,
in a typical P2P network, this information is usually “hidden”
when a user simply gets a list of available source peers that have
contents the user is looking for.

Note that the aforementioned factors do not change over the
timescale of any typical P2P session (days or a week). Hence,
we assume that those factors mainly determine the long-term
average of the service capacity over a given source peer.

B. Correlations in Service Capacity

While the long-term average of the service capacity is mainly
governed by topological parameters, the actual service capacity
during a typical session is never constant, but always fluctuates
over time [23], [24]. There are many factors causing this fluc-
tuation. First, the number of connection a source peer allows is
changing over time, which creates a fluctuation in the service ca-
pacity for each user. Second, some user applications running on
a source peer (usually a PC), such as online games, may throttle
the CPU and impact the amount of capacity it can offer. Third,
temporary congestion at any link in the network can also reduce
the service capacity of all users utilizing that link.

Fig. 1 shows a typical available end-to-end capacity fluctua-
tion similar to that presented in [23] and [24]. The time scale for
the figure in the measurement study is on the order of minutes.
We know from [4] that a typical file download session can last
from minutes to hours for a file size of several megabytes. This
implies that the service capacity over the timescale of one down-
load session is stochastic and correlated. In Fig. 1, the short-term

Fig. 1. Typical variation in end-to-end available bandwidth based on the results
in [23] and [24]. Drastic changes usually occur in the scale of minutes.

variations in the capacity are mainly due to the window size fluc-
tuation in TCP, while the long-term variations are due to net-
work congestion, changes in workload or the number of con-
necting users at the source peer, etc. The long-term fluctuation
typically lasts over a longer time scale, say, few minutes up to
several hours.

As illustrated in the introduction, both the heterogeneity over
different source peers and the correlations of the capacity in a
given source peer have significant impact on the average down-
load time. To the best of our knowledge, however, there has been
no result available in the literature addressing these issues. All
the existing studies have simply assumed that the service ca-
pacity is given by a constant (its average value) for the duration
of a download. Consequently, the download time of a file of size

is simply given by , where is the average service ca-
pacity. As will be seen later on, however, this is true only when
the service capacity is constant or independent and identically
distributed (i.i.d.) over time, neither of them is true in reality. In
the next section, we will analyze the impact of these two factors
on the per-user performance in terms of the average download
time.

III. CHARACTERIZING THE DOWNLOAD TIME

IN A P2P NETWORK

We consider our network as a discrete-time system with each
time slot of length . For notational simplicity, throughout the
paper, we will assume that the length of a time slot is normalized
to one, i.e., . Let denote the time-varying service ca-
pacity (available end-to-end bandwidth) of a given source peer
at time slot over the duration of a download.
Then, the download time for a file of size is defined as

(2)

Note that is a stopping time or the first hitting time of a process
to a fixed level .

If are i.i.d., then by assuming an equality
in (2), we obtain from Wald’s equation [25] that

(3)

The expected download time, measured in slots, then becomes
. Note that (3) also holds if is con-

stant (over ). Thus, when the service capacity is i.i.d. over time
or constant, there exists a direct relationship between the av-
erage service capacity and the average download time, as has
typically been assumed in the literature.
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A. Impact of Heterogeneity in Service Capacity

We first consider the impact of heterogeneous service capac-
ities of different source peers. In order to decouple the effect of
correlations from that of heterogeneity, in this section, we as-
sume that Wald’s equation holds true for each source peer (i.e.,
the service capacity of a given source peer is either constant or
i.i.d. over time). But we allow the average capacities for dif-
ferent source peers to be different. We will consider the impact
of correlations in Section III-B.

Let be the number of source peers in the network ( dif-
ferent end-to-end paths) and be the service capacity of
source peer at time slot . We assume that is either con-
stant or i.i.d. over such that (3) holds. Let be
the average capacity of source peer . Then, the average service
capacity the network offers to a user becomes

(4)

where and is the arithmetic mean
of the sequence . Thus, one may expect that the
average download time, , of a file of size would be

(5)

As we mentioned earlier, however, the actual service capacity
of each source peer remains hidden unless a network-wide probe
is conducted. So the common strategy for a user is to randomly
pick one source peer and keep the connection to it until the
download completes. If the user connects to source peer (with
service capacity ), the average download time over that
source peer becomes from (3). Since the user can choose
one of source peers with equal probability, the actual average
download time in this case becomes

(6)

where is the harmonic mean of defined by
. Because 3, it follows

that (6) (5). This implies that the actual average download
time in a heterogeneous network is always larger than that given
by “the average capacity of the network” as in (5).

To quantify the difference between (6) and (5), we adopt sim-
ilar techniques as in [26]. Let be the random variable taking
values of with equal probability, i.e.,

for all . Consider the following Taylor expansion
of the function around some point :

(7)

Letting and taking expectation in both sides
of (7) give

(8)

3The arithmetic mean is always larger than or equal to the harmonic mean,
where the equality holds when all � ’s are identical.

