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Abstract

While the desire to support fast, ad hoc query processing for large data warehouses has motivated the recent introduction of many new indexing structures, with a few notable exceptions little attention has been given to developing new indexing schemes that allow fast insertions. Since additions to a large warehouse may number in the millions per day, indices that require a disk seek (or even a significant fraction of a seek) per insertion are not acceptable.
 In this paper, we offer an alternative to the B+-tree called the Y-tree for indexing huge warehouses having frequent insertions. The Y-tree is a new indexing structure supporting both point and range queries over a single attribute, with retrieval performance comparable to the B+-tree. For processing insertions, however, the Y-tree may exhibit a speedup of 100 times over batched insertions into a B+-tree.

1 Introduction

Efficiency in OLAP system operation is of significant current interest, from a research as well as from a practical perspective. There are two primary options for supporting efficient queries over a huge data warehouse. The first option is to allow the user to pre-define a set of views on the warehouse, where query results are at least partially pre-computed and maintained as data are added to the warehouse. The second option is to compute the results of a query only after it has been issued using indexing and fast algorithms, thereby allowing ad-hoc querying of the warehouse. We focus on the second option in this paper.
 Work on processing ad-hoc queries over huge warehouses has resulted in the development of a number of special- purpose index structures, such as Projection Indices in Sybase IQ, Bitmapped Indices (BMI) in Oracle and Bitmapped Join Indices (BJI) in Informix and Red-Brick .Together with the regular value-list (B+-tree) index, the various grid based approaches, and hierarchical, multidimensional structures such as the R-tree  these structures represent a formidable set of options for indexing large warehouses. However, while significant query processing advantages have resulted from these indices, warehouse refresh performance has suffered, seriously affecting the availability of the warehouse.

Warehouse refreshes differ from standard database insertion in that typically, refresh involves the addition of a number of new rows to a single, central fact table. The smaller dimension tables may also grow, but such growth is usually very slow compared to fact table growth. Usually, indexing in a data warehouse is done on foreign keys in the central fact table. If the number of distinct attribute values for a foreign key is relatively small, this can allow for fast index refresh, with only a few localized index changes required for each insertion. It is in this situation that a BMI is particularly useful, since a refresh of the fact table will result in appends of bits to only a few, already existing bitmaps. However, it is not always the case that the number of distinct foreign key values is small. We now present a case where this quantity is not small, and discuss the implications for index refresh.

1.1 Example

We illustrate the problem of maintaining an index in the face of a high insertion rate with an example drawn from the domain of call detail record (CDR) warehousing for telecommunication service providers. CDRs are records that are generated corresponding to every call through a telecommunication network. Such records are approximately 700 bytes in length. The AT&T Corporation experiences a call detail growth of around 20 GB/day, which translates to approximately 28 million calls per day . When these records are warehoused, assuming significant aggregation with respect to the detail records accumulated in CDR stores, one can reasonably
expect an order of magnitude decrease in the number of stored records. This translates to an average addition of nearly 3 million records per day. If seven years worth of data are maintained, the complete warehouse needs to store approximately 8 billion records.

Now, consider a BMI on some attribute of the central fact table of this warehouse, perhaps on the customer account number. It is not unimaginable that on the order of 10 million distinct account numbers would be found in this particular fact table. A BMI on the customer account number would then be made up of 10 million (very sparse) bitmaps composed of 8 billion bits each. Clearly, this is likely a prohibitive storage requirement.

Of course, these bitmaps could be compressed, but in such an extreme case, it would probably be preferable to use a value-list index, where instead of a bitmap for each customer account number, a list of pointers to fact table entries is stored. Note that if a compression scheme like RLE were used on the BMI, it would essentially become equivalent to using a value-list index. Because of this, and the prohibitive storage costs associated with using an uncompressed BMI in this warehouse, the value-list index is the primary existing option that we will consider for such a situation throughout this paper. Were a value-list index used instead of a BMI, there are two likely approaches to handling the 3 million insertions per day:

• Incremental, batch insertion could be used. Insertions could be batched, so that each edge in the tree need be traversed at most once. We have found that on our system, incremental, bulk insertion (following the algorithm outlined in [6]) into a similar structure, under similar conditions (cf. Section 4) can be accomplished at the sustained rate of 100,000 (key, ptr) pairs in slightly more than 41 minutes. This means that insertion of 3 million (key, ptr) pairs per day could be expected to take longer than 20 hours to complete. In other words, it would barely be possible to keep up with this insertion rate even if all system resources were devoted to maintenance, 24 hours a day. Even if more hardware were added to combat the problem, one can assume that in the face of ever-increasing warehouse sizes, the problem is bound to recur.

