GPU computing

GPU Computing

Introduction

Due to physical limitations, the clock speed of CPU’s has come to maximum limit. However, the Moore’s Law still holds, which means there still exists the ability to pack more transistors on a chip. The recent trend in the microprocessor industry is to put more cores (processors) into a single chip. Parallelism is the future of computing. Future microprocessor development efforts will continue to concentrate on adding cores rather than increasing single thread performance. One example of this trend is the heterogeneous nine-core Cell broadband engine, the main processor in the Sony Playstation 3 and has also attracted substantial interest from scientific computing community. Similarly the highly parallel graphics processing unit (GPU) is rapidly gaining maturity as a powerful engine for computationally demanding applications. The GPU’s performance and potential offer a great deal of promise for future computing systems, yet the architecture and programming model of the GPU are markedly different than most other commodity single chip processors.
	The GPU is designed for a particular class of applications with the following characteristics.
· Computational requirements are large: Real-time rendering requires billions of pixels per second, and each pixel requires hundreds or more operations. GPUs must deliver an enormous amount of compute performance to satisfy the demand of complex real-time applications.
· Parallelism is substantial: Fortunately, the graphics pipeline is well suited for parallelism.
· Throughput is more important than latency: GPU implementations of the graphics pipeline prioritize throughput over latency. The human visual system operates on millisecond time scales, while operations within a modern processor take nanoseconds. This six-order-of-magnitude gap means that the latency of any individual operation is unimportant.	
Because of the primitive nature of the tools and techniques, the first generation of applications were notable for simply working at all. As the field matured, the techniques became more sophisticated and the comparisons with non-GPU work more rigorous. We are now entering the third stage of GPU computing: building real applications on which GPUs demonstrate an appreciable advantage.

GPU Architecture

The GPU has always been a processor with ample computational resources. The most important recent trend, however, has been exposing that computation to the programmer. Over the past few years, the GPU has evolved from a fixed-function special-purpose processor into a full-fledged parallel programmable processor with additional fixed-function special-purpose functionality. More than ever, the programmable aspects of the processor have taken centre stage.
We begin by chronicling this evolution, starting from the structure of the graphics pipeline and how the GPU has become a general-purpose architecture, then taking a closer look at the architecture of the modern GPU.

A. The Graphics Pipeline

The input to the GPU is a list of geometric primitives, typically triangles, in a 3-D world coordinate system. Through many steps, those primitives are shaded and mapped onto the screen, where they are assembled to create a final picture. It is instructive to first explain the specific steps in the canonical pipeline before showing how the pipeline has become programmable.
· Vertex Operations: Vertex operations transform raw 3D geometry into the 2D plane of your monitor. Vertex pipelines also eliminate unneeded geometry by detecting parts of the scene that are hidden by other parts and simply discarding those parts.

[image:]	[image:]
Range Based fogging		Elevation based fogging

· Primitive Assembly: The vertices are assembled into triangles, the fundamental hardware-supported primitive in today’s GPUs.
[image:]
· Rasterization: Rasterization is the process of determining which screen-space pixel locations are covered by each triangle. Each triangle generates a primitive called a “fragment” at each screen-space pixel location that it covers. Because many triangles may overlap at any pixel location, each pixel’s color value may be computed from several fragments.

· Fragment Operations: Using color information from the vertices and possibly fetching additional data from global memory in the form of textures (images that are mapped onto surfaces), each fragment is shaded to determine its final color. Just as in the vertex stage, each fragment can be computed in parallel. This stage is typically the most computationally demanding stage in the graphics pipeline.
· Composition: Fragments are assembled into a final image with one color per pixel, usually by keeping the closest fragment to the camera for each pixel location.

[image: App-a-02-03-P374493]
The Graphics logical pipeline(The programmable blocks are in blue)

Historically, the operations available at the vertex and fragment stages were configurable but not programmable. For instance, one of the key computations at the vertex stage is computing the color at each vertex as a function of the vertex properties and the lights in the scene. In the fixed-function pipeline, the programmer could control the position and color of the vertex and the lights, but not the lighting model that determined their interaction.

B. Evolution of GPU Architecture
The fixed-function pipeline lacked the generality to efficiently express more complicated shading and lighting operations that are essential for complex effects. The key step was replacing the fixed-function per-vertex and per-fragment operations with user-specified programs run on each vertex and fragment. Over the past six years, these vertex programs and fragment programs have become increasingly more capable, with larger limits on their size and resource consumption, with more fully featured instruction sets, and with more flexible control-flow operations. After many years of separate instruction sets for vertex and fragment operations, current GPUs support the unified Shader Model 4.0 on both vertex and fragment shaders.
• The hardware must support shader programs of at least 65 k static instructions and unlimited dynamic instructions.
• The instruction set, for the first time, supports both 32-bit integers and 32-bit floating-point
numbers.
• The hardware must allow an arbitrary number of both direct and indirect reads from global memory (texture).
• Finally, dynamic flow control in the form of loops and branches must be supported.