From (8), we see that the difference between the predicted av-
erage download time using (1) and the actual average value is
governed by two factors, the file size and the variance of the
service capacity, . First, the actual average download
time will be different from (5) if the file is large. Second, more
importantly, if the service capacities over different source peers
vary over a wide range, the actual download time will be much
larger than (5).

B. First Hitting Time of a Correlated Stochastic Process

In this section we show that the expected first hitting time of
a “positively correlated process” is larger than that of an i.i.d.
counterpart. Consider a fixed network path between a down-
loading peer and its corresponding source peer for a file of size

. Let be a stationary random process denoting the avail-
able capacity over that source at time slot . We will assume that

is positively correlated over time. Then, as before, we can
define the download time of a file (or the first hitting time of the
process to reach a level ) as , where the subscript
“ ” means that is a correlated stochastic process.

Suppose now that we are able to remove the correlations from
. Let be the resulting process and be the stopping

time for the process to reach level , where the subscript
“ ” now means that is independent over time. Then,
again from Wald’s equation, we have

First, as introduced earlier, consider the case that is
100% correlated over time, i.e., for some random
variable for all . Then, the download time becomes

assuming an equality in (2). Hence, from Jensen’s
inequality, we have

i.e., the average first hitting time of an 100% correlated process
is always larger than that of an i.i.d. counterpart. In order to char-
acterize any degree of positive correlations in , we need the
following definition [25]:

Definition 1: Random variables are said to
be ‘associated’ if for all increasing functions and

(9)

where , and we say is an increasing func-
tion if whenever for

.
Relation (9) characterizes the positive dependence among the

random variables . In words, if some of them
become larger, then the other random variables are also likely
to be larger. Note that (9) implies positive correlations in
by setting and . Definition 1 can be
generalized to a stochastic process as follows.

Definition 2: The stochastic process
is said to be associated if for all and , the random
variables are associated.

In fact, the set of associated processes comprises a large class
of processes. Perhaps the most popular example is of the fol-
lowing type:
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Theorem 4.3.13. in [27]: Let be a stochastic process
with static space of the form

(10)

If the are mutually independent and independent of
, then is associated if is increasing in .

Stochastic processes of the form (10) constitute large por-
tion of Markov processes. For example, any auto-regressive type
model with positive correlation coefficient can be written in the
form of (10). Specifically, for an AR-1 sequence defined
by

where and is a sequence of
i.i.d. random variables and independent of , we can write

where . Since
is increasing in , the process is associated.

We now present our theorem.
Theorem 1: Suppose that is associated. Then,

we have

Proof: First, for any given , we set
and , where

. Note that both functions and
are increasing. Observe that

(11)

Thus, we have, for any ,

(12)

(13)

where the inequality in (12) follows since is associated,
and (13) is from the stationarity of in and (11). Since

, it fol-
lows that

(14)

Now, let us assume that an equality holds in the definition of
(see (2)). Then, we have

(15)

Substituting (14) into (15) yields

Thus, we have

This completes the proof.
Theorem 1 states that the average download time of a file from

a source peer with correlated service capacity (in the sense of
association defined in (9)) is always larger than that of an i.i.d.
counterpart. In the subsequent section, we show the relation-
ship between the degree of correlation of a process and the av-
erage first fitting time of that process, and illustrate how much

can be larger than . From previous discus-
sions, we know that in general the average download time, ,
should be calculated using rather than the commonly
used .

C. First Hitting Time and Degree of Correlation

To illustrate the relationship between the average download
time and the degree of correlation in the available bandwidth

, assume that is given by a stationary first-order au-
toregressive process (AR-1), i.e.,

(16)

Here, is a sequence of i.i.d. random variables with zero
mean, which represents a noise term of the process. Then, from
the stationarity of the process, we get

(17)

We vary the constant such that the average capacity is always
fixed to under different . Since the avail-
able bandwidth cannot be negative, we limit the range of
such that , while keeping the same mean. The file
size is and the noise term, , is chosen to be uni-
formly distributed over , and to see how
the noise term affects the average download time.

Remark 1: The choice of the autoregressive process is for the
sake of presentation, not to actually reflex the real fluctuation in
an end-to-end available bandwidth in real world. It is easy to
generate AR-1 process with the same mean but different cor-
relation structures. Similar results can be obtained if the AR-1
process is replaced by other processes with more complicated
correlation structures.

Fig. 2(a) shows the relationship between the average down-
load time and the degree of correlation of the process (16) for
different and . As the degree of correlation increases, the
average download time increases. In particular, for a heavily cor-
related process, the average download time can be about 40%
larger than that for a uncorrelated or weakly correlated process,
regardless of different noise terms. In other words, the long term
variation in the service capacity is the main determining factor
of the average download time, and the short-term random noise
in the service capacity, such as the one caused by TCP conges-
tion control mechanism over short time scales (RTTs), does not
have significant impact on the average download time.

