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Abstract

As Chip-Multiprocessor systems (CMP) have become the predominant topology for lead-
ing microprocessors, critical components of the system are now integrated on a single chip.
This enables sharing of computation resources that was not previously possible. In addition,
the virtualization of these computational resources exposes the system to a mix of diverse
and competing workloads. Cache is a resource of primary concern as it can be dominant in
controlling overall throughput. In order to prevent destructive interference between divergent
workloads, the last level of cache must be partitioned. In the past, many solutions have been
proposed but most of them are assuming either simplified cache hierarchies with no realistic
restrictions or complex cache schemes that are difficult to integrate in a real design. To address
this problem a dynamic partitioning strategy based on realistic last level cache designs of CMP
processors was proposed. This uses a cycle accurate, full system simulator based on Simics and
Gems to evaluate the partitioning scheme on an 8-core DNUCA CMP system. Results for an
8-core system show that the proposed scheme provides on average a 70 percent reduction in
misses compared to non-partitioned shared caches, and a 25 percent misses reduction compared
to static equally partitioned (private) caches.



1 Introduction

Chip Multiprocessors (CMP) have gradually become an attractive architecture for leveraging
system integration by providing capabilities on a single die that would have previously occupied
many chips across multiple small systems. This integration has brought abundant on-chip
resources that can now be shared in finer granularity among the multiple cores. Such sharing
though has introduced chip-level contention and the need of effective resource management
policies is more important that ever.

To efficiently exploit these resources, systems require multiple program contexts and virtu-
alization has become a key player in this arena. Many small and/or low utilization servers
can now be easily consolidated on a single physical machine, allowing higher utilization of the
available resources with significant energy reductions. Such consolidation presents both oppor-
tunities and pitfalls to computer architects to best manage these once isolated resources on
large CMP designs.

In such virtualization environments, workloads tend to place dissimilar demands on shared
resources and therefore, due to resource contention, are much more likely to destructively inter-
fere in an unfair way. Consequently, shared resources’ contention become the key performance
bottleneck in CMPs Shared resources include, but are not limited to: main memory bandwidth,
main memory capacity, cache capacity, cache bandwidth, memory subsystem interconnection
bandwidth and system power.

Among these resources, several studies have identified the shared last-level cache (here L2)
of CMPs as a major source of performance loss and execution inconsistency. As a solution,
most of the proposed techniques control this contention by partitioning the L2 cache capacity
and allocating specific portions of it to each core or execution thread. There are both static
and dynamic partitioning schemes available that use workload profiling information to make
a decision on cache capacity assignment for each core/thread. All of the above techniques
are usually based on high-level system characteristic monitoring since low-level activity based
algorithms such as LRU replacement fail to provide a strong barrier among workloads competing
for shared resources.



2 CMP-Baseline

Fig. 1 shows a 8-core CMP-NUCA baseline system. This design uses as the last-level of cache
a DNUCA L2 cache with 16 physical banks that provide a total of 16MB of cache capacity.
Each cache bank is configured as an 8-way set associative cache. Another way to see the cache
is as a 128-way equivalent cache that is separated in 16 cache banks of 8 ways each. The eight
cache banks that are physically located next to a core are called Local banks and the rest are
characterized as Center banks. Cores located next to Local banks have the minimum access
latency but that delay can significantly increase when a core needs to access a Local bank
physically located next to another core. Center banks have, on average, higher access latency
than Local banks but their distance for each core has smaller variation than Local banks and
so does the access latency. The access latency to a L2 cache bank varies from 10 up to 70 cycles
depending on the physical location of both the core requesting the access and the L2 bank
containing the data. A core physical located next to a Local cache bank has to wait 10 cycles
to access the bank. The maximum possible latency, without significant network contention, is
equal to 70 cycles (i.e core 0 to access the Local bank next to core 7 since it requires 7 hops).
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Fig. 1. Baseline CMP system




3 Bank-Aware Cache Partitioning

This section provide details about their application profiling mechanism followed by parti-
tioning algorithm for assigning cache capacity to each core. In the end, the cache partitions
allocation algorithm for allocating the cache partitions on the CMP-baseline system are de-
scribed.