As the shader model has evolved and become more powerful, and GPU applications of all types have increased vertex and fragment program complexity, GPU architectures have increasingly focused on the programmable parts of the graphics pipeline. Indeed, while previous generations of GPUs could best be described as additions of programmability to a fixed-function pipeline, today’s GPUs are better characterized as a programmable engine surrounded by supporting fixed-function units.

C. Architecture of a Modern GPU

We noted that the GPU is built for different application demands than the CPU: large, parallel computation requirements with an emphasis on throughput rather than latency. Consequently, the architecture of the GPU has progressed in a different direction than that of the CPU.

[image: App-a-02-04-P374493]

Basic Unified GPU architecture: The programmable shader stages execute on the array of unified processors, and the logical graphics pipeline dataflow recirculates through the processors.
Consider a pipeline of tasks, such as we see in most graphics APIs (and many other applications), that must process a large number of input elements. In such a pipeline, the output of each successive task is fed into the input of the next task. The pipeline exposes the task parallelism of the application, as data in multiple pipeline stages can be computed at the same time; within each stage, computing more than one element at the same time is data parallelism. To execute such a pipeline, a CPU would take a single element (or group of elements) and process the first stage in the pipeline, then the next stage, and so on. The CPU divides the pipeline in time, applying all resources in the processor to each stage in turn.
 GPUs have historically taken a different approach. The GPU divides the resources of the processor among the different stages, such that the pipeline is divided in space, not time. The part of the processor working on one stage feeds its output directly into a different part that works on the next stage.
 This machine organization was highly successful in fixed-function GPUs for two reasons. First, the hardware in any given stage could exploit data parallelism within that stage, processing multiple elements at the same time. Because many task-parallel stages were running at any time, the GPU could meet the large compute needs of the graphics pipeline. Secondly, each stage’s hardware could be customized with special-purpose hardware for its given task, allowing substantially greater compute and area efficiency over a general-purpose solution. For instance, the Rasterization stage, which computes pixel coverage information for each input triangle, is more efficient when implemented in special-purpose hardware. As programmable stages (such as the vertex and fragment programs) replaced fixed-function stages, the special-purpose fixed function components were simply replaced by programmable components, but the task-parallel organization did not change.
 The result was a lengthy, feed-forward GPU pipeline with many stages, each typically accelerated by special purpose parallel hardware. In a CPU, any given operation may take on the order of 20 cycles between entering and leaving the CPU pipeline. On a GPU, a graphics operation may take thousands of cycles from start to finish. The latency of any given operation is long. However, the task and data parallelism across and between stages delivers high throughput.
[image:]
The NVIDIA GeForce 8800 GTX (top) features 16 streaming multiprocessors of 8 thread (stream) processors each. One pair of streaming multiprocessors is shown below; each contains shared instruction and data caches, control logic, a 16 kB shared memory, eight stream processors, and two special function units.
 The major disadvantage of the GPU task-parallel pipeline is load balancing. Like any pipeline, the performance of the GPU pipeline is dependent on its slowest stage. If the vertex program is complex and the fragment program is simple, overall throughput is dependent on the performance of the vertex program. In the early days of programmable stages, the instruction set of the vertex and fragment programs were quite different, so these stages were separate. However, as both the vertex and fragment programs became more fully featured,
and as the instruction sets converged, GPU architects reconsidered a strict task-parallel pipeline in favor of a unified shader architecture, in which all programmable units in the pipeline share a single programmable hardware unit. While much of the pipeline is still task-parallel, the programmable units now divide their time among vertex work, fragment work, and geometry work (with the new DirectX 10 geometry shaders). These units can exploit both task and data parallelism. As the programmable parts of the pipeline are responsible for more and more computation within the graphics pipeline, the architecture of the GPU is migrating from a strict pipelined task-parallel architecture to one that is increasingly built around a single unified data-parallel programmable unit. AMD introduced the first unified shader architecture for modern GPUs in its Xenos GPU in the XBox 360 (2005). Today, both AMD’s and NVIDIA’s flagship GPUs feature unified shaders (Fig. 1). The benefit for GPU users is better load-balancing at the cost of more complex hardware. The benefit for GPGPU users is clear: with all the programmable power in a single hardware unit, GPGPU programmers can now target that programmable unit directly, rather than the previous approach of dividing work across multiple hardware units. [image:]
AMD’s Radeon HD 2900XT contains 320 stream processing units arranged into four SIMD arrays of 80 units each. These units are arranged into stream processing blocks containing five arithmetic logic units and a branch unit. In the diagram, gray ovals indicate logic units and red-bordered rectangles indicate memory units. Green triangles at the top left of functional units are units that read from memory, and blue triangles at the bottom left write to memory.