To see the impact of the variance of itself, we restrict
the range of to some fixed interval. For example,

means that we set whenever it becomes smaller
than 9 and when larger than 11. Fig. 2(b) shows the
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Fig. 2. Relationship between the average download time and different degrees
of correlation �. (a) Under different noise term ���� in (16). (b) Under different
range for ����.

relationship between the average download time and the degree
of correlation of under different variation range for .
When the range of fluctuation of gets smaller, the down-
load time is less affected by the correlation of the process. This
is well expected since the process fluctuates only within

and thus behaves more like a constant process. In con-
trast, when the range for is large, the impact of correlation
becomes apparent as shown in Fig. 2(b).

In real data networks, the available capacity of a connection
typically shows wild fluctuation; it becomes very low when con-
gestion occurs, and it can reach up to the maximum link band-
width when things go well. In addition, as technology advances,
people are getting links of higher and higher speed, hence the
range of available capacity fluctuation is also likely to increase.
Therefore, it is very important to consider the effect of correla-
tion in capacity over time when we calculate the average down-
load time of a file transfer.

IV. MINIMIZING AVERAGE DOWNLOAD TIME

OVER STOCHASTIC CHANNELS

Intuitively, if a downloader relies on a single source peer
for its entire download, it risks making an unlucky choice of
a slow source resulting in a long download. Since the service
capacity of each source peer is different and fluctuates over

time, utilizing different source peers either simultaneously (par-
allel downloading) or sequentially within one download session
would be a good idea to diversify the risk. Parallel downloading
improves the performance by reducing the file size over the
“worst” source peer and also may increase the service capacity
one receives from the network by utilizing “unused” capacities
of other source peers. If a downloader utilizes one source peer
at a time, switching around seems to be a good strategy to avoid
the “bad” source peer. Now, the question is, “What is the crite-
rion for switching, i.e., is it chunk-based or time-based?” In this
section we will analyze the performance of (i) parallel down-
loading; (ii) random chunk-based switching; and (iii) random
time-based (periodic) switching.

Different strategies have different impact on the average
download time of each peer, which may result in different
system dynamics as well, e.g., how fast a downloader can start
to contribute (become a source peer) or how fast a peer leaves
the system after finishing download. If there is no peer leaving
the system and all peers are willing to share after they complete
their download (either the entire file or a chunk), the aggregate
service capacity in the system keeps increasing as time goes on
because the number of source peers continuously grows. In this
case, the dynamics in the increase of aggregate service capacity
becomes the dominant factor in the average download time for
each peer. On the other hand, if no peer is willing to share after
download, the aggregate capacity will then eventually drop
to zero, thus throttling all the performance metrics. In reality,
however, the P2P network will reach a steady state at some
point in which the peer arrivals and departures are balanced and
the aggregate service capacity remains around some constant
with little variation as shown in [3]. This suggests that the
number of source peers in the system will also be around some
constant with little fluctuation in the steady state. In this paper,
we are mostly interested in the impact of stochastic variations
of capacities on the average download time of each peer in the
steady state, rather than in the impact of sources–downloaders
dynamics in the transient period, which is beyond the scope of
this paper.

Before we start our analysis, we have the following assump-
tions:

i) The service capacity of a source is constant within one
time slot.

ii) Each downloader selects its source independently.
iii) Each downloader makes a blind choice, i.e., the sources

are randomly chosen uniformly over all available sources.
Assumption (i) is reasonable since it is expected that there is no
major event that triggers dramatic fluctuation in the service ca-
pacity within a short period of time. There may be small short-
term fluctuations, on the order of seconds, in the service capacity
due to the nature of the network protocol, such as TCP con-
gestion window changes, or OS interrupt handling, etc. These
changes however do not impose serious impact on the service
capacity. Thus, we are not interested in such small short-term
variations, but are more interested in the fluctuation on a longer
time scale caused by change in the number of connections at a
source peer or change in network congestion status, which all
usually last for longer time (say, minutes to hours). We have the
assumption (ii) because it is impractical for any downloader to
know how other downloaders choose their source peers in the
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network. Hence the downloader cannot not make its source se-
lection decision based on other downloaders’ decision. Assump-
tion (iii) is based on the fact that the downloader does not know
the service capacity of each source peer a priori. Although some
protocols require peers to broadcast information about its phys-
ical connection speed, it is hard to tell the “true” instant service
capacity of each source peer due to many factors such as compe-
tition among other peers, changing workload of the source peer,
or the network congestion status. Therefore, a simple way to se-
lect a source peer is just to make a blind choice.

A. Effect of Parallel Downloading

Parallel downloading is one of the most noticeable way to re-
duce the download time [28], [16]. If the file is divided into
chunks of equal size, and simultaneous connections are used,
the capacity for this download session becomes ,
where is the service capacity of th connection. Intuitively,
this parallel downloading seems to be optimal in all cases. But, it
is worth noting that the download time for parallel downloading
is given by rather than

, where is the download time of a chunk over th connec-
tion. This is because the chunk that takes the longest time to
complete determines the entire download session.