3.1 Cache Profiling of Applications

In order to dynamically profile the cache requirements of each core, a cache miss prediction
model based on Mattsons stack distance algorithm is implemented. Mattsons stack algorithm
(MSA) was initially proposed by Mattson et al. in for reducing the simulation time of trace-
driven caches by determining the miss ratios of all possible cache sizes with a single pass through
the trace. The basic idea of the algorithm was later used for efficient trace-driven simulations
of a set associative cache. More recently, hardware-based MSA algorithms have been proposed
for CMP system resource management, .

MSA is based on the inclusion property of the commonly used Least Recently Used (LRU)
cache replacement policy. Specifically, during any sequence of memory accesses, the content of
an N-sized cache is a subset of the content of any cache larger than N. To create a profile for a
K-way set associative cache K+1 counters are needed, named Counterl to CounterK+1. Every
time there is an access to the monitored cache increment only the counter that corresponds to
the LRU stack distance where the access took place. Counters from Counterl up to CounterK
correspond to the Most Recently Used (MRU) up to the LRU position in the stack distance,
respectively. If an access touches an address in a cache block that was in the i-th position of the
LRU stack distance, increment Counteri counter. Finally, if the access ends up being a miss,
increment CounterK—+1.
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Fig. 2. LRU histograms based on Mattson’s stack algorithm



Fig. 2 demonstrates such a MSA profile for an application running on an 8-way associative
cache. The application in the example shows a good temporal reuse of stored data in the cache
since the MRU positions have a significant percentage of the hits over the LRU one. Based on
the application spatial and temporal locality, the graph of Fig. 2 can change accordingly. Using
the inclusion property of the LRU replacement policy and having a MSA profile of an N-sized
cache, allow us to make a straight-forward prediction of the misses for every L2 cache with size
smaller than N. For example, the number of misses that will occur if the cache of Fig. 2 half
the size, that is using 4 ways instead of 8 ways, would be the previously measured misses plus
the hits of the positions 5 up to 8 of the previous case LRU stack distance. For those positions,
the LRU replacement policy will replace the stored data to make room for the one in the MRU
positions before they are accessed again. Therefore the accesses that were previously recorded
as hits would be misses in the 4-way cache case.
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Fig. 3. LRU histograms examples of SPEC CPU2000 benchmarks

Fig. 3 shows the projected cumulative miss ratio of three benchmarks of SPEC CPU2000
benchmark suit. Three examples are selected out of the 26 SPEC CPU2000 workloads, as
examples of varied behavior within the whole suit. To create the figure, the stack distance
profiles of bzip2, sixtrack and applu with each application executing stand-alone on the baseline
CMP using just a single core are collected. To collect the profiles the L2 cache accesses of each
core are fed to the MSA histogram profiler described above. The x-axis represents the number
of cache ways that are dedicated to each application and the y axis shows the MSA-based
projected cumulative miss rate of each application. Sixtrack features a lot of misses with less
than six cache ways dedicated to it but after that point, by giving more ways, its misses are
close to zero. Therefore, we can have a good fit of sixtracks cache requirements using only
one bank (8 ways). In the same way, applu shows a reduction of misses when more than ten
ways are dedicated to it, but in this case the miss rate remains flat after more than 10 ways.
Therefore, assigning more ways is not beneficial for applu. Lastly, bzip2 shows a behavior
somewhere between the two previous cases since additional assigned ways improve miss ratio
up to the point where dedicating 45 ways that finally flattens out. Consequently, MSA-based
profiling allows us to monitor each cores cache capacity requirements during the execution of
an application and based on which we can find the points of cache allocation that can benefit



the miss ratio the most.