GPU Computing

Now that we have seen the hardware architecture of the GPU, we turn to its programming model.
A. The GPU Programming Model
The programmable units of the GPU follow a single program multiple-data (SPMD) programming model. For efficiency, the GPU processes many elements (vertices or fragments) in parallel using the same program. Each element is independent from the other elements, and in the base programming model, elements cannot communicate with each other. All GPU programs must be structured in this way: many parallel elements each processed in parallel by a single program.
 Each element can operate on 32-bit integer or floating point data with a reasonably complete general-purpose instruction set. Elements can read data from a shared global memory (a “gather” operation) and, with the newest GPUs, also write back to arbitrary locations in shared global memory (“scatter”).
 This programming model is well suited to straight-line programs, as many elements can be processed in lockstep running the exact same code. Code written in this manner is single instruction, multiple data (SIMD). As shader programs have become more complex, programmers prefer to allow different elements to take different paths through the same program, leading to the more general SPMD model. How is this supported on the GPU?
 One of the benefits of the GPU is its large fraction of resources devoted to computation. Allowing a different execution path for each element requires a substantial amount of control hardware. Instead, today’s GPUs support arbitrary control flow per thread but impose a penalty for incoherent branching. GPU vendors have largely adopted this approach. Elements are grouped together into blocks, and blocks are processed in parallel. If elements branch in different directions within a block, the hardware computes both sides of the branch for all elements in the block. The size of the block is known as the “branch granularity” and has been decreasing with recent GPU generations - today, it is on the order of 16 elements.
 In writing GPU programs, then, branches are permitted but not free. Programmers who structure their code such that blocks have coherent branches will make the best use of the hardware.

B. General-Purpose Computing on the GPU

Mapping general-purpose computation onto the GPU uses the graphics hardware in much the same way as any standard graphics application. Because of this similarity, it is both easier and more difficult to explain the process. On one hand, the actual operations are the same and are easy to follow; on the other hand, the terminology is different between graphics and general-purpose use. We begin by describing GPU programming using graphics terminology, then show how the same steps are used in a general-purpose way to author GPGPU applications, and finally use the same steps to show the more simple and direct way that today’s GPU computing applications are written.

1) Programming a GPU for Graphics: We begin with the same GPU pipeline, concentrating on the programmable aspects of this pipeline.
1) The programmer specifies geometry that covers a region on the screen. The rasterizer generates a fragment at each pixel location covered by that geometry.
2) Each fragment is shaded by the fragment program.
3) The fragment program computes the value of the fragment by a combination of math operations and global memory reads from a global “texture” memory.
4) The resulting image can then be used as texture on future passes through the graphics pipeline.

2) Programming a GPU for General-Purpose Programs:
One of the historical difficulties in programming GPGPU applications has been that despite their general-purpose tasks’ having nothing to do with graphics, the applications still had to be programmed using graphics APIs. In addition, the program had to be structured in terms of the graphics pipeline, with the programmable units only accessible as an intermediate step in that pipeline, when the programmer would almost certainly prefer to access the programmable units directly. The programming environments we describe in detail are solving this difficulty by providing a more natural, direct, non-graphics interface to the hardware and, specifically, the programmable units. Today, GPU computing applications are structured in the following way.
1) The programmer directly defines the computation domain of interest as a structured grid of threads.
2) An SPMD general-purpose program computes the value of each thread.
3) The value for each thread is computed by a combination of math operations .
4) The resulting buffer in global memory can then be used as an input in future computation.
This programming model is a powerful one for several reasons. First, it allows the hardware to fully exploit the application’s data parallelism by explicitly specifying that parallelism in the program. Next, it strikes a careful balance between generality (a fully programmable routine at each element) and restrictions to ensure good performance. Finally, its direct access to the programmable units eliminates much of the complexity faced by previous GPGPU programmers in co-opting the graphics interface for general-purpose programming. As a result, programs are more often expressed in a familiar programming language (such as NVIDIA’s C-like syntax in their CUDA programming environment) and are simpler and easier to build and debug (and are becoming more so as the programming tools mature). The result is a programming model that allows its users to take full advantage of the GPU’s powerful hardware but also permits an increasingly high-level programming model that enables productive authoring of complex applications.