To illustrate that parallel downloading is better than single
download, we consider the following simple example. Assume
that there are only two source peers in the network, and
are the service capacities of the two source peers. Without loss
of generality, we assume that . If parallel downloading
is used for downloading a file of size from the network, the
download time is given by

For the case of single download, the average download time
is

Now, given that parallel download is better than single down-
load, one may ask whether it is as good as the predicted value in
(1). To answer this, let us recall the two-source peers example.
From (1), the predicted download time is

An easy calculation shows if . Thus,
even in the network with one user, parallel downloading may
not reduce the download time to the predicted value in all cases.
Instead, the performance of parallel download depends upon
the distribution of the underlying service capacities and could
be much worse than the ideal case, . Indeed, it is shown
in [15] that if we can make the chunk-size proportional to the
service capacity of each source peer, parallel downloading can
yield the optimal download time. But such scheme requires
global information of the network. One of our goals is to find

a simple and distributed algorithm with no global information
such that the value in (1), or , can be achieved under
almost all network settings.

We have already seen that parallel downloading may not
achieve even when there is only one user in the
network. Further, it is shown [28], [16] that in a multi-user
network, maintaining just a few parallel connections, say, 4
to 6, is better than having parallel connections to all possible
source peers. Hence, if there is an algorithm that can increase
the performance of each individual connection among such a
few parallel connection, then each individual user may achieve
the download time predicted by (1) or even better.

B. Random Chunk-Based Switching

In the random chunk-based switching scheme, the file of in-
terest is divided into many small chunks just as in the parallel
download scheme. A user downloads chunks sequentially one
at a time. Whenever a user completes a chunk from its cur-
rent source peer, the user randomly selects a new source peer
and connects to it to retrieve a new chunk. In this way, if the
downloader is currently stuck with a bad source peer, it will
stay there for only the amount of time required for finishing one
chunk. The download time for one chunk is independent of that
of the previous chunk. Intuitively, switching source peers based
on chunk can reduce the correlation in service capacity between
chunks and hence reduce the average download time. However,
there is another factor that has negative impact on the average
download time, the spatial heterogeneity.

First, suppose that there is no temporal correlation in ser-
vice capacity and Wald’s equation holds for each source peer.
A file of size is divided into chunks of equal size, and let

be the download time for chunk . Then, the total download
time, , is . Since each chunk randomly
chooses one of source peers (with equal probability), the ex-
pected download time will be

(18)

The result in (18) is identical to the download time given in (6)
where a user downloads the entire file from an initially randomly
chosen source peer. In other words, the chunk-based switching
is still subject to the “curse” of spatial heterogeneity. While
there is no benefit of the chunk-based switching from the av-
erage download time point of view, it turns out that this scheme
still helps reduce the variance of the download time under a rel-
atively smaller number of users by diversifying the risk with
smaller chunks. [See Fig. 5(b).]

In the chunk-based switching, if we get stuck in a source
peer with very low service capacity, downloading a fix amount
of bytes from that source peer may still take a long time. We
could avoid this long wait by making the size of each chunk very
small, but this then would cause too much overhead associated
with switching to many source peers and integrating those many
chunks into a single file. Therefore, instead of waiting until we
finish downloading a fixed amount of data (chunk or file), we
may want to get out of that bad source peer after some fixed
amount of time. In other words, we randomly switch based on
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time. In the subsequent section, we will investigate the perfor-
mance of this random switching based on time and show that it
outperforms all the previous schemes in the presence of hetero-
geneity of service capacities over space and temporal correla-
tions of service capacity of each source peer.

C. Random Periodic Switching

In this section, we analyze a very simple, distributed algo-
rithm and show that it effectively removes correlations in the
capacity fluctuation and the heterogeneity in space, thus greatly
reducing the average download time. As the algorithm will be
implemented at each downloading peer in a distributed fashion,
without loss of generality, we only focus on a single downloader
throughout this section.

In our model, there are possible source peers for a fixed
downloader. Let ( and ) de-
note the available capacity during time slot of source peer .
Let be a source selection function for the
downloader. If , this indicates that the downloader se-
lects path and the available capacity it receives is during
the time slot . We assume that each is stationary in and

of different source peers are indepen-
dent.4 We however allow that they have different distributions,
i.e., are different for different (heterogeneity).
For any given , the available capacity is correlated over
time . As before, when each connection has the same proba-
bility of being chosen, the average service capacity of the net-
work is given by .

In this setup, we can consider the following two schemes: (i)
permanent connection, and (ii) random periodic switching. For
the first case, the source selection function does not change in
time . When the searching phase is over and a list of avail-
able source peers is given, the downloader will choose one of
them randomly with equal probability. In other words,

where is a random variable uniformly distributed over
. For example, if the downloader chooses

at time 0, then it will stay with that source peer
permanently until the download completes.

