

[image: image1.jpg]
 TERM PAPER
 Foundation of computing

 CSE 101

Topic : - Sudoku game
DOA : -02/11/2010
DOS : -20/11/2010
Submitted to : - Submitted by : -
Gagandeep Kaur Vaibhav Kumar Tripathi
Deptt. Of foundation computing Roll no: -RG4003A34
 Section: -G4003
 Reg.no:- 11000653
ACKNOWLEDGEMENT

I owe a great thanks to many people who helped and supported me during the writing of this term paper.

My deepest thanks to lecturer, Gagandeep Kaur the guide of the project for guiding and correcting various document of mine with attention and care. She has taken pain to go through the term paper and make necessary correction as and when needed.
I would also thank my institution and my faculty members without whom this term paper.
I would have been distant realty. I also extent my heartfelt thanks to my family and well wishers …

Vaibhav Kumar Tripathi

Lovely Professional University

CONTENTS
1. INTRODUCTION TO C

(A)INTRODUCTION TO SUDOKU

 2. HISTORY

 3. MATHEMATICS OF SUDOKU

 4. RECENT POPULARITY

 5. LIST OF ORGANISATION AND CONVENTIONS

 (A) GRID LAYOUT AND PUZZLE TERMS

 (B) SUDOKU VARIANTS
 (C) SUDOKU TYPES AND CLASSES

 (D) VARIANTS BY SIZE

 6. CONSTRAINTS AND CLUE VARIANTS

 7. SOURCE CODE

 8. ADVANTAGES

 9. REFERENCES
Introduction
C was one of the first general-purpose high-level programming languages to gain almost universal use, and today you can program in C on almost any platform and machine. It was created by Dennis Ritchie in 1971, as the successor to the "B" compiler, for UNIX systems.
Sudoku is a logic-based, combinatorial number-placement puzzle. The objective is to fill a 9×9 grid with digits so that each column, each row, and each of the nine 3×3 sub-grids that compose the grid (also called "boxes", "blocks", "regions", or "sub-squares") contains all of the digits from 1 to 9. The puzzle setter provides a partially completed grid. Completed puzzles are usually a type of Latin square with an additional constraint on the contents of individual regions . Sudoku was popularized in 1986 by the Japanese puzzle company Nikoli, under the name Sudoku, meaning single number.It became an international hit in 2005.Sudoku was popularized in 1986 by the Japanese puzzle company Nikoli, under the name Sudoku, meaning single number. It became an international hit in 2005.

Histroy
Number puzzles first appeared in newspapers in the late 19th century, when French puzzle setters began experimenting with removing numbers from magic squares. Le Siècle, a Paris-based daily, published a partially completed 9×9 magic square with 3×3 sub-squares on November 19, 1892. It was not a Sudoku because it contained double-digit numbers and required arithmetic rather than logic to solve, but it shared key characteristics: each row, column and sub-square added up to the same number.

From La France newspaper, July 6, 1895.

On July 6, 1895, Le Siècle's rival, La France, refined the puzzle so that it was almost a modern Sudoku. It simplified the 9×9 magic square puzzle so that each row, column and broken diagonals contained only the numbers 1–9, but did not mark the sub-squares. Although they are unmarked, each 3×3 sub-square does indeed comprise the numbers 1–9 and the additional constraint on the broken diagonals leads to only one solution.
 These weekly puzzles were a feature of French newspapers such as L'Echo de Paris for about a decade but disappeared about the time of the First World War.

According to Will Shortz, the modern Sudoku was most likely designed anonymously by Howard Garns, a 74-year-old retired architect and freelance puzzle constructor from Indiana, and first published in 1979 by Dell Magazines as Number Place (the earliest known examples of modern Sudoku). Garns's name was always present on the list of contributors in issues of Dell Pencil Puzzles and Word Games that included Number Place, and was always absent from issues that did not. He died in 1989 before getting a chance to see his creation as a worldwide phenomenon.It is unclear if Garns was familiar with any of the French newspapers listed above.

The puzzle was introduced in Japan by Nikoli in the paper Monthly Nikolist in April 1984 asSuuji (or suji) wa dokushin ni kagiru , which can be translated as "the digits must be single" or "the digits are limited to one occurrence." At a later date, the name was abbreviated to Sudoku by Maki Kaji,, taking only the first kanji of compound words to form a shorter version. In 1986, Nikoli introduced two innovations: the number of givens was restricted to no more than 32, and puzzles became "symmetrical" (meaning the givens were distributed in rotationally symmetric cells). It is now published in mainstream Japanese periodicals, such as the Asahi Shimbun.
Mathematics of sudoku
 A completed Sudoku grid is a special type of Latin square with the additional property of no repeated values in any of the 9 blocks of contiguous 3×3 cells. The relationship between the two theories is now completely known, after Denis Berthier proved in his book, "The Hidden Logic of Sudoku" (May 2007), that a first order formula that does not mention blocks (also called boxes or regions) is valid for Sudoku if and only if it is valid for Latin Squares (this property is trivially true for the axioms and it can be extended to any formula). (Citation taken from p. 76 of the first edition: "any block-free resolution rule is already valid in the theory of Latin Squares extended to candidates" - which is restated more explicitly in the second edition, p. 86, as: "a block-free formula is valid for Sudoku if and only if it is valid for Latin Squares").

The first known calculation of the number of classic 9×9 Sudoku solution grids was posted on the USENET newsgroup rec.puzzles in September 2003 and is 6,670,903,752,021,072,936,960 (sequence A107739 in OEIS). This is roughly 1.2×10−6 times the number of 9×9 Latin squares. A detailed calculation of this figure was provided by Bertram Felgenhauer and Frazer Jarvis in 2005. Various other grid sizes have also been enumerated—see the main article for details. The number of essentially different solutions, when symmetries such as rotation, reflection, permutation and relabelling are taken into account, was shown by Ed Russell and Frazer Jarvis to be just 5,472,730,538 (sequence A109741 in OEIS).

The maximum number of givens provided while still not rendering a unique solution is four short of a full grid; if two instances of two numbers each are missing and the cells they are to occupy form the corners of an orthogonal rectangle, and exactly two of these cells are within one region, there are two ways the numbers can be assigned. Since this applies to Latin squares in general, most variants of Sudoku have the same maximum. The inverse problem—the fewest givens that render a solution unique—is unsolved, although the lowest number yet found for the standard variation without a symmetry constraint is 17, a number of which have been found by Japanese puzzle enthusiasts, and 18 with the givens in rotationally symmetric cells. Over 48,000 examples of Sudokus with 17 givens resulting in a unique solution are known.