SOFTWARE ENVIRONMENTS

In the past, the majority of GPGPU programming was done directly through graphics APIs. Originally, people used fixed function, graphics-specific units (e.g. texture filters, blending, and stencil buffer operations) to perform GPGPU operations. This quickly got better with fully programmable fragment processors which provided pseudo assembly languages, but this was still unapproachable by all but the most ardent researchers. With DirectX 9, higher level shader programming was made possible through the “high-level shading language” (HLSL), presenting a C-like interface for programming shaders. Computation must still be expressed in graphics terms like vertices, textures, fragments, and blending. So, although you could do more general computation with graphics APIs and shading languages, they were still largely unapproachable by the common programmer.
 BrookGPU and Sh were two early academic research projects with the goal of abstracting the GPU as a streaming processor. The stream programming model structures programs to express parallelism and allows for efficient communication and data transfer, matching the parallel processing resources and memory system available on GPUs.
 Brook takes a pure streaming computation abstraction approach representing data as streams and computation as kernels. There is no notion of textures, vertices, fragments, or blending in Brook. Kernels are written in a restricted subset of C. The user’s kernels are mapped to fragment shader code and streams to textures. Data upload and download to the GPU is performed via explicit read/write calls. Lastly, computation is performed by rendering a quad covering the pixels in the output domain.
PeakStream is a new system, inspired by Brook, designed around operations on arrays. PeakStream uses just-in-time compilation but is much more aggressive about vectorizing the user’s code to maximize performance on SIMD architectures. Peak- Stream is also the first platform to provide profiling and debugging support, the latter continuing to be a serious problem in GPGPU development.
 NVIDIA’s CUDA is a higher level interface. Similar to Brook, CUDA provides a C-like syntax for executing on the GPU and compiles offline. However, unlike Brook, which only exposed one dimension of parallelism, data parallelism via streaming, CUDA exposes two levels of parallelism, data parallel and multithreading. CUDA also exposes much more of the hardware resources than Brook, exposing multiple levels of memory hierarchy: per-thread registers, fast shared memory between threads in a block, board memory, and host memory. Kernels in CUDA are also more flexible that those in Brook by allowing the use of pointers. However, all of this flexibility and potential performance gain comes with the cost of requiring the user to understand more of the low-level details of the hardware, notably register usage, thread and thread block scheduling, and behavior of access patterns through memory.
 CUDA provides tuned and optimized basic linear algebra subprograms (BLAS) and fast Fourier transform (FFT) libraries to use as building blocks for large applications. Low-level access to hardware, allow developers to effectively bypass the graphics drivers and maintain stable performance and correctness.

TECHNIQUES AND APPLICATIONS

We now survey some important computational primitives, algorithms, and applications for GPU computing. We first highlight four data-parallel operations central to GPU computing: performing scatter/gather memory operations, mapping a function onto many elements in parallel, reducing a collection of elements to a single element or value, and computing prefix reductions of an array in parallel.

A.Computational Primitives

The data-parallel architecture of GPUs requires programming idioms long familiar to parallel supercomputer users but often new to today’s programmers reared on sequential machines or loosely coupled clusters. We briefly discuss four important idioms: scatter/gather, map, reduce, and scan. We describe these computational primitives in the context of both “old” (i.e., graphics-based) and “new” (direct compute) GPU computing to emphasize the simplicity and flexibility of the direct-compute approach.

Scatter/gather: write to or read from a computed location in memory. Graphics-based GPU computing allows efficient gather using the texture subsystem, storing data as images (textures) and addressing data by computing corresponding image coordinates and performing a texture fetch. However, texture limitations make this unwieldy: texture size restrictions require wrapping arrays containing more than 4096 elements into multiple rows of a two-dimensional (2-D) texture, adding extra addressing math, and a single texture fetch can only retrieve four 32-bit floating point values, limiting per-element storage. Scatter in graphics-based GPU computing is difficult and requires rebinding data for processing as vertices, either using vertex texture fetch or render-to-vertex-buffer. By contrast, direct-compute layers allow unlimited reads and writes to arbitrary locations in memory. NVIDIA’s
CUDA allows the user to access memory using standard C constructs (arrays, pointers, variables). AMD’s CTM is nearly as flexible but uses 2-D addressing.