• Or, we could forsake the purely incremental approach and rebuild the index, using the old index as a guide. The LSM-Tree [4] and the Stepped Merge Method [1] are two access methods that use a version of such a rebuild of a B+-tree as their fundamental approach. These methods both have the important advantage that the resulting tree structures can be constructed optimally, with full nodes, and long runs of data can be stored sequentially on disk to allow fast query processing. Also important is the fact that since the new structure can be constructed from fast, sequential scans of the old structure, disk seeks can be minimized during construction, thereby drastically decreasing the average time required per insertion when compared to the value list index. However, a disadvantage of these methods is that in the case of a skewed insertion distribution, entire nodes must be rewritten, even if only a very few key values need be written to that node. We will discuss these issues more in detail in Section 5.

1.2 An Index Allowing Fast Insertions

In response to these issues, we have developed the YATS-tree (Yet Another Tree Structure-tree) or Y-tree for short. The Ytree is an exceedingly simple, hierarchical, secondary indexing structure for use in evaluating point and range queries over a single attribute, much like the value-list index. In fact, it can be used to support the same set of secondary indexing applications as the value-list index.
However, in contrast to the value-list index, the Y-tree is designed to allow very fast insertions into a huge database. This is accomplished with the idea of a single-path, bulk insertion. In a Y-tree, a set of some small number of insertions (say, 500) are batched and inserted at once into the structure. There are no constraints placed on what key values may be in this set and performance is totally unaffected by the key values a batched insertion set contains. Insertion into the Y-tree is called single-path, bulk insertion because regardless of the key values, an insertion of a set of (key, ptr) pairs will only require a traversal from the tree root to a single leaf node holding a list of record identifiers. In this way, the Y-tree can achieve speed-ups on the order of 100 times over incremental, batch insertion into a value-list index. The daily insertion of 3 million key values into the value-list index described above (that would take nearly the entire day to complete) would take less than 12 minutes were a Y-tree used instead.

There is a cost associated with the faster insertion times. The Y-tree can produce slower query response times when compared to the value-list index. For example, when used for evaluation of a point query returning a single (key, ptr) pair, the Y-tree is on the order of four times slower than the value-list index (point queries, however, are expectedly rare in a warehousing environment). But as the size of the query result increases, as is the case in standard OLAP queries, the efficiency of the Y-tree increases as well. When used for evaluating range queries returning 1 million such pairs for a large database, the Y-tree is only around 50% slower than an optimally, bulk-constructed value-list index, and can be nearly three times faster than a value-list index that has been built incrementally. Depending on certain parameters, a
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                                                            Figure 1: An example Y-tree.

Y-tree may then actually be preferable to a value-list index for handling large queries. Combined with the fact that standard, value-list index insertion is virtually unusable for huge, constantly growing databases, we feel that the Y-tree represents an important alternative to the value-list index.

1.3 Paper Organization

This paper is organized as follows. In Section 2, we present the Y-tree structure and the associated algorithms. In Section 3, we present an analytical study of the Y-tree. We compare it to the value-list index, showing that the Y-tree presents a very attractive alternative to the value-list index at query and insertion loads that one would commonly expect in a huge data warehouse. In Section 4, we present experimental results comparing the performance of actual implementations of the two structures. Section 5 presents some related work; we conclude the paper in Section 6.

2 The Y-Tree

The Y-tree is similar in many ways to the value-list index. Like the value-list index, it is a hierarchical structure composed of leaf nodes and internal nodes:

• Leaf Nodes. Assuming that the data are not clustered on disk with respect to the indexed attribute, leaf nodes are simply sets of ordered pairs of the form (key, ptr-list) where key is a value from the domain of the attribute value to be indexed, and ptr-list is a list of RIDs containing that key value. Each leaf node is guaranteed to be at least 50% full at all times. In practice, we have found that a utilization of 65-70% is typical. This much is similar to the classical value-list index.

