1. DISCRETE EVENT SYSTEMS
1.1 INTRODUCTION

A discrete event system (DES) can be defined as a dynamic system in which the states change in response to the occurrence of events. The discrete events take place at possibly irregular or unknown points in time (i.e., asynchronously and nondeterministically) but are the result of interactions within the system itself. The acronym DES, or frequently DEDS (for discrete event dynamic systems), has been used extensively in different fields of mathematics and applications to designate apparently widely different systems. Nevertheless, all these systems have in common the property of being driven by events, rather than by time. The conceptual structure of a DES is simple. It is a system composed of multitudes of ‘‘jobs’’ that require various services from a multitude of ‘‘resources.’’ The limited availability of the  resources determines the  interactions between the  jobs, whereas the  start and  the  completion of the  jobs, as well as the changes in the  resources generate the  events that govern the  dynamics of the system. But this conceptually simple model encompasses scores of event-driven, mostly human-made, overwhelmingly complex systems: large international airports, automated manufacturing plants, military logistic systems, emergency hospital wards, offices, services and spare parts operations of multinational companies, distributed computing systems, large communication and data networks, very large scale integrated circuits (VLSI), and electronic digital circuits. Typical examples of events that can trigger the response of a DES  and the  possible change of its state are the arrival or the departure of a customer in a queue, the arrival or the departure of a packet in the node of a communication network, the  completion of a task, the  failure or the  repair of a machine in a factory, the  opening or the closing  of a switch in an electrical network, the  pressing of a key  on  the   keyboard of  a  personal computer (PC),  the   accessing or the  leaving of a resource.
System theory has traditionally been concerned with continuous variable dynamic systems (CVDSs) described by differential equations. The essential feature of CVDSs is that they are driven by time, which governs their dynamics. The discrete-time systems, for which the time instances are elements of a sequence, are described by difference equations instead of differential equations, but they essentially belong to the CVDS approach as long as their variables can take numerical values and are time-driven. In most cases, the discrete-time systems can be considered merely computational models, obtained by the sampling of the continuous-time systems. The CVDS approach is a powerful paradigm in modeling real-world ‘‘natural’’ systems. Currently, CVDSs are the main objects of what forms the core of our scientific and technical knowledge, ranging from Galileo’s and Newton’s classical mechanics to relativist and quantum mechanics, thermodynamics, electrodynamics. CVDS   models have also been highly successful in most engineering fields to describe low or medium complexity man-made systems and are still the main objects of control theory.