Map: apply an operation to every element in a collection. Typically expressed as a for loop in a sequential program (e.g., a thread on a single CPU core), a parallel implementation can reduce the time required by applying the operation to many elements in parallel. Graphics-based GPU computing performs map as a fragment program to be invoked on a collection of pixels (one pixel for each element). Each pixel’s fragment program fetches the element data from a texture at a location corresponding to the pixel’s location in the rendered image, performs the operation, then stores the result in the output pixel. Similarly, CTM and CUDA would typically launch a thread program to perform the operation in many threads, with each thread loading an element, performing the computation, and storing the result. Note that since loops are supported, each thread may also loop over several elements.

Reduce: repeatedly apply a binary associative operation to reducing a collection of elements to a single element or value. Examples include finding the sum (average, minimum, maximum, variance, etc.) of a collection of values. A sequential implementation on a traditional CPU would loop over an array, successively summing (for example) each element with a running sum of elements seen so far. By contrast, a parallel reduce-sum implementation would repeatedly perform sums in parallel on an ever-shrinking set of elements.1 Graphics-based GPU computing implements reduce by rendering progressively smaller sets of pixels. In each rendering pass, a fragment program reads multiple values from a texture (performing perhaps four or eight texture reads), computes their sum, and writes that value to the output pixel in another texture (four or eight times smaller), which is then bound as input to the same fragment shader and the process repeated until the output consists of a single pixel that contains the result of the final reduction. CTM and CUDA express this same process more directly, for example, by launching a set of threads each of which reads two elements and writes their sum to a single element. Half the threads then repeat this process, then half of the remaining threads, and so on until a single surviving thread writes the final result to memory.

Scan: Sometimes known as parallel-prefix-sum, scan takes an array A of elements and returns an array B of the same length in which each element B½i_ represents a reduction of the subarray A[1 . . . i]. Scan is an extremely useful building block for data-parallel algorithms; Blelloch describes a wide variety of potential applications of scan ranging from quicksort to sparse matrix operations. Harris et al. demonstrate an efficient scan implementation using CUDA (Fig. 2); their results illustrate the advantages of a direct-compute over graphics-based GPU computing. Their CUDA implementation outperforms the CPU by a factor of up to 20 and OpenGL by a factor of up to seven.

[image:]

Scan performance on CPU, graphics-based GPU (using OpenGL), and direct-compute GPU (using CUDA). Results obtained on aGeForce 8800 GTX GPU and Intel Core2-Duo Extreme 2.93 GHz CPU. (Figure adapted from Harris et al.)

A. Algorithms and Applications
Building largely on the above primitives, researchers have demonstrated many higher level algorithms and applications that exploit the computational strengths of the GPU. We give only a brief survey of GPU computing algorithms and their application domains here.

Sort: GPUs have come to excel at sorting as the GPU computing community has rediscovered, adapted, and improved seminal sorting algorithms, notably merge sort. This “sorting network” algorithm is intrinsically parallel and oblivious, meaning the same steps are executed regardless of input.

Differential equations: The earliest attempts to use GPUs for nongraphics computation focused on solving large sets of differential equations. Particle tracing is a common GPU application for ordinary differential equations, used heavily in scientific visualization (e.g., the scientific flow exploration system by Kru¨ger et al.) and in visual effects for computer games. GPUs have been heavily used to solve problems in partial differential equations (PDEs) such as the Navier–Stokes equations for incompressible fluid flow. Particularly successful applications of GPU PDE solvers include fluid dynamics (e.g., Bolz et al.) and level set equations for volume segmentation.

Linear algebra: Sparse and dense linear algebra routines are the core building blocks for a huge class of numeric algorithms, including many PDE solvers mentioned above. Applications include simulation of physical effects such as fluids, heat, and radiation, optical effects such as depth of field, and so on. The use of direct-compute layers such as CUDA and CTM both simplifies and improves the performance of linear algebra on the GPU. For example, NVIDIA provides CuBLAS, a dense linear algebra package implemented in CUDA and following the popular BLAS conventions. Sparse linear algebraic algorithms, which are more varied and complicated than dense codes, are an open and active area of research; researchers expect sparse codes to realize benefits similar to or greater than those of the new GPU computing layers.

B. Recurring Themes
Several recurring themes emerge throughout the algorithms and applications explored in GPU computing to date. Examining these themes allows us to characterize what GPUs do well. Successful GPU computing applications do the following.