• Internal Nodes. The internal nodes of the Y-tree are quite different from those of the value-list index. Each internal node contains two components, the pointer-list and the heap. The pointer-list is borrowed from the value-list index. It is simply a list of the form:

                                   <P1, K1, P2, K2,..., Pf-1, Kf-1, Pf>.

The associated heap is logically a set of f buckets, where f is a constant chosen before the structure is constructed. f denotes the fanout of the tree. The heap has an associated maximum heap size h, which likewise is chosen a priori. Each of the f buckets is associated with exactly one pointer to a node lower in the tree, and holds a set of ordered pairs of the form (key, ptr). These ordered pairs are identical to those found in the leaf nodes; indeed, they may eventually be moved into leaf nodes from buckets located in internal nodes, as we will describe below. Logically, then, the Y-tree looks something like what is depicted above in Figure 1. 
2.1 Insertion into the Y-tree

The primary goal in designing the Y-tree is to provide for fast insertion while maintaining the functionality of the value-list for indexing quickly evaluating range queries and also point queries. We discuss Y-tree insertion in this section.

2.1.1 Why Insertion Is Fast

Insertion into the Y-tree is very fast because of the two important properties of the Y-tree we describe now. The first property is common to both the Y-tree and the value-list index:

Property 1. The insertion of a (key, ptr) pair into the tree results in the reading and writing of nodes on at most one path from root to leaf level in the tree.
 The second property is quite different than for a value-list index, and is at the heart of the speed with which insertion into the Y-tree may be accomplished:

2.1.3 Example Insertion

Algorithm Insert (parameters S: set of (key, ptr) pairs of cardinality no greater than d, N: Node having fanout fN)

1) If N is an internal node:

2) For each element s of S, add s into the first heap bucket bi such that the associated key value ; or, inset into the last heap bucket if there is no such Ki.

3) Choose the bucket bj that has the most (key, ptr) pairs.

4) If the heap contains more than pairs,

5) Remove min (d, size(bj)) (key, ptr) pairs from bj to create Snew, write N to disk, and recursively call Insert (Snew, node pointed to by Pj).

6) Else, write N to disk.

7) Otherwise, N is a leaf node:

8) Simply add S to the set of (key, ptr) pairs in N, then write N to disk. Ki s.key  f N 1 – d 
                                   Figure 2: Algorithm to insert d (key, ptr) pairs into a Y-tree.

Property 2. For a given heap size, there exists some constant d such that the cost of inserting d (key, ptr) pairs into the Ytree is identical to the cost of inserting a single (key, ptr) pair into the tree. 
We will elaborate on this property in Section 2.3.2, but the immediate implication of this property is that d insertions into the structure may be buffered and inserted in bulk into the tree, and that single insertion of d pairs will still result in updates to nodes on only a single path from root to leaf level in the tree. If d is large enough, this has the potential to allow an orders-of-magnitude speedup in time required for insertions into the tree. Also, it is important to note that, as we will describe in a later section, this is quite different (and superior, we argue) to the common method of bulk insertion into a value-list index where a huge number of insertions (perhaps as many as can be fit into main memory) are buffered and a massive update of the tree at one time is performed. In the Y-tree, insertion is still local and incremental. Thus, insertion performance is relatively insensitive to the size of the tree, just as is the case in the classical value-list index. Insertion costs, however, are amortized across insertions of perhaps hundreds of (key, ptr) pairs, allowing for a huge speedup.

2.1.2 The Insertion Algorithm

We now describe the algorithm for insertion into the Y-tree, which is quite simple. For the moment, we ignore the issue of full leaf nodes, which may cause node splitting. The algorithm is shown above in Figure 2.

2.1.3 Example Insertion

We now demonstrate the algorithm on the tree of Figure 1, by adding the set S = {(1, ptr), (1, ptr), (2, ptr), (13, ptr), (18, ptr)} to the tree. In this case, d = 5. First, S is distributed among the buckets of the root node A. Note that the right-most bucket had more than d pairs even before the insertion of the set S, a state that is indeed possible in practice.