With  the  continuous and  rapid increase in  complexity of the   systems  to  be  modeled, analyzed,  designed,  and controlled, especially of the human-made systems that include computer and communication subsystems as essential  components, systems too complex  to allow a classical CVDS description  have emerged. For such systems, the variables attached to the states and to the processes can have not only numerical values, but also symbolic or logical values. This motivates the interest in DESs in domains as different as manufacturing, robotics, vehicular traffics, conveyance and storage of goods, organization and delivery of services, and computer and communication networks, with particular emphasis on database management, computer operating systems, concurrent programming, and distributed computing. In all these domains, control is necessary to ensure the orderly flow of events in highly complex systems. Significant efforts have been made in the last two decades to develop a comprehensive framework to handle DESs. The DES theory, even if still in its infancy when compared to the differential/difference equations paradigm underlying the CVDS theory, is fast growing at the confluence of artificial intelligence, operations research, and control system theory. Notable among the various approaches that have been used to represent DESs are the state machines and formal languages models (1-19), Petri nets (20-29), timed marked graphs (30-33), Markov chains(34,35), and generalized semi-Marcov processes (GSMP).(36,37)
These models allowed the analysis of DES qualitative properties, the quantitative evaluation of DES performances by methods as perturbation analysis (38-40) and likelihood ratio method (41-42), as well as progress in the design and control of DESs. Even if a general theory of DESs does not yet exist, the previously mentioned partial approaches have provided valuable concepts and insights and have contributed to the understanding of the fundamental issues involved in the analysis, design, and control of DESs. Discrete system simulation methods, algorithms, and software are now commercially available for both qualitative behavior analysis and quantitative performance evaluation (43-57). Because of the complexity and the heterogeneity of the domain, as well as its fast growth, only some of the basic aspects will be presented in the rest of the report.  The main attention is focused on the modeling of DESs, which allows one to grasp the basic features and the behavior of DESs with example applications.
2. MODELS OF DISCRETE EVENT SYSTEMS
The increased complexity of human-made systems, especially as an effect of the widespread application of information technology, has made the development of more detailed formal methods necessary to describe, analyze, and control processes observed in environments such as digital communication networks and manufacturing units. As opposed to the continuous time-driven evolution of a CVDS [Fig. 1(a)], the evolution of a DES is piecewise-constant and event-driven [Fig. 1(b)]. The  state variables of a  DES  may  have not  just numerical values, but also symbolic or logical values, so that the  set  of states Q does  not  have the  vector  space structure  typical for CVDS.  The  elements qj ∈ Q,  j ∈ N,  may  be  seen  as  labels attached  to  the  various  distinct states  of  the  DES.  The  state transitions may occur in response to the occurrence of discrete events σk,  belonging  to  a  set  of  events ∑ and  taking  place  at discrete time instances tk. From the point of view of the timing information, DESs can be classified into two main categories: (1) untimed (logical) and (2) timed.
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Figure 1.  Comparison of generic trajectories of continuous variable dynamic systems and   of discrete event systems: (a) Example of an illustrative one-dimensional CVDS trajectory. (b) Example of a DES trajectory (α, β, γ, δ ∈ ∑; a, b, c, d, s ∈ Q). 
2.1 UNTIMED DISCRETE EVENT SYSTEMS

Untimed or logical DES models ignore time as a variable that specifies the moments when the events occur. Only the order of the events is relevant for these models. The untimed DES models have been used for the deterministic qualitative analysis of control issues such as the   reachability of states (18,58,59) or deadlock avoidance (23,60). Finite-state machine and Petri nets are the formal mechanisms mostly used for the representation of untimed DESs. Other untimed frameworks, such as the trace theory, have also been explored. Nevertheless, finite-state machines and their associated state transition graphs are still the most widely used models because of their inherent simplicity and because they can be described adequately by finite automata and regular languages. The simplest untimed DES model is a deterministic state-machine or automaton, called generator, described by the 4-tuple

      G = (Q, ∑, δ, s)


                                                                                             (1)
where Q is the (countable) set  of states of the  system, ∑ is the (countable) set  of events,            δ: Q × ∑ → Q U  {Λ} is the  transition function, and  s = q0 is the  initial (start) state of the  system. By a reminiscence of the classical system theory, the  set  of states is sometimes called  the  state space, even  if it does  not have the  structure of a  vector  space, typical for  the  CVDSs. The function δ describes the transition from a state q ∈ Q to a new state            q’= δ(q, σ),  in response to the occurrence of an event σ ∈ ∑.  The symbol Λ denotes the null element, which is used to indicate that the transition is not defined for some pairs                 (q, σ) ∈ Q × ∑ . For this reason, δ: Q × ∑ → Q is called a partial function.  It  is  convenient  to  designate  by  ∑f(q)  the set of all feasible events for a given state q, i.e.,  ∑f(q)={σ ∈ ∑| δ(q, σ) ≠ Λ}. As usual in the regular expressions formalism, we denote by ∑* the set of all finite strings of elements of ∑, including the  empty string ε . A sample path (trajectory) of a DES, starting from the  specified initial state qo= s [see  Fig.1(a)] is  given   by  the   state-(event-state)  sequence q0σ1q1σ2…σnqn.  The set of all (physically) possible such sequences is called the behavior B(G) of the  generator G.