Recent popularity
Sudoku software is very popular on PCs, websites, and mobile phones. It comes with many distributions of Linux. Software has also been released on video game consoles, such as the Nintendo DS, PlayStation Portable, the Game Boy Advance, Xbox Live Arcade, several iPod models, and the iPhone. In fact, just two weeks after Apple, Inc.debuted the online App Store within its iTunes store on July 11, 2008, there were already nearly 30 different Sudoku games, created by various software developers, specifically for the iPhone and iPod Touch. One of the most popular video games featuring Sudoku is Brain Age: Train Your Brain in Minutes a Day!. Critically and commercially well received, it generated particular praise for its Sudoku implementationand sold more than 8 million copies worldwide.Due to its popularity, Nintendo made a second Brain Age game titled Brain Age2, which has over 100 new sudoku puzzles and other activities.

In June 2008 an Australian drugs-related jury trial costing over AU$1 000 000 was aborted when it was discovered that five of the twelve jurors had been playing Sudoku instead of listening to evidence.

List organization and conventions
This list provides a brief glossary of Sudoku terminology. Items are listed thematically, and usually only once, with a brief description and possibly a link to a detailed description. Links to example usage are provided as in-line numbered references . Here the default usage of Sudoku refers to the prominent 9×9 format, as illustrated.

Grid layout and puzzle terms
A Sudokugrid has 9 rows, columns and boxes each having 9 cells. The full grid has 81 cells. Cells are commonly called squares, but in technical descriptions the term square is avoided since the boxes and grid are also squares. Boxes are also known as blocks or zones. Three vertically stacked blocks make a stack. Three horizontally connected blocks make a band. A chute is either a band or a stack. A grid has 3 bands, 3 stacks and 6 chutes.

The use of the boxes to partition the grid can be generalized to other equal sized partition shapes, in which case the sub-areas are known as regions, zones, subgrids, or nonets. See Variants below. In some cases the regions are only equal sized, not equal shaped.

Rows, columns and regions are collectively referred to as units or scopes, of which the grid has 27. The One Rule can then be compactly stated as: 'Each digit appears once in each unit'.

Size refers to the size of a puzzle or grid. Often a composite row × column designation is used, e.g. size 9×9. In technical discussions size may mean the number of cells, e.g. 81. Since the number of cells in a region must be the side dimension of the square grid, e.g. 9 cells per block for a 9×9 grid, it is convenient to just use the region size, e.g. 9.

Puzzle terms
A puzzle is a partially completed grid. The initially defined values are known as givens or clues. A proper puzzle has a single (unique) solution. A proper puzzle that can be solved without trial and error (guessing) is known as a satisfactory puzzle. An irreducible puzzle (a.k.a. minimum puzzle) is a proper puzzle from which no givens can be removed leaving it a proper puzzle (with a single solution). It is possible to construct minimum puzzles with different number of givens. The minimum number of givens refers to the minimum over all proper puzzles and identifies a subset of minimum puzzles. See Mathematics of Sudoku-Minimum number of givens for values and details.

Sudoku variants
The classic 9×9 Sudoku format can be generalized to an

N×N row-column grid partitioned into N regions, where each of the N rows, columns and regions have N cells and each of the N digits occur once in each row, column or region.

This accommodates variants by region size and shape, e.g. 6 cell rectangular regions (The N×NSudoku grid is always square). For prime N, polyominos shaped regions can be used. The requirement to use equal sized regions, or have the regions cover the grid entirely can also be relaxed.

Other variation types include additional value placement constraints, alternate cell symbols (e.g. letters), alternate mechanism for expressing the clues, and composition with overlapping grids. This page provides a simple list of variants. See Sudoku - Variants for details and additional variants.

For rectangular regions the row-column dimensions of the region may be used to describe the grid as whole, e.g. 3×2, since each of the grid side dimensions must be the product of row *column, e.g. for a 3×2 rectangular region, the grid must be 6×6. For rectangles of size N×1 or 1×N, the region is a row or column, and Sudoku becomes a Latin square.

Sudoku types and classes
Sub Doku

Grids smaller than 9×9.Sometimes referred to as Children's Sudoku (especially the 4×4 variant) as the reduced number of possibilities makes them easier to solve.

Super Doku

Grids larger than 9×9.

Prime Doku

N×N grid where N is prime. Generally constructed with polyomino regions, e.g. Go Doku and pentominos.

Maximum Su Doku

The class of puzzles which have the maximum number of independent clues needed to allow a complete and unique solution.

Minimum Su Doku

The class of puzzles which have the minimum number of clues needed to allow a complete and unique solution.

Proper puzzle

A puzzle that has a unique solution.

Satisfactory puzzle

A puzzle that does not require trial and error. Note: the level of trial and error is usually not explicitly defined, see trial and error below.

Purely numeric puzzle

Puzzles which use purely numbers.

Purely literal puzzle

A sudoku puzzle which uses letters instead of numbers.

Numeroliteral puzzle

Puzzles using a combination of letters and numbers, usually seen in 12x12 sudoku puzzles.

Variants by size
Polyomino

A shape composed of equal sized, side-adjacent squares. Often used for Sudoku region variants. Polyominos are named by size: (5)pentomino, (6)hexomino, (7)heptomino, (8)octomino, and (9)nonomino.

Du-sum-oh

5×5, 6×6, 7×7, 8×8 or 9×9 grid with irregular, polyomino, shaped regions and minimal number of clues.

Du-Sum-Oh puzzles are also known as Latin Squares Puzzles (invented by Mark Thompson), Squiggly Sudoku, Jigsaw Sudoku, Irregular Sudoku, or Geometric Sudoku. These puzzles typically have anywhere from 5 to 9 rows. The number of rows is always equal to the number of columns. The regions are polyominos made of the same number of squares that are in any one row of the puzzle. The irregularity of the regions compensates for the relatively small number of givens.

4×4
Shi Doku

Four 2×2 regions.Shi is Japanese for 4.

5×5
Go Doku

5×5 grid with pentomino regions.Go is Japanese for 5.

Logi-5

5×5 grid with pentomino regions

6×6
These use 6 2×3 rectangular regions:

Roku Doku

(unnamed)

featured at the World Puzzle Championship
Sudoku X - with unique main diagonals

7×7
(unnamed)

7×7 grid with six heptomino regions and a disjoint region, featured at the World Puzzle Championship.

8×8
Super Sudoku X - 4 4×2 + 4 2×4 rectangular blocks.

9×9
Sudoku

Classic 9×9 grid with nine 3×3 regions.

Jigsaw Sudoku

9×9 grid with nonomino regions.

Du-sum-oh

5×5, 6×6, 7×7, 8×8 or 9×9 grid with irregular, polyomino, shaped regions and minimal number of clues.

Only 'One Rule' variant puzzles with simple givens are listed in this section. For variants with other clue mechanisms, see Constraint and clue variants.
12×12
Maxi

twelve 3×4 rectangular blocks.
16×16
Number Place Challenger

Sixteen 4×4 regions.