A simple with no restrictions implementation would require a complete copy of the cache
block tags for each cache set in each one of MSA profilers, which is prohibitively high. The
overhead can be greatly reduced by using: a) partial tags b) set sampling and ¢) maximum
assignable capacity reduction techniques. With partial tags one can use less than full tags to
identify the cache blocks assigned at each counter thus reducing the storage overhead. Set
sampling involves the profiling of a fraction of the available cache sets and therefore it also
reduces the number of stored cache tags in the circuit. In addition, the maximum assignable
capacity approach assumes that the number of cache-ways that can be assigned to each core is
less than the overall number of available cache-ways. In that case, the number of counters are
reduced to the maximum number of assignable cache ways per core. The first two reduction
techniques are subject to aliasing, which introduces errors and affects the overall accuracy of
the profiling circuit. In addition, the maximum assignable capacity can potentially restrict the
effectiveness of partitioning scheme by not dedicating bigger portions of a cache to a specific
core.

In this paper an implementation based on all of the above methods is proposed. The overhead
analysis showed that the use of 12 bit partial tags combined with 1-in-32 set sampling produced
error rates within 5% of the profiling accuracy obtained using a full tag implementation. In
addition, Bank-aware partitioning assignment algorithm limits each core to a maximum of
9/16 of the total cache capacity. Overall, the implementation overhead is estimated to be 83.25
kbits per cache profiler, which is approximately 0.4% of the 16MB LLC cache design for all the
profilers.

3.2 Bank-aware Assignment of Cache Capacity

Prior work in MSA-based cache partitioning was analyzed on fully configurable caches shared
among a small number of CPUs. This type of partitioning algorithm is refered as Unrestricted.
On the other hand, while Huh et al. in proposed a method for partitioning a CMP-NUCA cache,
this relied on a highly banked structure that, features an unrealistic physical implementation.
As a solution,the proposed method is to partition cache bank structures using a MSA-based
profiling mechanism aligned with current industry directions, that is, using a smaller number
of higher capacity cache banks. Such configuration limits the granularity of possible partitions
and imposes a set of restrictions over the Unrestricted techniques proposed in the past. This
is rooted in the need to aggregate multiple cache banks into a single partition. In the fol-
lowing section several potential aggregation methods that are shown in Fig. 4 are discussed.
Aggregation possibilities:
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Fig. 4. Cache banks aggregation schemes

3.2.1 Cascade

In this approach, all cache banks that contain portions assigned to a given core are connected
head to tail. To match the MSA LRU strategy (Fig. 4.a), all allocations are placed as MRU
at the head of the chain. Each allocation causes a shift down of the LRU. Evictions are passed
down the chain from LRU out to MRU position in the next bank until a free spot is located
(potentially formed from the cache hit that was moved to the top). This structure is show in
Fig. 4.b. This method provides for an LRU policy (assuming the banks are also LRU). The
advantage of this method is that one can stitch together arbitrary fractions of banks which will
emulate the MSA very closely. The primary disadvantage is the high migration rate between
cache banks.

3.2.2 Address Hash

A common approach to cache bank aggregation is the use of an address hash. Typically this
method is used with a power of two number of cache banks, such that lower order address bits
can directly select the bank. While systems have also been built with non-power of two hashes,
these require complex modulo operations in the hardware hash function. An example would be
the IBM POWER4 and POWERS processors, which hash across three banks. In addition, Gao
et al.and Seznec et al. proposed non-power of two hashing functions with increased complexity
over simple hashing functions. Irrespective of the number of cache banks aggregated, this
method requires symmetry in that each hashed bank must have the same cache capacity. As
such this method has some restrictions. Lastly, address hash features low migration rates.

3.2.3 Parallel

This method is very much like Address Hash, except that a line can be stored in any of the
cache banks. Allocation is controlled by round robin/random selection. As such, any given
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line can be stored in any of the cache banks. This forces additional look-up operations in the
directory structure (which are implement as partial tags). This is less restrictive than Address
hash in bank configuration, in that, non-power of 2 aggregations of banks are possible without
complex modulo address computations. The migration rate is equivalent to Address Hash,
however, power is higher due to wider directory look-ups.