B(G) = {q0σ1 q1σ2 , .. ., σn qn |n ∈ N∗ , 1 ≤ k ≤ n, qk = δ(qk−1, σk )}


 (2)
For a deterministic DES, the sample trajectory can be described equivalently by the event string {(k}k=1,2,…..,n, or by the state string {qk}k=1,2,…..,n. In the   formalism of regular languages, an event string corresponding to a sample trajectory is called a word w built with the symbols σ taken from the alphabet ∑.  Correspondingly, the set of all the (physically) possible words is called the language L(G) ⊂ ∑* generated by G over the  alphabet. Sometimes, the language is also called the behavior of the DES, or the behavior of its generator. In the framework of automata theory, an automaton is described by a 5-tuple, which includes as a fifth element a set of marker states Qm ( Q. A marker state usually represents the completion of a task. 
Example 1. Consider a DES generator G that models a simple generic machine. The state set Q = {I, W, D}, is composed of the states: I-Idle, W-Working, and D-Down, whereas the event set (={S, C, B, R} is composed of the events: S- Start of a task, C-Completion of the task, B-Breaking down, and R—Repair. Figure 2 shows the transition function of the system. The states are designated by nodes and the events by oriented arcs connecting the nodes. The initial state s = I is marked with an entering arrow. The language generated by G, i.e., the   set   of all the   (physically) possible sequences of events is:

     L(G) = { ε , S, SD, SC, SCS, SCSD, SDR,  SDRS, SDRSD, ... }
which can  be written in the  formalism of regular expressions as: 

                                                L(G) = (SC+SDR)*(ϵ+S+SD).
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Figure 2.  The transition graph of a simple generic machine model. The system can be in the  states: I—Idle, W—Working, and  D—Down, and   the  transitions are  induced by  the  events: S—Start of a  task, C—Completion of the  task, B—Breaking down,  and  R—Repair.

Example 2.  Let us now consider the case of two machines of the type given in Example 1 working in parallel. Each machine has a generator of the previously considered type.  The transition graphs of the two machines working as independent entities are represented in Fig.3. The system composed of the  two  machines working in parallel, even  without conditioning each  other, has  the  state set  Q   =   Q1 × Q2 = {(I1, I2), (W1,  I2),  (D1,  I2),  .  .  .,  (D1, D2)} ,  the  set  of  events ∑ = ∑1 U ∑2 = {S1, C1, B1, R1, S2, C2,  B2,  R2 }, and  the  transition graph shown in Fig.  4. The combinatorial growth in complexity of a DES with the increase of the number of components is obvious.

Since  untimed  models contain no  quantitative  timing information, they cannot be  used  to  obtain performance measures involving time, such  as  holding times or  event occurrence rates.  Nevertheless, logical DES models have successfully been used to represent and study qualitative aspects in areas such as concurrent program semantics, communicating sequential processes, synchronization in operating systems, supervisory control, communication protocols, logical analysis of digital circuits, and fault-tolerant distributed computing and database protocols. 

[image: image1.emf]
Figure 3.  The transition graphs of two instances of the simple machine model in Fig. 2, operating independently.

The analysis of an untimed DES model typically proceeds as follows. By using some state transition structure (e.g., automata or Petri nets), a set of algebraic equations, or a logical calculus approach, one specifies the set of all admissible event trajectories, that is, enumerates all the sequences of events that do not contradict various physical restrictions inherent to the modeled system. On this basis, the  behavior of the  system usually expressed by the generated language L, that is, by  the  set  of all  the  possible finite  sequences of events that can  occur  in  the   system is found   as  a  strict subset of all event orderings   ∑*. In  the  control context, one  has  to further restrict the  language so that each  system trajectory has  some desired property such   as  stability (e.g.,  state  convergence), correct use  of resources (e.g., mutual exclusion), correct event ordering (e.g.,  data base  consistency), desirable  dynamic behavior (e.g., no deadlock/livelock), or the  achievement of some goal  (e.g., distributed consensus).