A 25 X 25 Giant Sudoku puzzle (image hyperlinked to solution) created using this program

25×25
Sudoku the Giant

Twenty-five 5×5 regions.

Constraint and clue variants
Puzzles with additional constraints on the placement of values including various forms of expressing the constraints (e.g. <> relations, sums, linked cells, etc).

Main diagonals unique

the cell values along both main diagonals must be unique, see Sudoku X.

Relative digit location

digits use the same relative location within selected regions. The matching cells or regions are often color coded.

Mathematics of Sudoku has identified numerous additional constraints as analytic possibilities.

Samunamupure (clue sums)

Regions of various shapes and sizes. The usual constraints of no repeated value in any row, column or region apply. The clues are given as sums of values within regions (e.g. a 4-cell region with sum 10 must consist of values 1,2,3,4 in some order).

Terms related to solving
The meanings of most of these terms can be extended to region shapes other than blocks. To simplify reading, definitions are given only in terms of blocks or boxes.

Scanning

the process of working through a puzzle to look for or eliminate values

cross hatching

process of elimination that checks rows and columns intersecting a block for a given value to limit the possible locations in the block

Counting

process of stepping through the values for a row, column or block to see where they can or cannot be used

Box line reduction strategy

A form of intersection removal in which candidates which must belong to a line can be ruled out as candidates in a block (or box) that intersects the line in question.

Candidate

Potential value for a cell.

Contingency

A condition limiting the location of a value.

Chain

A sequence of contingencies connected by alternative values.

Higher circuits

Related locations outside the immediate row, column and grid. The locations are related by value contingencies.

Independent clues

A set of clues that cannot be deduced from each other. Often depends on the order of choosing the clues for a given grid.

Intersection removal

When any one number occurs twice or three times in just one unit (or scope) then we can remove that number from the intersection of another unit. For example, if a certain number must occur on a certain line, then occurrences of that number found in a block that intersects this line can be ruled out as candidates. Sometimes called Pointing (or matched) Pairs (or twins)/Triples (triplets) as they point out a candidate that can be removed.

Trial and error

the process of guessing successive candidate values in conjunction with deductive elimination. A.k.a.: what-if, bifurcation, garden of forking paths, depth first search, exhaustive search, back-tracking search, Ariadne's thread. Note: there is no clear boundary between trial-and-error and the use of pattern recognition strategies to eliminate values (higher circuits), the latter being a condensed form of analysis based on elimination by contradiction, i.e. the same as what-if.

Nishio

what-if method of elimination, where the use of a candidate that would make its other (necessary) placements impossible is eliminated.

The One Rule

fill in all (blank) cells so that each row, column and box contains the values 1-9. Same as: fill in the grid so that each row, column and box contains the values 1-9 exactly once, without changing the clues.

Singleor singleton or lone number

the only candidate in a cell

Hidden single

a candidate that appears with others, but only once in a given row, column or box.

Locked candidate

a candidate limited to a row or column within a block.

Naked pair

Two cells in a row, column or block, which together contain only the same two candidates. These candidates can be excluded from other cells in the same row, column or block.

Hidden pair

Two candidates that appear only in two cells in a row, column or block. Other candidates in those two cells can be eliminated.

Trio

Three cells in a unit sharing three numbers exclusively. See "Triples and quads".

Triples and quads

the concepts applied to pairs can also be applied to triples and quads.

X-wing

See N-fish (with N=2).

Swordfish

See N-fish (with N=3).

N-fish

Analogues of hidden pairs/triples/quads for multiple rows and columns. A pattern formed by all candidate cells for some digit in N rows (or columns), that spans only N columns (rows). All other candidates for that digit in those columns (rows) can then be excluded. Names for various N-fish:

· 2-fish : X-wing

· 3-fish : Swordfish

· 4-fish : Jellyfish

· 5-fish : Squirmbag - For 9×9 Sudoku, there's no in point naming higher-order (>4) fish, since every N-fish comes paired with a 9-N fish whose effect is the same (thus any 5-fish is paired with a jellyfish; any 6-fish with a swordfish; any 7-fish with an x-wing; any 8-fish with a hidden or naked single). Nevertheless, a 5-fish is occasionally called a squirmbag.

· 6+ fish : 6-gronk, 7-gronk.. - these patterns are only useful for Sudoku larger than 9×9.

Remote Pairs

When a long string of naked pairs that leads around the grid exists, any cells that are in the intersection of the cells at the beginning and the end of the string may not be either of the numbers in the naked pairs, for example, 4 and 7.

Cell reference schemes
· 1...81 or 0...80

· Row & column

· Box & cell

Math related terms
· Latin square - Related puzzle with only row and column constraints.

· Constraints - Rules or conditions. In Sudoku, the rule(s) requiring each digit appear once in each row, column and region.

· Triplet - The set of 3 values in a row or column within a block.

Source Code
#include<stdio.h>

#include<conio.h>

#include<process.h>

#define TRUE 1

#define FALSE 0

#define NULL 0

#define err_rec_lmt 1000

#define err_ip "\n\nINVALID INPUT!! Please Try Again !!"

#define err_file "\n\nERROR!! FILE CANNOT BE OPENED!!"

/* Global Variable declarations */

int sgrid[10][4][4]; /* A 3D Integer array that will store the members

 of individual sub grids in it */

int sol[10][10];

int poss[10][10][10];

int trace_no_rec=0;

int ip_mode,op_mode;

int elims_exhausted=FALSE;

FILE *fp;

/* Function Declarations */

/* I/P - O/P Functions & I/P Verification */

void ip_solvesudoku();

void ip_storesudoku();

void change_settings();

void ascertain_mode();

int verify_ipval(int ip[10][10]);

/*Board Displaying Funcs */

void align_N_create(int ip[10][10]);

void create_boardpattern(int i,int c[]);

/* Intermediate checking/groundwork Funcs */

void initialize_subgrids(int sgrid[10][4][4]);

int get_subgrid(int row,int col);

void change_subgrid(int k,int row,int col);

int verify_placing(int i,int row,int col);

int all_entries_placed(int sol[10][10]);

/* RECURSIVE Funcs - the main Brain of the Prog */

void solve_get_basic_vals(int sol[10][10]);

//void solve_advanced_elims(int sol[10][10]);

//void solve_still_no_sol(int sol[10][10]);

/* MAIN PROGRAM */

void main()

{

 char choice;

 clrscr();

 printf("******* TEST VERSION *******");

 getch();

 do{

 clrscr();

 printf("MAIN MENU");

 printf("\n\n\n1. SOLVE a Sudoku Puzzle");

 printf("\n\n2. STORE a Sudoku Puzzle & its Solution");

 printf("\n\n3. CHANGE Settings/Preferences");

 printf("\n\n4. Credits");

 printf("\n\n5. Exit");

 printf("\n\nEnter your choice : ");

 scanf("%d",&choice);

 clrscr();

 switch(choice)