Even though Cascade provides the greatest flexibility, the migration rates observed in sim-
ulation are prohibitively high. Both Address hash and Parallel provide reasonable solutions
to aggregating cache banks. The only restriction is that multiple banks must have the same
capacity. The degradation can be mitigated using the structure shown in Fig. 4.c. In this
structure, limit the level of cascading to two. The allocation policy can be either Address Hash
or Parallel (Parallel used here). These issues present problems in direct application of currently
proposed Unrestricted cache partitioning schemes. Bank-aware assignment algorithm is pro-
posed as a solution for this. This algorithm is based on progressive control of bank granularity.
Essentially, as the capacity assignment increases, small deviations from the ideal assignment
are tolerable with respect to overall miss reduction. Based on this observation and the bank
aggregation requirements, the proposed policies are:

1) Center cache banks are completely assigned to a specific core. This prevents situations
where aggregated banks are of different capacities.

2) Any core that is allocated Center banks, will receive a full Local bank.

3) Local cache banks can only be shared with an adjacent core. They only allow per assignment
control at Local cache banks. In addition, requiring adjacent sharing provides for low latency
and minimal network loads for data transfers.
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Fig. 5. An example of typical CMP cache partitioning
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A typical allocation is shown in Fig. 5. From the figure, most of the cores have multiple
L2 cache banks allocated to them except core 2 and core 5. Those cores share the capacity of a
single 1.2 bank with core 3 and 4, respectively. To enforce the selected cache partitions, mod-
ify the typical design of a cache bank to support a vertical, finegrain, cache-way partitioning
scheme. According to this scheme, each cache-way of a set associative cache can belong to one
or more specific cores.

When a specific core suffers a cache miss, a modified LRU policy is used to select the least
recently used cache block among the ones that belong to that specific core, for replacement.
Therefore, only cache-ways that belong to a specific core or set of cores can be accessed and
the rest of the cache-ways that belong to other cores are not affected, eliminating the destruc-
tive interference between different workloads running on different cores. To reduce the design
complexity, all of the sets in a cache bank are vertically partitioned with the same cache-ways
assignment and therefore the granularity of assigning a different cache-way partition is a single
cache bank.

3.3 Allocation Algorithm on CMP

In this section Bank-aware assignment algorithm is described in detail. The assignment
policy was based on the concept of Marginal Utility. This concept originates from economic
theory, where a given amount of resources (in this paper cache capacity), provides a certain
amount of utility (reduced misses). The amount of utility relative to the resource is defined as
the Marginal Utility.

The MSA histogram provides a direct way to compute the Marginal Utility for a given
workload across a range of possible cache allocations. This capability is used to make the best
use of the limited cache resources. An iterative approach is, at any point we can compare the
Marginal Utility of all possible allocations of unused capacity. Of these possible allocations, the
maximum Marginal Utility represents the best use of an increment in the assigned capacity.
This algorithm arrives at a capacity assignment via successive steps determining the maximum
Marginal Utility for a subset of processors and assignment restrictions.

The overall flow is shown in Fig. 6.The first step of the algorithm is to assign the cache-ways
in Center cache banks. Following that, in Box 1, the maximum Marginal Utility is calculated
and cache banks are assigned accordingly. For the calculations,we can assume that each Local
bank is assigned to the associated processor. In Box 2, check if all the banks are assigned, if
not, step 1 is repeated. Following Rules 1 and 2, then mark all processors with Center banks
complete (Box 3).