Emphasize parallelism: GPUs are fundamentally parallel machines, and their efficient utilization depends on a high degree of parallelism in the workload. For example, NVIDIA’s CUDA prefers to run thousands of threads at one time to maximize opportunities to mask memory latency using multithreading. Emphasizing parallelism requires choosing algorithms that divide the computational domain into as many independent pieces as possible. To maximize the number of simultaneous running threads, GPU programmers should also seek to minimize thread usage of shared resources (such as local registers and CUDA shared memory) and should use synchronization between threads sparingly.

Minimize SIMD divergence: As Section III discusses, GPUs provide an SPMD programming model: multiple threads run the same program but access different data and thus may diverge in their execution. At some granularity, however, GPUs perform SIMD execution on batches of threads (such as CUDA “warps”). If threads within a batch diverge, the entire batch will execute both code paths until the threads reconverge. High-performance GPU computing thus requires structuring code to minimize divergence within batches.

Maximize arithmetic intensity: In today’s computing landscape, actual computation is relatively cheap but bandwidth is precious. This is dramatically true for GPUs with their abundant floating-point horsepower. To obtain maximum utilization of that power requires structuring the algorithm to maximize the arithmetic intensity or number of numeric computations performed per memory transaction. Coherent data accesses by individual threads help, since these can be coalesced into fewer total memory transactions. Use of CUDA shared memory on NVIDIA GPUs also helps, reducing overfetch (since threads can communicate) and enabling strategies for “blocking” the computation in this fast on-chip memory.

Exploit streaming bandwidth: Despite the importance of arithmetic intensity, it is worth noting that GPUs do have very high peak bandwidth to their onboard memory, on the order of 10x the CPU-memory bandwidths on typical PC platforms. This is why GPUs can outperform CPUs at tasks such as sort, which have a low computation/bandwidth ratio. To achieve high performance on such applications requires streaming memory access patterns in which threads read from and write to large coherent blocks (maximizing bandwidth per transaction) located in separate regions of memory (avoiding data hazards).

Experience has shown that when algorithms and applications can follow these design principles for GPU computing- such as the PDE solvers, linear algebra packages, and database systems referenced above, and the game physics and molecular dynamics applications examined in detail next-they can achieve 10–100x speedups over even mature, optimized CPU codes.

CASE STUDIES

Matrix multiplication
Matrix multiplication computes the matrix product of A and B and stores the result into C. Since the computation of each element in C is independent, matrix multiplication is a problem with embarrassingly parallelism and thus particularly suitable for a GPU.

Hardware
CPU: Intel Pentium 4, 2.8GHz
GPU: NVIDIA GeForce 8800 GTX

Table below shows the time required for the execution of the matrix multiplication of the respective size.
	Dimension
	CUDA time
	CPU time

	64x64
	0.417465 ms
	18.0876 ms

	128x128
	0.41691 ms
	18.3007 ms

	256x256
	2.146367 ms
	145.6302 ms

	512x512
	8.093004 ms
	1494.7275 ms

	768x768
	25.97624 ms
	4866.3246 ms

	1024x1024
	52.42811 ms
	66097.1688 ms

	2048x2048
	407.648 ms
	Didn’t finish

	4096x4096
	3.1 seconds
	Didn’t finish

The graph of CPU time versus the GPU time.
[image: C:\Documents and Settings\Chidananda\Desktop\current trends seminar\read\Matrix1.png]

One interesting result is that when the problem size grows, the GPU computing time reduces. That means the Intel CPU slows down more than the GPU as the problem size grows. This is because increasing problem size will increase the granularity of the parallel algorithm. This is more advantageous to the multi-core processors.

Fast Fourier Transform (FFT) Computation
A fast Fourier transform (FFT) is an efficient algorithm to compute the discrete Fourier transform (DFT) and its inverse. There are many distinct FFT algorithms involving a wide range of mathematics, from simple complex-number arithmetic to group theory and number theory. Now let us early investigate into the use of GPUs for real time signal processing. Here we compare the performance of the GPU and CPU for doing FFTs, and make a rough estimate of the performance of this system.

Hardware
CPU: Intel Core 2 Quad, 2.4GHz
GPU: NVIDIA GeForce 8800 GTX

Software
CPU: FFTW
GPU: NVIDIA's CUDA and CUFFT library

Results
1. The first plot shows time taken per FFT. The CUDA results are shown with data transfer time included (CUDA(tot) line) or not (CUDA(fft) line). The GPU results here are seen to be dominated by the data transfer time:
[image: C:\Documents and Settings\Chidananda\Desktop\current trends seminar\read\fft_files\fft_times.png]

2. The same data plotted using FFTW's performance metric in Gflops:
[image: C:\Documents and Settings\Chidananda\Desktop\current trends seminar\read\fft_files\fft_gflops.png]
Clearly shows the increase in the floating point operations performed per second.