 {

 case 1:

 ascertain_mode();

 ip_solvesudoku();

 break;

 case 2:

 ip_storesudoku();

 break;

 case 3:

 change_settings();

 break;

 case 4:

 printf("Created & Conceived By : Rajiv A Iyer");

 printf("\nCopyright 2005 - Rai");

 printf("\n\nAlgorithm adopted from the site :\n");

 printf("http://www.eddaardvark.co.uk/sudokusolver.html");

 getch();

 break;

 case 5:

 break;

 default:

 printf("\a%s\a",err_ip);

 getch();

 }

 //getch();

 }while(choice!=5);

}

/* I/P-O/P Functions & I/P Verification Functions Begin */

/* This Routine asks for I/P from user to solve a Sudoku Puzzle & ATTEMPTS

 to solve it, by calling the Recursive routine : "solve_get_basic_vals()" */

void ip_solvesudoku()

{

 int i,j,k,n,ip[10][10],ipno_tmp;

 int flag;

 do{

 /* Initializing all the entries of array 'ip' & 'sol' to default value of '0' */

 for(i=0;i<=9;i++)

 for(j=0;j<=9;j++)

 {

 sol[i][j]=ip[i][j]=FALSE;

 }

 fp=fopen("op_solve_sudoku.txt","w");

 if(fp==NULL)

 {

 printf("%s",err_file);

 getch();

 return;

 }

 /* Calling function to create the board pattern intitially empty */

 align_N_create(sol);

 printf("\n\n\nEnter the number of nos. to be entered : ");

 scanf("%d",&n);

 if(n==0 || n>=81)

 {

 printf("\aERROR!! \a%d Entries Cannot be Entered For Solving!!",n);

 getch();

 return;

 }

 /* The following commented code is used to check the displaying of the program

 for all 81 entries */

 /*

 else if(n==81)

 {

 for(i=1;i<=9;i++)

 for(j=1;j<=9;j++)

 {

 ip[i][j]=j;

 sol[i][j]=j;

 }

 break;

 }

 */

 if(ip_mode==1)

 {

 printf("Enter the Row no.,Column no. & the number to be entered :\n");

 for(i=0;i<n;i++)

 {

 scanf("%d%d",&j,&k);

 scanf("%d",&ipno_tmp);

 sol[j][k]=ip[j][k]=ipno_tmp;

 }

 }

 else

 {

 printf("\n\nEnter the entries Row wise (in the format : Col_no <space> entry) :");

 printf("\nJust Type '0' at the end of each Row-I/P :\n");

 for(i=1;i<=9;i++)

 {

 printf("\n\nRow %d :\n",i);

 do{

 scanf("%d",&j);

 scanf("%d",&ipno_tmp);

 if(ipno_tmp!=0)

 sol[i][j]=ip[i][j]=ipno_tmp;

 }while(ipno_tmp!=0);

 }

 }

 /* Setting 'flag' as a flagging variable to O/P of routine 'verify_ipval()' */

 flag=verify_ipval(ip);

 if(!flag)

 {

 clrscr();

 flushall();

 }

 }while(!flag);

 clrscr();

 printf("\n\nREFRESHING THE BOARD");

 getch();

 clrscr();

 align_N_create(sol);

 getch();

 /* Initializing the sub-grids */

 //initialize_subgrids(sgrid);

 clrscr();

 printf("The Solution of this Sudoku Problem is : ");

 getch();

 printf("PROCESSING.......This may take some time.....");

 getch();

 clrscr();

 solve_get_basic_vals(sol);

 getch();

 getch();

 fclose(fp);

}

/* This Function Asks user for I/P of the Newspaper, date of publishing of the

 Puzzle & then asks the user to fill the numbers already give.

 It then asks the user to enter the entire solution of the puzzle, which it

 stores in a file : "store_sud_sols.rtf"

*/

void ip_storesudoku()

{

 int i,j,k,n,ip[10][10],ipno_tmp;

 char pub_date[15],news_paper[30];

 /* Intializing all entries of 'sol' & 'ip' to default value of '0' */

 for(i=0;i<=9;i++)

 for(j=0;j<=9;j++)

 {

 sol[i][j]=ip[i][j]=FALSE;

 }

 /* Opening File */

 fp=fopen("save_sud_sols.rtf","a");

 if(fp==NULL)

 {

 printf("%s",err_file);

 getch();

 return;

 }

 printf("\n\nEnter the Newspaper from which Puzzle was taken : ");

 flushall();gets(news_paper);

 fprintf(fp,"\n\n\n\nFrom Newspaper : %s",news_paper);

 printf("\n\Enter the Date of publishing of puzzle : ");

 flushall();gets(pub_date);

 fprintf(fp,"\nDate of Publishsing : %s",pub_date);

 printf("\n\n\nEnter the number of nos. to be entered : ");

 fprintf(fp,"\n\n\nEnter the number of nos. to be entered : ");

 scanf("%d",&n);

 fprintf(fp,"%d",n);

 printf("Enter the Row no.,Column no. & the number to be entered :\n");

 for(i=0;i<n;i++)

 {

 scanf("%d%d",&j,&k);

 scanf("%d",&ipno_tmp);

 ip[j][k]=ipno_tmp;

 }

 clrscr();

 printf("\n\nREFRESHING THE BOARD!! Writing into FILE!!");

 getch();

 fprintf(fp,"\n\nQUESTION/PUZZLE : ");

 align_N_create(ip);

 getch();

 clrscr();

 printf("Enter the Solution of the Sudoku! Press Enter!");

 printf("\n\nEnter the entries Row wise :\n");

 for(i=1;i<=9;i++)

 for(j=1;j<=9;j++)

 scanf("%d",&ip[i][j]);

 clrscr();

 printf("\n\nREFRESHING THE BOARD!! Writing into FILE!!");

 getch();

 fprintf(fp,"\n\nSOLUTION : ");

 align_N_create(ip);

 getch();

 /* Closing File */

 fclose(fp);

}

/* The below routine is for changing the default settings used for I/P - O/P

 operations. The changes r made to a file : "settings_sud.txt", that

 must be in the same folder as the program */

void change_settings()

{

 int ch,sr_no,setted_val;

 int present_ip_mode,new_ip_mode;

 int present_op_mode,new_op_mode;

 char parameter[50];

 do{

 clrscr();

 /* Opening file */

 fp=fopen("settings_sud.txt","r");

 if(fp==NULL)

 {

 printf("\a%s\a",err_file);

 getch();

 return;

 }

 while(!feof(fp))

 {

 fscanf(fp,"%d %s %d",&sr_no,parameter,&setted_val);

 switch(sr_no)