12
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Fig. 6. Cache allocation algorithm flow chart

The next steps are used to solve the Local cache bank partitions. In Box 4, once again find
the maximum Marginal Utility,but assignments are limited to possible pairs of processors(in
keeping with Rule 3). In Box 5, check if the new assignment has caused any processor to
overflow into another processors Local region. If so, find the ideal pair with respect to minimal
misses. Essentially defer the pairing as many steps as possible, and make the best pairing choice
once it is decided a processor should receive a fraction of an adjacent Local bank. Once the
pair is assigned, both processors are marked complete. This step is repeated until all the cache
ways are assigned.
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4 Evaluation

4.1 Bank-aware vs. Unrestricted Partitioning

Fig. 7 shows the miss rate relative to the even partitions for the Unrestricted and Bank-aware
algorithms. A ratio of one represents no reduction in misses compared to static fixed partition-
ing, while zero indicates all misses are removed with the MSA-based partitioning scheme. From
the 1000 sorted results with respect to the miss rate reduction of the Unrestricted scheme. The
even partitions and Unrestricted essentially form a performance envelope. Ideally, all of the
Bank-aware assignments would fall on the Unrestricted line, which is in general true except
some outliners that achieved smaller miss rate reductions than Unrestricted. Both figures give
an indication of the range of miss rate reductions possible. On average, the miss rate reduction
from the Unrestricted and Bank-aware algorithms are quite comparable. The Unrestricted av-
erages a 30% reduction in misses compared to 27% for the Bank-aware over the case of even
partitions. This result shows that the restrictions placed on the allocation algorithm due to the
more realistic implementation of L.2 cache do not adversely affect the benefits of the MSA-based
dynamic cache partitioning scheme.

=]
[

CE— Unrestricted
O Bank-aware

=]
-

Miss Fraction

0 260 500 750 1000
Sorted Experiments

Fig. 7. Relative miss ratio to fixed-share for Unrestricted

4.2 Detailed Simulation Results

Eight workload sets are randomly selected from the previous simulations to evaluate the
proposed partitioning scheme on the 8-core full system shown in Fig. 1. Fig. 8 and Fig. 9
shows the relative miss rate and CPI of Equal-partitions and Bank-aware partitioning over
the simple case of No-partitions. Equal-partitions is equivalent to assigning private cache
partitions of equal size to each core. From the figures, both partitioning schemes show a
significant reduction in misses and CPI over the simple Nopartitions one, which is a strong
indication of the need for partitioning the last level of cache. On average, Bank-aware shows
a 70% and 43% reduction in misses and CPI over No-partitions, respectively. Moreover, from
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Fig. 8. Relative miss rate of 8-core sets over the no-partitioning
scheme

Fig. 8, The Bankaware partitioning scheme shows on average a 25% reduction over simple
Equal-partitions. This reduction is inline with the reduction estimated in the Monte Carlo
experiment of the previous section.

In addition, Fig. 9 shows that Bank-aware partitioning can achieve an 11% reduction in CPI
over the Equal-partitions scheme. Comparing Fig. 8 and 9, some sets of workloads demonstrate
a much higher performance sensitivity to misses than others since a reduction on L2 misses
does not always result in an equal size reduction in CPI. For example, in Set 1 even though
it significantly reduced the overall fraction of misses, that reduction in not translated in CPI
gain due to the overall small number of misses in that set and the performance characteristics
of the applications that feature the highest miss reduction.
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Fig. 9. Relative CPI of 8-core sets over the no-partitioning scheme
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5 Conclusion

Shared resource contention in CMP platforms has been identified as a key performance
bottleneck that is expected to become worse as the number of cores on a chip continues to scale
to higher numbers. Many solutions have been proposed, but most assume either simplified cache
hierarchies with no realistic restrictions or complex cache schemes that are difficult to integrate
in a real design. Therefore, both approaches could lead to conclusions that are unrealistic when
implemented in a real system. This paper highlights the problem of sharing the last level of
cache in CMP platforms and motivate the need for a low-overhead cache partitioning scheme
that is aware of the banking structure of the L2 cache design. Bank-aware partitioning scheme
demonstrates a 70% reduction in misses compared to non-partitioned shared caches, and a
25% miss rate reduction compared to even partitioned (private) caches. Lastly, the proposed
scheme managed, on average, the same miss reduction achieved with less realistic proposed
Unrestricted schemes that are unaware of implementation restrictions.
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