Power Consumption and Price comparison
	
	GPU
(GTX 8800)
	Intel
Pentium 4 2.8GHz

	Computing power
	332
	1

	In-use power(Watts)
	257
	112

	PE ratio
	140
	1

	Price (USD)
	600
	150

	CE ratio
	83
	1

In the table, we assume the GPU is 332 times more powerful than the Intel CPU, as demonstrated in our test results for the matrix multiplication problem. The power efficiency is calculated using the computing power divided by the in use power. The PE ratio stands for power efficiency ratio in terms of the Intel PC (excluding the monitor). The GPU PE ratio is calculated using the GPU power efficiency divided by the Intel PC power efficiency.
 The cost efficiency is calculated using the computing power divided by the price. The CE ratio stands for cost efficiency ratio in terms of the Intel CPU. The GPU CE ratio is calculated using the GPU cost efficiency divided by the Intel CPU cost efficiency.
 From the table, we know that the GPU can be 140 times more power efficient than the Intel PC, and is 83 times more cost efficient than the Intel CPU. From the above figures, we can conclude that a GPU can be a “greener” and cheaper computing resource.

Top Ten Problems in GPGPU

The killer applications: Perhaps the most important question facing the community is finding an application that will drive the purchase of millions of GPUs. The number of GPUs sold today for computation is minuscule compared to the overall GPU market of half a billion units per year; a mass-market application that spurred millions of GPU sales, enabling a task that was not previously possible, would mark a major milestone in GPU computing.

Programming models and tools: With the new programming systems in Section IV, the state of the art over the past year has substantially improved. Much of the difficulty of early GPGPU programming has dissipated with the new capabilities of these programming systems, though support for debugging and profiling on the hardware is still primitive. One concern going forward, however, is the proprietary nature of the tools. Standard languages, tools, and APIs that work across GPUs from multiple vendors would advance the field, but it is as yet unclear whether those solutions will come from academia, the GPU vendors, or third-party software companies, large or small.
 GPU in tomorrow’s computer?: The fate of coprocessors in commodity computers (such as floating-point coprocessors) has been to move into the chipset or onto the microprocessor. The GPU has resisted that trend with continued improvements in performance and functionality and by becoming an increasingly important part of today’s computing environments unlike with CPUs, the demand for continued GPU performance increases has been consistently large. However, economics and potential performance are motivating the migration of powerful GPU functionality onto the chipset or onto the processor die itself. While it is fairly clear that graphics capability is a vital part of future computing systems, it is wholly unclear which part of a future computer will provide that capability, or even if an increasingly important GPU with parallel computing capabilities could absorb a CPU.

Relationship to other parallel hardware and software: GPUs are not the only innovative parallel architecture in the field. The Cell Broadband Engine, multicore CPUs, stream processors, and others are all exploiting parallelism in different ways. The future health of GPU computing would benefit if programs written for GPUs run efficiently on other hardware and programs written for other architectures can be run on GPUs. The landscape of parallel computing will continue to feature many kinds of hardware, and it is important that GPUs be able to benefit from advances in parallel computing that are targeted toward a broad range of hardware.

Managing rapid change: Practitioners of GPU computing know that the interface to the GPU changes markedly from generation to generation. This is a very different model than CPUs, which typically maintain API consistency over many years. As a consequence, code written for one generation of GPUs is often no longer optimal or even useful in future generations. However, the lack of backward compatibility is an important key in the ability of GPU vendors to innovate in new GPU generations without bearing the burden of previous decisions. The introduction of the new general-purpose programming environments from the vendors that we described in Section IV may finally mark the beginning of the end of this churn. Historically, CPU programmers have generally been able to write code that would continue to run faster on new hardware (though the current focus on multiple cores may arrest this trend; like GPUs, CPU codes will likely need to be written as parallel programs to continue performance increases). For GPU programmers, however, the lack of backward compatibility and the lack of roadmaps going forward make writing maintainable code for the long term a difficult task.

Performance evaluation and cliffs: The science of program optimization for CPUs is reasonably well understood -profilers and optimizing compilers are effective in allowing programmers to make the most of their hardware. Tools on GPUs are much more primitive -making code run fast on the GPU remains something of a black art. One of the most difficult ordeals for the GPU programmer is the performance cliff, where small changes to the code, or the use of one feature rather than another, make large and surprising differences in performance. The challenge going forward is for vendors and users to build tools that provide better visibility into the hardware and better feedback to the programmer about performance characteristics.