Next, we determine that the leftmost bucket of A contains the most pairs. This bucket is then drained by removing d items from the leftmost bucket of A, which are then recursively inserted into the corresponding child node, B. Note that the set of d pairs drained from a node and recursively inserted into a child node is likely to be different than the set of pairs originally inserted into the node. In our example, after the set of pairs {(1, ptr), (1, ptr), (2, ptr), (5, ptr), (9, ptr)} has been drained into B, B will appear as is depicted in Figure 4. Finally, the left bucket of the node B will be drained, with the set {(1, ptr), (1, ptr), (1, ptr), (2, ptr), (4, ptr)} selected and recursively inserted into the proper child, leaf node C, of Figure 1.

The reason that a single insertion only follows one path from root to leaf is that at each level of the tree, pairs not following a given path from root to leaf are effectively traded for pairs that do and have been buffered in the heap. The heap within an internal node provides a storage space for items which have been inserted previously but never reached a leaf node. A future insertion will again traverse that internal

node, picking up those buffered items and dropping off others en route to a leaf node. By not requiring that the actual set of pairs inserted into the tree at that time reach a leaf and instead only requiring that some set of pairs of equivalent size reach a leaf, fast insertion can be achieved.

2.2 Node Splits and Queries of the Y-tree

As mentioned previously, when a leaf node becomes full, it must be split. Splits are handled in the same way as in most hierarchical structures. We describe the handling of splits and queries now:

Leaf Node Split: The entries of the leaf node L are partitioned around the median key value k from L. Entries greater than the median key value are placed into a new leaf node, Lnew. This node is then added to the parent internal node, Nparent. The bucket in Nparent associated with L is split, with the (key, ptr) pairs it contains partitioned around k. Finally, the pointer-list in Nparent is updated accordingly.

Internal Node Split: Identical to the leaf node split, except that the node (heap buckets and pointer-list entries) is partitioned around the pointer-list entry Kf/2.

Queries: Queries to the structure are handled with a simple in-order traversal of the tree. Note that since (key, ptr) pairs may be present in buckets in internal nodes, the heaps of internal nodes that are traversed must be searched as well.

3 The Y-Tree Vs. The Value-List Index

We now offer an analytical comparison of Y-tree and value list index performance as a preface to Section 4, where we will describe our experimental results. In this section,  will use the notation in 
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                                                                Table 1. Notation

 Also, for the sake of simplicity and brevity, we will assume that the node sizes for both internal nodes and leaf nodes are the same, and that in a leaf node, each key value has a single, unique, associated pointer (as opposed to an associated, varying-sized RID-list as would be expected for an attribute with a small cardinality compared to the overall, fact table size). We will drop this assumption in Section 4.

3.1 Insertions

In our analysis, we will compare Y-tree insertion times to batched, value-list index insertion times using the algorithm outlined in [6]. The advantage of using a batch algorithm for value-list index insertion (as opposed to classical, item by item insertion) is that each edge in the tree is traversed at most once, which can lead to a reduction in total seek time and data transfer time required. In building our analytical model for batched value-list index insertion performance, we assume that the number of nodes read and written is equal to the batched insertion set size. This assumption is justified by the following:

• We assume that the number of leaf level nodes and the number of distinct key values inserted into the trees are large enough that we can assume that every new (key, ptr) pair is inserted into a distinct leaf node. The rationale for this is as follows. If the structure contains n (key, ptr) pairs, there are then approximately

(n/NB+* 0.68 ) leaf nodes, assuming an average 68% fill rate. Given the simplifying assumption that each to-be inserted attribute value has an equal probability of belonging to any given leaf node, then, the expected number of leaf nodes receiving j of the d new (key, ptr) pairs (again assuming a 68% fill rate) is:

is:  (d/j)*(NB+* 0.68)/n)j-11-(NB+* 0.68)/n)d-j
Setting j = 0 in the above expression yields the number of leaf nodes receiving none of the d pairs. Thus, the number of distinct leaves expected to receive at least one (key, ptr) pair is: 

        (n/NB+ *0.68 )*( 1-( 1-(Nb+*0.68)/n)d)
Using this expression, we can calculate that, for the AT&T example of Section 1, with an insertion set size of one million, we would expect more than 963 thousand distinct leaf nodes to be written. Thus, the savings in terms of leaf level pages not written in this example due to batch insert is small (less than 4%). The effect of this is that in a huge database with a large attribute domain, by using batch insertion, we can avoid multiple reads of internal nodes, but nearly one node must still be read/written for each pair inserted.