For the random periodic switching, the downloader randomly
chooses a source peer at each time slot, independently of every-
thing else. In other words, the source selection function
forms an i.i.d. sequence of random variables, each of which is
again uniformly distributed over . Fig. 3 illustrates
the operation of the source selection function for random
periodic switching. In this figure, source 1 is selected at time 1,
source is selected at time 2, and so on.

Let us define an indicator function

4We note that different paths (overlay) may share the same link at the net-
work core, but still, the bottleneck is typically at the end of network, e.g., access
network type, or CPU workload, etc. Thus, the independence assumption here
is reasonable.

Fig. 3. Operation of source selection function ���� for random periodic
switching.

Then, since can take values only from , the
actual available capacity at time can be written as

for both the permanent connection and the random periodic
switching strategies. Since each downloader chooses a source
peer independently of the available capacity, is also
independent from , and so is . Note that, from

for any , we have

(19)

i.e., the average available capacity for the two source selection
strategies are the same.

In order to analyze how the two different strategies affect the
correlation in , we consider the correlation coefficient of

defined as

Then, we have the following result.
Proposition 1: Let and denote the correla-

tion coefficient of under the permanent connection and the
random periodic switching, respectively. Then, we have

Proof: Since the average capacity for both strategies re-
mains the same (see (19)), without loss of generality, we can
assume that for any source peer has zero mean by sub-
tracting if necessary. From the independence among
different source peers, we have, for any ,

(20)
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Then, the covariance of becomes

(21)

From (20), we can rewrite (21) as

(22)

First, consider the case of . Then, it follows that

Hence, from (22) with , the variance of is given by

(23)

regardless of the strategies for .
Now, consider the case of . Under the permanent con-

nection strategy, since all the time, we get

On the other hand, for the random periodic switching, we have

since and for are independent.
Finally, set . Then, from (22) and since the variance

of remains the same for both strategies as in (23), we have
and this completes the proof.

From Proposition 1, we see that under the random periodic
switching strategy, the correlation of is times smaller
than that of permanent connection strategy. For example, when
each downloader has about 10 available source peers

, the correlation coefficient of the newly obtained capacity
process under our random periodic switching is no more than
0.1 regardless of the correlations present in the original capacity
fluctuation. So, by using our random periodic switching, we can
always make the capacity process very lightly correlated, or al-
most independent. From Fig. 2, we see that the average down-
load time for a lightly correlated process is very close to that
given by Wald’s equation. It is thus reasonable to assume that
Wald’s equation holds for the lightly correlated process
under our random periodic switching strategy. Specifically, if

we define as the download time for a file of size under
the random periodic switching, we have

(24)

We then have the following comparison result between the
permanent connection and periodic switching.

Proposition 2: Suppose that the process for each is
associated (i.e., it is correlated over time ). Let and
be the download time for the permanent connection and for the
random periodic switching, respectively. Then, we have

Proof: Assume that the file size is . Since is asso-
ciated, from Theorem 1, we have

(25)

for any given source peer . Observe now that

(26)

(27)

(28)

where (26) is from (25), (27) is from Jensen’s inequality and the
convexity of a function for , and (28) is from
(24). This completes the proof.

Proposition 2 shows that our random periodic switching
strategy will always reduce the average download time com-
pared to the permanent strategy and that the average download
time under the random periodic switching is given by
(see (27)). Note that this was made possible since the random
periodic switching removes the negative impact of both the
heterogeneity and the correlations. In addition, our algorithm
is extremely simple and does not require any information about
the system.

D. Discussion

So far, we have analyzed the performance of three different
schemes that utilize the spatial diversity of the network to im-
prove per-user performance in terms of the average download
time. We have considered (i) parallel downloading; (ii) random
chunk-based switching; and (iii) random periodic switching.
The parallel downloading may perform well if the capacity
of each possible source peer is known so as to allocate larger
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chunks to faster connections and smaller chunks to slower con-
nections. But this method is not practical as one cannot know
a priori the service capacity of all source peers. In addition, the
service capacity is stochastically fluctuating all the time, and
our analysis show that the performance of parallel downloading
depends much upon the heterogeneity of the service capacities
in different source peers if the chunks are equal in size.

Many P2P applications nowadays use chunk-based file
transfer with equal chunk size. As mentioned earlier, the benefit
of chunk-based switching is to speed up the conversion from
downloading peers to uploading peers and thus indirectly
affect the average download time. But, in terms of reducing
the average download time directly, it does not help much.
Random chunk-based switching may reduce the correlations in
the service capacity, but it still cannot eliminate the effect of
spatial heterogeneity in different source peers.