 {

 case 1:

 printf("The default mode of Inputting is of the format :");

 if(setted_val==1)

 printf("\nRow_No <space> Col_No <space> Entry");

 else

 {

 printf("Row-wise Entries, i.e.");

 printf("\nRow 1 : Col_No <space> Entry......");

 printf("\nRow 2 : Col_No <space> Entry......");

 printf("\n\n& so on");

 }

 present_ip_mode=setted_val;

 break;

 case 2:

 if(setted_val==1)

 {

 printf("\n\n\nAt Present, Recursive Calls/Moves are displayed");

 printf("\ni.e., Individual Steps are displayed");

 }

 else

 {

 printf("\n\n\nAt Present, Recursive Calls/Moves are NOT displayed");

 printf("\ni.e., Individual Steps are NOT displayed\n");

 }

 present_op_mode=setted_val;

 break;

 default:

 printf("\n\nThis File has been Modified or Changed!!");

 printf("\nPlease restore it to its original format");

 }

 getch();

 }

 fclose(fp);

 printf("\n\n\nSETTINGS CHANGE MENU :\n");

 printf("\n1. Change I/P Mode\n2. Change O/P Mode\n3. Restore All Defaults");

 printf("\n4. Go Back to Main Menu\n5. Exit");

 printf("\nEnter your choice : ");

 flushall();scanf("%d",&ch);

 switch(ch)

 {

 case 1:

 /* Opening the File in Write Mode */

 fp=fopen("settings_sud.txt","w");

 new_ip_mode=(present_ip_mode+1)%2;

 fprintf(fp,"1 Default_I/P_Mode= %d",new_ip_mode);

 fprintf(fp,"\n2 Default_Rec_O/P_Mode= %d",present_op_mode);

 printf("\n\n\nI/P Mode has been Changed!");

 fclose(fp);

 break;

 case 2:

 /* Opening the File in Write Mode */

 fp=fopen("settings_sud.txt","w");

 new_op_mode=(present_op_mode+1)%2;

 fprintf(fp,"1 Default_I/P_Mode= %d",present_ip_mode);

 fprintf(fp,"\n2 Default_Rec_O/P_Mode= %d",new_op_mode);

 printf("\n\n\nO/P Mode has been Changed!");

 fclose(fp);

 break;

 case 3:

 if(present_ip_mode==1 && present_op_mode==1)

 printf("\n\nDefault Settings Already exists!!");

 else

 {

 /* Opening File in Write Mode */

 fp=fopen("settings_sud.txt","w");

 fprintf(fp,"1 Default_I/P_Mode= 1");

 fprintf(fp,"\n2 Default_Rec_O/P_Mode= 1");

 printf("\n\n\nDefault Settings Restored!!");

 fclose(fp);

 }

 break;

 case 4:

 break;

 case 5:

 exit(1);

 default:

 printf("%s",err_ip);

 }

 getch();

 }while(ch!=4);

}

/* The following routine ascertains the I/P Mode & O/P Mode & stores the

 mode values in Global Variables 'ip_mode' & 'op_mode' */

void ascertain_mode()

{

 int sr_no,setted_val;

 char parameter[50];

 /* Opening file */

 fp=fopen("settings_sud.txt","r");

 if(fp==NULL)

 {

 printf("\a%s\a",err_file);

 getch();

 return;

 }

 while(!feof(fp))

 {

 fscanf(fp,"%d %s %d",&sr_no,parameter,&setted_val);

 switch(sr_no)

 {

 case 1:

 ip_mode=setted_val;

 break;

 case 2:

 op_mode=setted_val;

 break;

 }

 }

 /* Closing File */

 fclose(fp);

}

/* This function verifies the validity of the I/P entered by user

 & returns a value of '1' if I/P is valid & '0' otherwise

 The rules for deciding validity is the same as the Sudoku rules */

int verify_ipval(int ip[10][10])

{

 int i,j,p,q;

 int temp[10];

 /* Testing for I/P invalidity if I/P exceeds '9' */

 for(i=1;i<=9;i++)

 for(j=1;j<=9;j++)

 if(ip[i][j]>9)

 {

 printf("%s",err_ip);

 printf("\n\nEntry %d to be placed in Row %d & Column %d is invalid!!",ip[i][j],i,j);

 getch();

 return FALSE;

 }

 for(i=1;i<=9;i++)

 {

 /* Copying entries of present row 'i' into array 'temp' */

 for(j=1;j<=9;j++)

 temp[j]=ip[i][j];

 /* Checking for repeated entries in 'temp', i.e. Checking for repeated

 entries in a Row */

 for(p=1;p<=9;p++)

 for(q=p+1;q<=9;q++)

 if((temp[p]==temp[q]) && (temp[p]!=FALSE))

 {

 printf("%s",err_ip);

 printf("\n\nEntry %d appears in the Row %d, both at Column %d & Column %d",temp[p],i,p,q);

 getch();

 return FALSE;

 }

 /* Resetting all the values of 'temp' to '0' */

 /* If Re-setting is NOT done, then false comparisions may be made

 in the subsequent analysis & hence incorrect results may be obtained */

 for(j=1;j<=9;j++)

 temp[j]=FALSE;

 /* Copying entries of column 'i' into array temp */

 for(j=1;j<=9;j++)

 if(ip[j][i]!=FALSE)

 temp[j]=ip[j][i];

 /* Checking for repeated entries in 'temp', i.e. Checking for repeated

 entries in a column */

 for(p=1;p<=9;p++)

 for(q=p+1;q<=9;q++)

 if((temp[p]==temp[q]) && (temp[p]!=FALSE))

 {

 printf("%s",err_ip);

 printf("\n\nEntry %d appears in the Column %d, both at Row %d & Row %d",temp[p],i,p,q);

 getch();

 return FALSE;

 }

 }

 /* If control reaches here, then obviously, in the above for loop, the

 "return 0" statement xecuted 0 times, i.e., I/P is valid. Hence returning 1 */

 return TRUE;

}

/* Display Routines Begin */

/* This function aligns the text for the Sudoku Board creation &

 numbers the rows & columns */

void align_N_create(int sol[10][10])

{

 int i,j,cr_no=0,align;

 int c[10];

 clrscr();

 flushall();

 printf("\n\n\n");

 fprintf(fp,"\n\n\n");

 for(i=0;i<34;i++)

 {

 printf(" ");

 fprintf(fp," ");

 }

 printf("SUDOKU BOARD :");

 printf("\n\n");

 fprintf(fp,"SUDOKU BOARD :");

 fprintf(fp,"\n\n");

 /* Helps in Centre-aligning the Sudoku Board */

 align=(80-64)/2;

 /* Creating a Horizontal printing pattern "C O L U M N S", aligned

 as per the Sudoku Board.