• We assume that the cost of accessing internal nodes during large, batched insert is negligible. If one million different leaf nodes must be read and written, the number f distinct internal nodes which must be traversed in order to reach those leaf nodes will be less than 1/100 of he number of such leaf nodes assuming a fanout of arger than 100), and will be insignificant.

• We assume that splits occur infrequently enough that hey do not contribute significantly to the cost of batched insertion. Given these assumptions, the cost to batch insert a set of b key, ptr) pairs into a value-list index is simply: (b( 2* Ttrans NB+ Tseek ))

For a Y-tree, in comparison, inserting b (key, ptr) pairs requires that each node on a unique path from root to leaf be read and written. Assuming that an average node is 68% full, since data are held in internal nodes as well, the depth of a Ytree can be expected to be at most.
┌ log 0.68 f Y  n- log 0.68fy Ny+ log0.68fy  0.68┐
  Since the final term in the above expression will be very small, we ignore it in our analysis for the sake of simplicity. Note that this expression takes into account the fact that the number of pairs in a leaf node (NY) is likely to be different and much greater than the fanout of the internal nodes (fY). In our analysis, we will also ignore the reduction in the number of leaf nodes due to the fact that data are also present in internal nodes. Assuming that the root node is stored in memory, the cost to insert b pairs is then:

                             (b/d)*┌log0.68fy n –log0.68fy Ny-1┐*(2*Ttrans*Ny+Tseek)

3.2 Queries

Querying a value-list index is a simple matter. To evaluate a range query, a single path is traversed from root to leaf, down the tree. When a leaf node is reached, a string of leaf nodes are typically traversed, following pointers, until the end of the range has been reached. The time to process a query returning s (key, ptr) pairs, assuming that the root node is resident in memory, is then:

                  (┌log0.68NB+ n┐-1+┌(s/NB+0.68)┐)* (2*Ttrans*NB+ +Tseek)
Querying a Y-tree is slightly more complex, since an inorder traversal of the tree must be undertaken in order to answer a range query. In order to produce a simple expression, we ignore the fact that since some of the desired (key, ptr) pairs will be found in internal nodes, the actual number of leaf nodes that must be processed will be less than for a value-list index having the same leaf node size. Under these assumptions,
the time needed to query a Y-tree, assuming that the root node is resident in memory, is then: 

Note again that this expression takes into account the difference between the number of entries in a leaf node and the fanout of an internal node.
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Figure 6: Analytically predicted performance of the Y-tree as compared to a value-list index with a node size of 8KB. The time to write one million (key, ptr) pairs to disk is assumed to be ten times the average disk seek time.

4 Experimental Results

The analytical results present only a very rough estimation for the type of behavior that one might expect to encounter in actual implementations of these structures.

4.1 Scope

In order to overcome these limitations and fully test the practicality of the Y-tree for use in indexing real data, we implemented the following:

1) An optimal, bulk value-list index loader. We implemented a bulk loader that builds a packed value-list index at a fill rate of p%, where p is a parameter supplied at index creation time. All leaf nodes are written in sequence to disk, guaranteeing that once a single RID has been located, no seeks need be performed during range query evaluation as all RIDs are read in sequence.

2) Non-optimal, Y-tree and value-list index bulk loaders. We also implemented non-optimal loaders, which build trees packed to an average fill rate p%, where leaf nodes are not written in sequential order, in order to simulate a tree that had been built incrementally as the data accumulated.

3) Value-list index and Y-tree insertion and query algorithms. We implemented Y-tree query and insertion, as well as batched value-list index insertion and the value-list index query algorithm. For these algorithms, root nodes were pinned in main memory, and a FIFO buffer of nodes was maintained (in order to simulate DBMS caching), in addition to the caching provided by the file system.

4.2 Query Processing Experiments

For testing query processing, we ran two sets of experiments, concentrating on queries and insertions, respectively. We constructed a synthetic data set having a single attribute and 200 million rows of data. We believe that even for a larger, real-world application indexing 10 billion or more rows, the results presented here still hold since the larger database size probably equates to only one additional level (if any) in a hierarchical index.