In current practice, the chunk based transfer and the parallel
download are often combined. Taking BitTorrent and Overnet
for examples, a file is first divided into 256 KB and 9.5 MB
chunks of equal size, respectively, and then different chunks are
downloaded from different source peers simultaneously. How-
ever, we separate the analysis of the two strategies to show how
each is different in combating spatial heterogeneity and tem-
poral correlations. Please note that we are not trying to com-
pare the performance of parallel downloading with chunk based
transfer since they can be easily combined to yield better perfor-
mance. Rather, we are comparing the performance of the two
strategies with our random periodic scheme. Further, we will
present the performance comparison of the combined strategy
with the random periodic scheme in Section V-B.

The idea of time-based switching scheme is in fact not new.
Such strategy has been implemented in BitTorrent [21] but with
some other purpose in mind. In BitTorrent application, by using
its optimistic choking/unchoking algorithm, a peer changes one
of its servicing neighbors with the lowest upload capacity every
10 seconds in hope to find some peers offering higher service ca-
pacity. However, the idea of switching source peer periodically
in the BitTorrent’s optimistic choking/unchoking algorithm is
to discover new potential sources rather than to explicitly re-
move the negative impact of temporal correlations and spatial
heterogeneity in service capacity. To the best of our knowledge,
we are the first to point out that the random periodic switching
gives us the average download time of , while all the
other schemes considered so far yield larger average download
time.

Our study leads us to believe that the random switching deci-
sion should be based on time rather than “bytes” because we are
interested in the download time, not the average capacity itself.
Indeed, any algorithm based on bytes or a fixed amount of data
will suffer the curse of a bad source peer in that it has to wait
until that amount of data is completely received from the “bad”
source peer. On the other hand, when the decision is based on
time, we do not need to wait that long as we can jump out of
that source peer after a fixed amount of time (one period).

V. NUMERICAL RESULTS

In this section, we provide numerical results to support our
analysis and compare the performance of the four schemes for
file download under various network configurations. In any case,

TABLE I
AVERAGE SERVICE CAPACITY OF EACH SOURCE PEER

UNDER DIFFERENT CONFIGURATIONS

in our configuration, different source peers have different av-
erage service capacities, and the service capacity of each source
peer is correlated in time. We consider a single downloading
peer as well as multiple downloading peers to allow competi-
tion among the downloading peers for limited service capacity
of each source peer.

A. Single Downloader With Heterogeneous Service Capacities

We first show the impact of both heterogeneity and correla-
tions in service capacities on the average download time when
there is a single user (downloader) in the network. There are

source peers in the network, each offering different av-
erage service capacities. Let be the average service capacity
of source peer and . The average service ca-
pacity of the whole network is then .
We change the heterogeneity in service capacity by changing
each , while keeping 200 kbps the same. We measure
the degree of heterogeneity in term of , the
normalized standard deviation. Table I shows the different set-
tings used in our simulation in this subsection.

To demonstrate the impact of correlation in each fixed source
peer, we use a class of AR-1 random processes to model the
stochastic fluctuation in the service capacity. It is reasonable
to assume that if the average service capacity is large, the
service capacity is more likely to fluctuate over a wider range.
For instance, for a high-speed source peer (e.g., 1 Mbps), the
actual service capacity of the end-to-end session may drop
down to somewhere around 50 kbps and stays there for a
while due to network congestion or limited CPU resources at
the source peer. In this regard, we assume that the amount of
fluctuation in is proportional to its mean value . Specif-
ically, for source peer , we set in (16) to be uniformly
distributed over where is chosen such that

remains the same for all .
In our simulation, the length of each time slot (one period) is

chosen to be 5 minutes. We set the file size to 150 MB, which
is the typical size of some small video clips or multimedia files.
As the average service capacity (of the network) is 200 kbps, we
set the chunk-size for chunk-based switching to be 7.5 MB (
200 kbps 5 minutes). The purpose of simulating the chunk-
based switching is to show the impact of switching based on
“data size”, hence we choose 7.5 MB to allow fair comparison
with the random periodic switching with 5 minute period. We
will show the performance of using smaller chunk size later in
Section V-B.

We consider all three download strategies discussed so far
in comparison with permanent connection. For permanent con-
nection, the user initially chooses one of four sources randomly
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and stays there until the download completes. For chunk-based
switching, the user switches to a new randomly selected source
peer whenever a chunk is completed. Although we simulate the
system as a discrete time system, the user is allowed to switch
to a new source peer anytime within a time slot whenever it
finishes the current chunk. For parallel download, the file is
divided into four equal-sized pieces and the downloading peer
connects to all four source peers and downloads each piece
from each source peer simultaneously. Finally, for periodic
switching, a user switches to a new randomly chosen source
peer every 5 minutes to further download the remaining parts
of the file.