 Also, Numbering the columns of the Sudoku board that is about to

 be created & aligning it as per the Sudoku Board's alignment

 */

 /* In the 'i=0' iteration of the loop, we perform the work of printing

 "C O L U M N S", while in the 'i=1' iteration of the loop, we do the work

 of numbering the Columns */

 for(i=0;i<2;i++)

 {

 /* Beginning on a new line */

 printf("\n\n");

 fprintf(fp,"\n\n");

 /* Leaving 'align' no. of spaces for Centre-alignment / Centre-justfication */

 for(j=0;j<align;j++)

 {

 printf(" ");

 fprintf(fp," ");

 }

 /* Leaving 10 spaces for Remaining alignment */

 for(j=0;j<10;j++)

 {

 printf(" ");

 fprintf(fp," ");

 }

 if(i==0)

 /* Creating Horizontal "C O L U M N S" pattern */

 for(j=1;j<54;j++)

 switch(j)

 {

 case 9:

 printf("C");

 fprintf(fp,"C");

 break;

 case 15:

 printf("O");

 fprintf(fp,"O");

 break;

 case 21:

 printf("L");

 fprintf(fp,"L");

 break;

 case 27:

 printf("U");

 fprintf(fp,"U");

 break;

 case 33:

 printf("M");

 fprintf(fp,"M");

 break;

 case 39:

 printf("N");

 fprintf(fp,"N");

 break;

 case 45:

 printf("S");

 fprintf(fp,"S");

 break;

 default:

 printf(" ");

 fprintf(fp," ");

 }

 else

 /* Numbering the Columns */

 for(j=1;j<54;j++)

 switch(j)

 {

 case 3:

 printf("1");

 fprintf(fp,"1");

 break;

 case 9:

 printf("2");

 fprintf(fp,"2");

 break;

 case 15:

 printf("3");

 fprintf(fp,"3");

 break;

 case 21:

 printf("4");

 fprintf(fp,"4");

 break;

 case 27:

 printf("5");

 fprintf(fp,"5");

 break;

 case 33:

 printf("6");

 fprintf(fp,"6");

 break;

 case 39:

 printf("7");

 fprintf(fp,"7");

 break;

 case 45:

 printf("8");

 fprintf(fp,"8");

 break;

 case 51:

 printf("9");

 fprintf(fp,"9");

 break;

 default:

 printf(" ");

 fprintf(fp," ");

 }

 }//End of initial Pattern creation process

 /* Main Board Pattern creation begins */

 for(i=0;i<=27;i++)

 {

 /* Tracks the current row no. for which the current iteration is done

 or pattern produced */

 if(i%3==0)

 cr_no++;

 /* Beginning on a new line */

 printf("\n");

 fprintf(fp,"\n");

 /* Leaving 'align' no. of spaces for Centre-alignment / Centre-justfication */

 for(j=0;j<align;j++)

 {

 printf(" ");

 fprintf(fp," ");

 }

 /* Initializing all the entries of array c[10] to default value of '-1' */

 for(j=0;j<=9;j++)

 c[j]=FALSE;

 if(i==0)

 {

 /* Takes care of printing the 0th line - consisting of only "_"

 (underscores) & align text accordingly */

 /* Leaving 10 spaces for alignment */

 for(j=0;j<10;j++)

 {

 printf(" ");

 fprintf(fp," ");

 }

 /* Creating the horizontal "_" pattern */

 for(j=1;j<54;j++)

 {

 if(j%6==0)

 {printf(" ");fprintf(fp," ");}

 else

 {printf("_");fprintf(fp,"_");}

 }

 }

 else if(i%3==0)

 {

 /* Takes care of 3rd,6th,... lines, that displays "|____" simultaneously

 & align text accordingly */

 /* Leaving 9 spaces for alignment */

 for(j=0;j<9;j++)

 {

 printf(" ");

 fprintf(fp," ");

 }

 /* Calling fuction to create the present row pattern */

 create_boardpattern(i,c);

 }

 else if(i==8||i==11||i==14||i==17)

 {

 /* Will print "R", "O", "W" & "S" in the 8th, 11th, 14th & 17th

 rows respectively, display row nos. & align text accordingly */

 switch(i)

 {

 case 8:

 printf("R");

 fprintf(fp,"R");

 break;

 case 11:

 printf("O");

 fprintf(fp,"O");

 break;

 case 14:

 printf("W");

 fprintf(fp,"W");

 break;

 case 17:

 printf("S");

 fprintf(fp,"S");

 break;

 }

 /* Leaving 4 Spaces */

 for(j=0;j<4;j++)

 {

 printf(" ");

 fprintf(fp," ");

 }

 /* Printing the current row no. */

 printf("%d",cr_no);

 fprintf(fp,"%d",cr_no);

 /* Leaving 3 spaces for alignment */

 for(j=0;j<3;j++)

 {

 printf(" ");

 fprintf(fp," ");

 }

 /* Copying all the values of the array ip[10][10],

 belonging to the present row 'cr_no' into array c[10] */

 /* Those entries of c[10] with value 'FALSE' signifies that printing must

 be normal in that column block, while those with (+)ve values

 suggests that an entry must be placed in tht column block & hence

 printing must be modified */

 for(j=1;j<=9;j++)

 if(sol[cr_no][j]!=FALSE)

 c[j]=sol[cr_no][j];

 /* Calling function to print the present row pattern */

 create_boardpattern(i,c);

 }

 else if(i==2||i==5||i==20||i==23||i==26)

 {

 /* Takes care of 2nd,5th lines - these r centre lines of

 respective rows no. 1,2,7,8,9 */

 /* Leaving 5 Spaces */

 for(j=0;j<5;j++)

 {

 printf(" ");

 fprintf(fp," ");

 }

 /* Printing the current row no. */

 printf("%d",cr_no);

 fprintf(fp,"%d",cr_no);

 /* Leaving 3 spaces for alignment */

 for(j=0;j<3;j++)

 {

 printf(" ");

 fprintf(fp," ");

 }

 /* Copying all the values of the array ip[10][10],

 belonging to the present row 'cr_no' into array c[10] */

 /* Those entries of c[10] with value 'FALSE' signifies that printing must

 be normal in that column block, while those with (+)ve values

 suggests that an entry must be placed in tht column block & hence

 printing must be modified */

 for(j=1;j<=9;j++)

 if(sol[cr_no][j]!=FALSE)

 c[j]=sol[cr_no][j];

 /* Calling function to print the present row pattern */

 create_boardpattern(i,c);

 }

 else

 {

 /* Takes care of all other rows */

 /* Leaving 9 Spaces for alignment */

 for(j=0;j<9;j++)

 {

 printf(" ");

 fprintf(fp," ");

 }

 create_boardpattern(i,c);

 }

 }//End of Master for loop (i loop)

 printf("\n\n");

 fprintf(fp,"\n\n");

}//Function Ends

/* This function creates the actual Sudoku Board pattern */

void create_boardpattern(int i,int c[])