Philosophy of faults and lack of precision: The hardware graphics pipeline features many architectural decisions that favored performance over correctness. For output to a display, these tradeoffs were quite sensible; the difference between perfectly “correct” output and the actual output is likely indistinguishable. The most notable tradeoff is the precision of 32-bit floating-point values in the graphics pipeline. Though the precision has improved, it is still not IEEE compliant, and features such as denorms are not supported. As this hardware is used for general-purpose computation, noncompliance with standards becomes much more important, and dealing with faults-such as exceptions from division by zero, which are not currently supported in GPUs-also becomes an issue.

Broader toolbox for computation and data structures: On CPUs, any given application is likely to have only a small fraction of its code written by its author. Most of the code comes from libraries, and the application developer concentrates on high-level coding, relying on established APIs such as STL or Boost or BLAS to provide lower level functionality. We term this a “horizontal” model of software development, as the program developer generally only writes one layer of a complex program. In contrast, program development for general-purpose computing on today’s GPUs is largely “vertical” -the GPU programmer writes nearly all the code that goes into his program, from the lowest level to the highest. Libraries of fundamental data structures and algorithms that would be applicable to a wide range of GPU computing applications (such as NVIDIA’s FFT and dense matrix algebra libraries) are only just today being developed but are vital for the growth of GPU computing in the future.

Conclusion

With the rising importance of GPU computing, GPU hardware and software are changing at a remarkable pace. In the upcoming years, we expect to see several changes to allow more flexibility and performance from future GPU computing systems:
• At Supercomputing 2006, both AMD and NVIDIA announced future support for double-precision floating-point hardware by the end of 2007. The addition of double-precision support removes one of the major obstacles for the adoption of the GPU in many scientific computing applications.
• Another upcoming trend is a higher bandwidth path between CPU and GPU. The PCI Express bus between CPU and GPU is a bottleneck in many applications, so future support for PCI Express 2, Hyper Transport, or other high-bandwidth connections is a welcome trend. Sony’s PlayStation 3 and Microsoft’s Xbox 360 both feature CPU– GPU connections with substantially greater bandwidth than PCI Express, and this additional bandwidth has been welcomed by developers. We expect the highest CPU–GPU bandwidth will be delivered by future systems, such as AMD’s Fusion, that place both the CPU and GPU on the same die. Fusion is initially targeted at portable, not high performance, systems, but the lessons learned from developing this hardware and its heterogeneous APIs will surely be applicable to future single-chip systems built for performance. One open question is the fate of the GPU’s dedicated high-bandwidth memory system in a computer with a more tightly coupled CPU and GPU.
• Pharr notes that while individual stages of the graphics pipeline are programmable, the structure of the pipeline as a whole is not, and proposes future architectures that support not just programmable shading but also a programmable pipeline. Such flexibility would lead to not only a greater variety of viable rendering approaches but also more flexible general-purpose processing.
• Systems such as NVIDIA’s 4-GPU Quadroplex are well suited for placing multiple coarse-grained GPUs in a graphics system. On the GPU computing side, however, fine-grained cooperation between GPUs is still an unsolved problem. Future API support such as Microsoft’s Windows Display Driver Model 2.1 will help multiple GPUs to collaborate on complex tasks, just as clusters of CPUs do today.

1

24

image3.png
\j

image4.jpeg
Input Vertex Geometry Setup & Pixel Raster Operations/
Assembler Shader Shader Rasterizer Shader Output Merger

image5.jpeg
Input
Assembler

Setup &
Rasterizer

Vertex
Shader
Geometry
Shader

Pixel
Shader

Raster Operations/
Output Merger

image6.emf

image7.emf

image8.emf

image9.png
70000
60000
50000

e (ms)

.g 40000
c
S 30000
& 20000
»
11]

10000

CPU versus GPU ——CUDA -=-CPU
_ =——CUDAregression = ==CPU regression
T T . T \‘ 1
0 200 400 600 800 1000

Matrix side dimension

1200

image10.png
Time/FFT (ms)

1000

100

10

01

0.01

FETW ——
GCUDA (tot) ——
CUDA (ft) —*—

0.001
1024

4096

16384

65536 262144
FFT Length

1048576 4194304

16777216

image11.png
GFlopis

100

10

FFTW ——

CUDA (fot) ——
CUDA (fft) —+—

1024

4096

16384

65536 262144
FFT Length

1048576 4194304

16777216

image1.png

image2.png