Fig. 4(a)–(b) shows the average download time versus the de-
gree of heterogeneity in the average service capacities when
there is a single downloader in the network. Dashed lines are for
strong correlations and solid lines represent the case
of light correlations . In Fig. 4(a), when the degree
of heterogeneity is small, all three single-link download strate-
gies (permanent, chunk-based, periodic) under light correlations
perform the same. This is well expected since the service capac-
ities of all source peers are almost i.i.d. over space and time, so
switching does not make any difference and the average down-
load time becomes 150 MB/200 kbps 100 minutes,
as commonly used in practice. On the other hand, when there
exists strong correlations in the service capacity, the download
time is longer for all strategies except the periodic switching.
For example, when , the correlation alone can cause
more than 20% of increase in the average download time. Thus,
when the network is more like homogeneous (i.e., small ), the
temporal correlation in the service capacity of each source peer
becomes a major factor that renders the average download time
longer. However, the average download time remains the same
under the random periodic switching.

Fig. 4(a) also shows the performance of parallel down-
loading. Intuitively, parallel downloading should perform
better than single link downloading because (i) it utilizes more
than one link at the same time and (ii) if the connection is
poor, parallel downloading reduces the amount of data getting
through that bad source peer. Since there is only a single user,
it utilizes all the service capacity the network can provide

. In this case, the average download time
should be 150 MB/ 150 MB/800 kbps

25 minutes. We see from Fig. 4(a) that parallel downloading
can actually achieve the performance close to our expectation
when the service capacities of different source peers are close
to i.i.d. Still, parallel downloading is prone to the negative
effect of correlations.

As the degree of heterogeneity increases, the average down-
load time sharply increases for all the schemes except the pe-
riodic switching. Fig. 4(b) shows this when is between 0.4
and 0.7 (see Table I). All but periodic switching suffer from the
negative effect of heterogeneity. When both heterogeneity and
correlation are high ( and ), permanent con-
nection takes about 350 minutes to complete the download. This
time is about 250 minutes, or 4 hours more than using periodic
switching! It is expected that the performance of parallel down-
loading degrades fast when there is a large degree of hetero-
geneity. It is more likely that one of the parallel connections is

Fig. 4. Average download time versus degree of heterogeneity under different
download strategies and different degree of correlations. (a) Low degree of het-
erogeneity: � � � � ���. (b) High degree of heterogeneity: ��� � � � ���.

“poor” with very small capacity. Thus, even though the size of
chunk (37.5 MB) is smaller than the whole file (hence reducing
the risk of staying with the bad source peer for too long), this is
still not as good as the idea of averaging capacities all the time,
as used in the periodic switching. We note that temporal cor-
relations still negatively affect in all these three schemes. How-
ever, it should be pointed out that the random periodic switching
performs the same regardless of heterogeneity and correlations,
and in fact it outperforms all the other schemes when the net-
work is heterogeneous with a wide range of service capacities
as in the current network.

B. Multiple Downloaders With Competition

In this section, we consider the performance of different
download strategies under a multi-user environment. In our
multi-user setting, we set the number of source peers to

. The source peers are divided into four groups
and each source peer within the same group will have the
same average service capacity. In reality, the service capacity
of each source peer may vary a lot, much greater than the
ones that are presented in Table I. We choose the service
capacity of the four groups as 1 Mbps, 500 Kbps, 100 Kbps,
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and 50 Kbps, representing typical capacities of LAN, cable,
DSL, and modem connections, respectively. In contrast to the
setting in the previous section, each group now may consist
of different number of source peers to reflect a more real-
istic distribution of service capacity. We choose the number
in each group as 10, 5, 65, and 20, respectively. This is to
reflect the situation in the real world that only a few source
peers have very high service capacity while most others
have the capacity of typical DSL (100 Kbps) lines or slower
modems. The average service capacity of the network is then

kbps. The degree of heterogeneity in our setting is .
The fluctuation in the service capacity is represented by AR-1
process with correlation coefficient of each source peer set
to 0.9. We want to see the performance of different strategies
under the impact of spatial heterogeneity and temporal corre-
lation.

In our simulation, service capacity of a source peer is equally
divided among all the users connected to that source peer. The
effect of dividing capacity among users gives us an idea of how
different strategies will perform when users compete for lim-
ited resources in the network. To represent the level of compe-
tition, we use the downloader–source ratio, i.e., the ratio be-
tween the number of users (downloading peers) to the number
of source peers. Since the service capacity of a source peer is
equally among the users the source peer serves, we can expect
that the service capacity of the system is equally divided among
all users as well. Hence, the average per-user service capacity
can be calculated as the average system service capacity divided
by the downloader–source ratio. For example, if the number of
users is 200, then the downloader–source ratio 2. The average
per-user service capacity will then be 200 kbps/2 100 kbps.