{

 int j,ccol_no=1;

 /* Printing the Left Wall character "|" */

 printf("|");

 fprintf(fp,"|");

 /* Printing the rest of the horizontal line */

 for(j=1;j<54;j++)

 {

 if(j%6==0)

 {ccol_no++;printf("|");fprintf(fp,"|");}

 else

 {

 if(i%3==0)

 /* Refer the corresponding "i%3" condition in

 function "align_N_create()" to understand */

 {printf("_");fprintf(fp,"_");}

 else

 {

 if(c[ccol_no]==FALSE)

 {printf(" ");fprintf(fp," ");}

 else

 {

 if(c[ccol_no]==FALSE)

 {

 printf(" ");

 fprintf(fp," ");

 }

 else

 {

 printf(" ");//2 spaces

 fprintf(fp," ");

 printf("%d",c[ccol_no]);

 fprintf(fp,"%d",c[ccol_no]);

 printf(" ");//2 spaces

 fprintf(fp," ");

 j+=4;

 }

 }

 }

 }

 }

 /* Printing the Right Wall character "|" */

 printf("|");

 fprintf(fp,"|");

}

// Bring those temp non-file versions here

/* Fuctions for MAIN LOGICAL WORK BEGINS */

/* Intermediate/Groundwork Functions */

/* This routine intializes the sub-grids to Default value of '-1' or

 an entry 'k' that may be present in the array 'sol[][]' */

void initialize_subgrids(int sgrid[10][4][4])

{

 int p,q,r,s,t,u,v;

 /* Decomposing contents of 'sol[10][10]' into individual sub-grid contents */

 t=1;

 for(r=1;r<=9;r+=3)

 for(s=1;s<=9;s+=3,t++)

 for(u=1,p=r;p<=r+2;p++,u++)

 for(v=1,q=s;q<=s+2;q++,v++)

 sgrid[t][u][v]=sol[p][q];

}

/* This function takes two integers as arguments - row no & column no. of

 row & column under consideration & returns an integer value signifying

 the sub-grid of which the given row-column belong to */

int get_subgrid(int row,int col)

{

 int temp;

 /* Identifying concerned grid */

 if(row>=1 && row<=3)

 {

 if(col>=1 && col<=3)

 /* Grid 1 */

 temp=1;

 else if(col>=4 && col<=6)

 /* Grid 2 */

 temp=2;

 else

 /* Grid 3 */

 temp=3;

 }

 else if(row>=4 && row<=6)

 {

 if(col>=1 && col<=3)

 /* Grid 4 */

 temp=4;

 else if(col>=4 && col<=6)

 /* Grid 5 */

 temp=5;

 else

 /* Grid 6 */

 temp=6;

 }

 else

 {

 if(col>=1 && col<=3)

 /* Grid 7 */

 temp=7;

 else if(col>=4 && col<=6)

 /* Grid 8 */

 temp=8;

 else

 /* Grid 9 */

 temp=9;

 }

 return temp;

}

/* This function verifies the validity of a placing made in the recursive

 routine "solve_sudoku()", & accordingly returns '1' if valid & '0' if invalid */

int verify_placing(int i,int row,int col)

{

 int j,k,temp;

 /* Checking for repetition in row */

 for(j=1;j<=9;j++)

 if(sol[row][j]==i)

 return FALSE;

 /* Checking for repetition in column */

 for(j=1;j<=9;j++)

 if(sol[j][col]==i)

 return FALSE;

 /* Calling func "get_subgrid()", & storing concerned grid no. in 'temp' */

 temp=get_subgrid(row,col);

 /* Checking for repetition in concerned grid */

 for(j=1;j<=3;j++)

 for(k=1;k<=3;k++)

 if(sgrid[temp][j][k]==i)

 return FALSE;

 /* If control reaches here, then the placing is correct.

 Therefore, returning '1' */

 return TRUE;

}

/* This function verifies whether all the entries have been placed or not

 & returns a value of '1' if all entries have been placed & '0' otherwise */

int all_entries_placed(int sol[10][10])

{

 int i,j;

 for(i=1;i<=9;i++)

 for(j=1;j<=9;j++)

 if(sol[i][j]==FALSE)

 return FALSE;

 return TRUE;

}

/* This function places an element 'k' in the row 'row' & column 'col' &

 eliminates all other possibilities of entry 'k' in a sub-grid */

void change_subgrid(int k,int row,int col)

{

 int p,q;

 int r,s,t,u,v;

 int temp;

 temp=get_subgrid(row,col);

 t=1;

 for(r=1;r<=9;r+=3)

 for(s=1;s<=9;s+=3,t++)

 if(t==temp)

 for(u=1,p=r;p<=r+2;p++,u++)

 for(v=1,q=s;q<=s+2;q++,v++)

 if(p==row && q==col)

 sgrid[t][u][v]=k;

 else //if(p!=row && q!=col)

 poss[p][q][k]=FALSE;

}

/* RECURSIVE FUNCTIONS BEGIN */

/* Does the work of basic elimination of possiblities & basic guessing/filling.

 i.e., makes it simpler for advanced functions to solve Sudoku, which

 I hav not coded yet */

/*

 NOTE : This Function's Algorithm/Working is Based on the Algorithm

 found at the link :

 http://www.eddaardvark.co.uk/sudokusolver.html

 NOTE 2 : Also note, that while the Algorithm itself has been adopted,

 the function has not been. That's the reason why it isn't completely

 correct at giving the right solution, because I am still working on it.

 Also note, that this program when complete will involve Multiple

 Recursions of the form :

 function1() function2()

 { {

 . .

 . .

 Terminating condition Terminating Condition

 . .

 . .

 function2() //Recursion function1() //Recursion

 . .

 . .

 } }

 So, it is very tedious & difficult to code.

*/

void solve_get_basic_vals(int sol[10][10])

{

 int i,j,k,p,q;

 int r,s,t,u,v,w;

 int freq_row,freq_col;

 int rowpos,colpos;

 int freq_grid;

 int grid_rowpos,grid_colpos;

 int array_rowpos,array_colpos;

 int flag=FALSE;

 if(elims_exhausted==FALSE)

 {

 /* Initializing all the sub-grids */

 initialize_subgrids(sgrid);

 if(trace_no_rec > err_rec_lmt)

 {

 clrscr();

 printf("ERROR!! Recursion calls exceeds limit of %d!!",err_rec_lmt);

 printf("\n\n\nProgram Terminates");

 getch();

 getch();

 exit(1);

 }

 if(op_mode==1)

 if(trace_no_rec > 0)

 {

 clrscr();

 printf("%d Recursive Call! For present Board Status, press Enter",trace_no_rec);

 fprintf(fp,"\n\n%d Recursive Call! For present Board Status, press Enter",trace_no_rec);

 getch();

 clrscr();

 align_N_create(sol);

 getch();