For the query processing experiments, we constructed optimal value-list indexes containing a (key, ptr) pair for each row of the data set. We built a series of value-list indexes, one at each of several different node sizes. We constructed optimal value-list indexes (as opposed to our analysis of non-optimal indices in Section 3) since we felt that for a database of that size, the incremental, batched construction that would have led to a non-optimal tree was not a viable option in practice due to the tremendous time that would be required to build such an index (cf. Section 4.3). In other words, no one would build such a huge index incrementally in the real world. Since they would have to build it in bulk, it can be assumed that this would be done optimally.

We also constructed a series of non-optimal Y-trees in bulk, to simulate Y-trees that had been constructed incrementally. Thus, we will compare optimal value-list indexes with non-optimal Y-trees. The Y-trees were constructed at a fill rate of 68%, so nodes averaged 68% full. The Y-trees constructed in this way were typically 2.2GB to 2.5GB in size. The optimal value-list indexes were typically around 65% of this size.

 
For each tree constructed, at each of several different query selectivities, we ran a batch of 500 queries. At the beginning of each run of 500 queries, the tree node cache was empty, but it was not flushed as the queries were executed. Queries were run at a variety of selectivities.
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Table 2: Average evaluation times required per query, over 500 trials, for optimal, bulk-loaded, value-list indexes.

Table 3: Average evaluation times required per query, over 500 trials, for Y-trees.          
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Table 4: Y-tree insertion speedup vs. batched, incremental insertion into a value-list          index having a node size of 4096

We summarize the results at several different selectivities and node sizes for value-list indexes above in Table 2. It is useful to note that since each value-list index is constructed optimally, increasing node size past 8KB does little to increase query evaluation efficiency. Since it is the case that once a leaf node has been reached, no more disk seeks are required (due to the value-list index optimality), increasing

node size past a certain point is harmful as it leads to longer transfer times for internal nodes. In Table 3, we similarly give the query evaluation times required by the Y-tree for selected combinations of different node sizes and insertion set sizes.

Comparing the two tables, it is clear that there is a significant performance hit taken from using the Y-tree for evaluating point queries, with the Y-tree taking anywhere from three to five times as long. For larger queries (more common in OLAP), however, an incrementally constructed Y-tree may be three times as fast as an incrementally constructed value-list index. With a large node size, the Y-tree is only 56% slower than a 100% full, optimally constructed value list index with leaf nodes located sequentially on the disk. We believe that the excellent performance for larger queries is important, since larger ranges are of more use during join evaluation.

4.3 Insertion Experiments

For this set of tests, we wished to determine whether, in practice, Y-tree insertion is fast when compared to incremental, batched, value-list index insertion. We now discuss the results of our tests:

Incremental, batched, value-list index insertion. Our first set of tests involved using an incremental, batched insertion algorithm on a value-list index that had been constructed using our non-optimal bulk loader to simulate a tree that had been constructed completely incrementally. The tree was loaded so that each node was, on average, filled to 68% of capacity. During our tests, batches of 10,000 (key, ptr) pairs were inserted at one time into the tree. Using this method, the fastest insertion rate was achieved at a node size of 4096 bytes, averaging one insert every 0.0246 seconds. While this method avoids many of the pitfalls associated with the massive rebuild, the insertion rate we achieved was painfully slow. At this rate, in order to handle the three million insertions per day without concurrent query processing, more than 20 hours would be required.

The Y-tree. Finally, we tested insertion into the Y-tree. As with our query experiments, we tested the Y-tree at a variety of different node and insertion set sizes. A subset of those results is given in Table 3 above. Clearly, the Y-tree is much faster than the value-list index for processing insertions, with speedups ranging from 25 to nearly 100 over the value-list index.

4.4 Discussion of Experimental Results

The experimental results show that the Y-tree is a viable alternative to the value-list index in practice. Due to the support for very large node sizes, the Y-tree is considerably faster than an incrementally constructed value-list index for large range queries, and is competitive with an optimal value-list index. The primary factor we encountered that limits node sizes in an incrementally constructed value-list index is that with larger node sizes come larger insert times, so frequent insertions place a practical limitation on value list index node size.