We simulate three strategies. The first one is the combined
strategy of parallel download and the chunk-based transfer.
Since we know from [16] and [28] that keeping only a small
number of parallel active connections is better than maintaining
connections to all source peers, we set the number of parallel
connections to 5 for all the combined strategies. We vary the
chunk size to see its impact on the average download time
in conjunction with parallel download. Further, the users are
allowed to request the same chunk from different source peers
when the number of untransferred chunks is less than the
number of active parallel connections. For example, if a user
is three chunks away from completing the entire file, s/he can
request all three chunks from all currently connected source
peers. Although making the same chunk requests to different
source peers will reduce the download time for that specified
chunk, this is at the expense of some waste of the system
resource. Note that we do not allow users to make duplicate
requests to all connected source peers for every chunk, as this
will waste too much resource. This notion of making requests
to different source peers for the same chunk when a user’s
download is nearly complete has been already implemented
in BitTorrent called the “end-game” mode [29]. The second
strategy is the random chunk-based switching with a single
connection. The chunks size is chosen to be 7.5 MB, which
is identical to what we used in the previous section to allow
fair comparison with the periodic switching. Finally, the third

Fig. 5. Performance comparison of different strategies under different levels of
competition. (a) Average download time. (b) Standard deviation/average down-
load time.

strategy is the random periodic switching. The switching period
is still 5 minutes, but we reduce the length of the system time
slot to 1 minute. In this case, there will be capacity variations
within each switching period.

Fig. 5(a) shows the average download time for the strate-
gies considered so far. The reference line is given by the file
size divided by the average per-user service capacity. First, we
can clearly see that the periodic switching performs a lot better
than the chunk-based switching. We have a reduction of 40% in
average download time by using periodic switching. Next, the
combined strategies are shown to outperform the chunk-based
switching. Note that when the level of competition is low, the
combined strategy outperforms both the chunk-based and the
periodic switching schemes. This is well expected because par-
allelism increases the service capacity each user can achieve
in an under-utilized network. As the level of competition in-
creases, however, the random periodic switching readily starts
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to outperform the combined strategy. Further, it is interesting to
see that the chunk based transfer (7.5 MB per chunk) even out-
performs parallel downloading with large chunks (30 MB per
chunk) when the competition in the system is high. This is be-
cause the average download time for parallel downloading is
still determined by the slowest link. In a system where there are
already many downloading peers, parallelism actually increases
the level of competition even more, hence the service capacity
of a slow source peer is further divided among its downloading
peers.

Another noticeable trend in Fig. 5(a) is that the performance
of the combined strategy gets better with smaller chunk size. Re-
call that the users can download the same chunk when there are
only several chunks left before the completion of the entire file,
so the last few chunks will be transferred over the fastest source
peer. This method may reduce the negative impact of spatial het-
erogeneity a little, but at the price of wasting some system re-
sources transferring duplicate chunks. The larger the chunk size,
the more waste of recourses in sending the duplicate chunks.
In addition, a larger chunk is more prone to the spatial hetero-
geneity as the user downloading that larger chunk will have to
wait long if it is from a “bad” source. Certainly, very small chunk
sizes would make the performance of the combined strategy
better and approach the reference line. However, this comes at
a cost; having small chunks means more protocol overheads be-
cause more negotiations between downloaders and source peers
are required. Take the combined strategy using 0.3 MB chunks
as an example, a downloader has to make requests for chunks
at least 150 MB/0.3 MB 500 times in the entire download
session. However, the downloader using the periodic switching
only needs to make data transfer requests about 120 times in the
extreme case (when the downloader–source ratio is 6). From our
simulation result, we can see that random periodic switching is
the optimal strategy when the network is overutilized (down-
loader–source ratio is 3 or higher).

Fig. 5(b) shows the normalized standard deviation (standard
deviation divided by its mean) of the download time for different
strategies as the level of competition varies. Larger value of the
normalized standard deviation means that the download time
among different users will vary more; some can complete the
transfer in a very short period while others have to wait for a
long time to complete with high probability. Thus, if there is a
large variation in the download time, it is very hard for a user
to predict what kind of service s/he will receive. It would be
better to have small variations in the download time so that the
performance is more predictable and fair. We can clearly see that
the periodic switching yields the smallest variation in download
time comparing with other strategies we have considered so far.

In summary, the periodic switching not only gives down-
loaders the minimal average download time in most network
configurations and introduces less overhead, but it is fair with
more predictable performance as well.

VI. CONCLUSION

In this paper, we have focused on the average download time
of each user in a P2P network. With the devastating usage of net-
work resources by P2P applications in the current Internet, it is

highly desirable to improve the network efficiency by reducing
each user’s download time. In contrast to the commonly-held
practice focusing on the notion of average capacity, we have
shown that both the spatial heterogeneity and the temporal cor-
relations in the service capacity can significantly increase the
average download time of the users in the network, even when
the average capacity of the network remains the same. We have
compared several “byte-based” (file size based) schemes widely
used in practice, including chunk-based file transfer, parallel
downloading, as well as their combination, and have shown that
all those byte-based schemes are not so effective in reducing the
two negative factors that increase the average download time.
From our study, it becomes apparent that all P2P algorithms
regarding the download time should focus directly on “time”
rather than on “bytes”, and the notion of average service ca-
pacity alone is not sufficient to describe each user’s average per-
formance in a P2P network.
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