 }

 if(all_entries_placed(sol))

 {

 printf("\n\nSUDOKU SOLVED!!");

 printf("\n\n%d Recursive calls made",trace_no_rec);

 printf("\n\nPress Enter to view solution");

 getch();

 align_N_create(sol);

 getch();

 exit(1);

 }

 /* STAGE I */

 /* Basic Elimination by Applying the Given Numbers */

 for(i=1;i<=9;i++)

 for(j=1;j<=9;j++)

 for(k=1;k<=9;k++)

 if(sol[i][j]==FALSE)

 {

 if(verify_placing(k,i,j))

 poss[i][j][k]=TRUE; /* Here '1' indicates validity of entry 'k' in 'i'th row & 'j'th column */

 else

 poss[i][j][k]=FALSE;

 }

 else if(sol[i][j]==k)

 poss[i][j][k]=TRUE;

 else

 poss[i][j][k]=FALSE;

 /* STAGE II */

 /* Looking for Singletons */

 for(k=1;k<=9;k++)

 {

 for(i=1;i<=9;i++)

 {

 freq_row=0;

 freq_col=0;

 for(j=1;j<=9;j++)

 {

 /* Checking for Row Possibilities */

 if(poss[i][j][k]==TRUE && sol[i][j]!=k)

 {

 freq_row++;

 rowpos=j;

 }

 /* Checking for Column Possibilities */

 if(poss[j][i][k]==TRUE && sol[j][i]!=k)

 {

 freq_col++;

 colpos=j;

 }

 }

 /* Looking at Row Eliminations Possibilities */

 if(freq_row==1)

 {

 /* There is only one occurence/possibility of the entry 'k' in all the

 possibilities in the 'i'th row. Hence, it MUST be present there */

 /* Setting value of 'i'th row & 'rowpos'th col element to 'k' */

 sol[i][rowpos]=k;

 /* Updating 'poss', so as to eliminate all other number's possibilities

 in row 'i' & column 'rowpos' */

 for(j=1;j<=9;j++)

 if(j!=k)

 poss[i][rowpos][j]=FALSE;

 /* Updating the sub-grid to which 'i'th row & 'rowpos'th column belong */

 change_subgrid(k,i,rowpos);

 /* We have placed the value 'k' in the 'rowpos'th column. Now, eliminating

 its possibilities in column 'rowpos' by updating array 'poss' */

 for(j=1;j<=9;j++)

 if(j!=i)

 poss[j][rowpos][k]=FALSE;

 /* Also, in all the iterations of the 'k' loop, some change/elimination

 is made. Hence, flag is incremented */

 //flag=1;

 flag++;

 }

 /* Looking at Column Eliminations Possibilities */

 if(freq_col==1)

 {

 /* There is only one occurence/possibility of the entry 'k' in all

 the possibilities in the 'i'th column. Hence, it MUST be present there */

 /* Setting value of 'colpos'th row & 'i'th col element to 'k' */

 sol[colpos][i]=k;

 /* Updating 'poss', so as to eliminate all other number's possibilities

 in row 'colpos' & column 'i' */

 for(j=1;j<=9;j++)

 if(j!=k)

 poss[colpos][i][j]=FALSE;

 /* Updating the sub-grid to which 'colpos'th row & 'i'th column belong */

 change_subgrid(k,colpos,i);

 /* We have placed the value 'k' in the 'colpos'th row. Now, eliminating

 its possibilities in row 'colpos' by updating array 'poss' */

 for(j=1;j<=9;j++)

 if(j!=i)

 poss[colpos][j][k]=FALSE;

 /* We hav placed 'k' in 'colpos'th row & 'i'th column, thereby placing

 it in some subgrid. We must now eliminate all its other possibilities

 in that sub-grid */

 //change_subgrid(FALSE,k,colpos,i);

 /* Also, in all the iterations of the 'k' loop, some change/elimination

 is made. Hence, flag is incremented */

 //flag=1;

 flag++;

 }

 }//End of i-loop

 }//End of k-loop

 /* Looking at Grid Elimination Possibilities */

 for(w=1,t=1;w<=9;w++)

 for(r=1;r<=9;r+=3)

 for(s=1;s<=9;s+=3,t++)

 {

 freq_grid=0;

 for(u=1,p=r;p<=r+2;p++,u++)

 for(v=1,q=s;q<=s+2;q++,v++)

 if(poss[p][q][w]==1 && sol[p][q]!=w)

 {

 freq_grid++;

 grid_rowpos=u;

 grid_colpos=v;

 array_rowpos=p;

 array_colpos=q;

 }

 /* Looking at Grid Eliminations Possibilities */

 if(freq_grid==1)

 {

 /* The entry 'w' appears only once in the Grid 't'. Hence,

 it MUST be present there. */

 /* Setting 'w' as 'p'th row & 'q'th col element of 'sol',

 i.e., 'u'th row & 'v'th col element of Sub-Grid 't' */

 sol[array_rowpos][array_colpos]=w;

 sgrid[t][grid_rowpos][grid_colpos]=w;

 /* Updating 'poss', so as to eliminate all other number's possibilities

 in row 'array_rowpos' & column 'array_colpos' */

 for(j=1;j<=9;j++)

 if(j!=w)

 poss[array_rowpos][array_colpos][j]=FALSE;

 /* Eliminating all other possibilities in Row 'p' */

 for(j=1;j<=9;j++)

 if(j!=array_colpos)

 poss[array_rowpos][j][w]=FALSE;

 /* Eliminating all other possibilities in Column 'q' */

 for(j=1;j<=9;j++)

 if(j!=array_rowpos)

 poss[j][array_colpos][w]=FALSE;

 /* Also, in all the iterations of the 'w' loop, some change/elimination

 is made. Hence, flag is incremented */

 //flag=1;

 flag++;

 }

 }//End of s-loop

 //End of r-loop

 //End of w-loop

 trace_no_rec++;

 //if(flag==1)

 if(flag>1)

 solve_get_basic_vals(sol);

 else

 {

 printf("\n\nBasic Eliminations Exhausted!!");

 printf("\n\n%d Recursive calls made",trace_no_rec);

 printf("\n\nPress Enter to view present-stage solution");

 fprintf(fp,"\n\nBasic Eliminations Exhausted!!");

 fprintf(fp,"\n\n%d Recursive calls made",trace_no_rec);

 fprintf(fp,"\n\nPress Enter to view present-stage solution");

 getch();

 align_N_create(sol);

 getch();

 elims_exhausted=TRUE;

 return;

 }

 }

}

Advantages
“it sharpens the mind ”.

References
1.”Let Us C” by Yashwant Kanetkar.

2.”Programming With C” by Byron S.Gottfried.

3. www.cprogramming.com

4. www.planet-source-code.com
5. www.codeproject.com