In general, when insertion rates are fully considered, the Y-tree looks more attractive still. Handling three million insertions using a Y-tree may take little longer than 12 minutes, compared with 20 hours or more using a value-list index. If the attribute domain and the database size are both large, a value-list index simply cannot handle such a high, sustained insertion rate, taking 100 times as long. When all of this is considered together, the Y-tree proves to be worth serious consideration as an indexing structure.

5 Related Work

While the subject of database indexing has attracted a huge amount of attention, very few of the proposed methods have dealt specifically with the issue of allowing fast inserts. We briefly discuss two methods that have addressed the insertion problem, and we compare these methods with the Y-tree. Specifically we discuss the Log-Structured Merge Tree (LSM-Tree) and the Stepped Merge Method.

Both of these methods make use of the fact that on a per insertion basis, it is much faster to buffer a large set of insertions and then scan the entire base relation at once (which is organized as a B+-tree1), adding new data to the structure. Since the structure can be scanned in this way with a minimum of disk seeks, the average time required per insertion is likely to be much less than would be required were the classical B+-tree insertion algorithm used instead. Both the LSM-Tree and the Stepped Merge Method utilize algorithms that efficiently accept and organize the new data until such a time as they can efficiently be added to the base relation.

The LSM-Tree uses a smaller, secondary tree to buffer insertions and updates as they are issued. An ongoing rolling merge process feeds nodes from the smaller tree into the larger tree, where the new nodes are written out to disk as large, multi-page runs of records known as filling blocks. These runs are written out log-style, and older versions of nodes are kept on disk as long as is feasible to facilitate easy rollback and recovery, in a manner reminiscent of a log structured file system. In the more general case, there can be N such trees in all, where each tree feeds into a larger tree in a series of rolling merges, with each record eventually reaching the base relation after passing through each tree. The Stepped Merge Method can be viewed as a variation of the LSM-tree, where at each of the N - 1 levels K trees (instead of just one tree) are stored and are merged and propagated to the higher level when they become too large. Because data are written only once at each level, each data insertion may require fewer disk operations than in the LSM Tree.

However, the Y-tree does have some advantages. The Ytree may exhibit improved query performance over the Stepped Merge Method, since at each level of the structure built by the Stepped Merge Method, K trees must be searched during query execution. Unless these trees are stored on separate disks, query evaluation performance may suffer. Since some of the trees at certain levels are likely to be relatively small, placing each on a separate disk may require that many more disk seeks be used in order to maintain query performance than would be needed to simply store the data.

In addition, the Y-tree has at least one important advantage over both of the other methods. Regardless of the insertion pattern, the LSM-Tree and the Stepped Merge Method must eventually merge entire smaller trees with entire larger trees. The Y-tree, on the other hand, can adapt well to certain circumstances such as a small set of “hot” key values. In this case, only hot spots would need to be drained to leaf nodes, whereas the other methods must rewrite an entire leaf node, even if only a single key value must be inserted into that node.

6 Conclusions

In this paper, we have presented a new, secondary index for use in huge, constantly growing data warehousing environments. Our new index, called the Y-tree, is fast because of the use of a single path, bulk insertion. During a single path, bulk insertion, a set of insertions is processed together (similar to batched insertion into a value-list index) but in contrast to a value-list index, nodes need be written only on a single path from root to leaf, regardless of the key values in the insertion set.
 We have shown that because of this, the Y-tree is very fast for processing insertions: insertions are processed up to 100 times faster than they can be processed using batch insertion with a value-list index. Furthermore, the Y-tree processes large range queries competitively when compared to an optimally constructed value-list index, and several times faster than an incrementally constructed value-list index. Point query evaluation using a Y-tree is slower, but point queries are infrequent in OLAP applications. We have discussed two alternative indexing methods for supporting fast insertions, the LSM-Tree and the Stepped Merge Method, and pointed out at least one advantage of the Y-tree over these other methods: namely, the ability of the Y-tree to adjust well to highly skewed insertion patterns. For these reasons, we believe that the Y-tree offers an attractive alternative to the value-list index for indexing massive, perpetually growing warehouses.
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