The difficulties in applying logical DES models to real-life size problems are caused by the computational complexity. Even if problems like establishing controllability or designing a supervisor to control the  behavior of a DES are polynomially decidable or polynomially solvable in the number of states of the DES, the number of states itself  grows in a combinatorial manner when a complex system is built from simpler component subsystems. As a consequence, the number of the states of a logical DES increases exponentially with respect to the system size.  This motivates the efforts to state/event formalisms that have the capability to suppress the aspects of the system description irrelevant in a given context. One modality is event internalization, or partial observation, which leads to nondeterministic process behavior and, consequently, to inadequacy of formal languages as models of behavior. The complexity issues are also talked with by using modularity, hierarchy, and recursivity when building the system descriptions from the individual component features. Since  all  the components of a complex  process must interact and  synchronize when operating in  parallel, a  suitable  mechanism  for communication and  interaction between modules is an  important component of DES  modeling.
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Figure 4.  The transition graph of a system made up of the two instances of the simple machine model shown in Fig. 2, operating as elements of the system.

2.2 MARKOV CHAIN MODEL OF AN UNTIMED DES.
One way of modeling the random behavior of discrete event systems is by using the Markov chain formalism. As pointed out earlier, the non-deterministic behavior of a system can be the result of its incomplete (partial) description. Either some of the  events are aggregated into  complex  events that can yield  multiple outcomes (event internalization) or the  states of the  system are defined in a space of lower dimension than would  be required for their complete specification (hidden variables) so that the states aggregate and  actually correspond to classes of states. Partial description can be necessary and desirable in order to reduce the computational difficulties to make complex systems tractable or can result from incomplete knowledge about the modeled system. On the other hand, randomness can be an irreducible feature of some of the processes in the system itself. 
A Markov chain model of a nondeterministic DES is defined by the set of states Q and the transition probability matrix PS = [Psij], where
1. Psij = P(qj|qi), for i ≠ j, is the  conditional probability that the  system passes into  the  state qj ∈ Q, i.e., the probability  of occurrence of event (ij=(qi, qj), provided that the  current state is qi ∈ Q.
2. Psij = 1 - (j≠i Psij is the probability of remaining in the state qi, which is the probability of   occurrence of event (ii=(qi, qi), if (ii∈( f, or the  probability that no event occurs  in the  state qi, if  (ii∉( f.
The probability that, starting from the initial state s = q(0) = qi,  the system arrives after  n  steps into the state q(n) = qj  is denoted by Psij  = P[q(n)  =   qj | q(0)  =  qi ]. Thus, the entries of the transition probability matrix give the probabilities of paths of length one:
PS ij =P[q(n +1) = q j |q(n) = qi ]
Markov chains can be used to represent the ‘‘closed loop’’ behavior of a controlled DES.  In this case, the probabilities of the enabled transitions (events) are strictly positive, whereas the probabilities of the disabled transitions are zero. The control of a DES modeled by a Markov chain consists thus in changing the transition probabilities, according to the commands issued by the supervisor, to achieve a certain controlling task.

2.3 TIMED DES MODELS
Timed DES models were developed primarily to allow the quantitative evaluation of DESs   by computing performance measures like holding times or event occurrence rates, which imply counting events in a given time interval or measuring the time between two specific event occurrences and obtaining the appropriate statistics. The timed event trajectory of a DES is specified by the sequence {(k, tk}k∈N* whereas the timed state trajectory is {qk, tk}k∈N where tk  gives  the moment of the kth event occurrence. Significant analytical results have been obtained in the special case of queuing theory. For the systems that do not satisfy the specific hypotheses of the queuing theory, timed DES models have been studied by using simulation and statistical analysis, which is computationally costly and has little potential for real-time control. Both approaches were used for the evaluation of performances related to resource contention and allocation, based on the oversimplifying assumption that a manufacturing process can be described adequately by using only timing considerations. For instance, the problem of the yield percentage in semiconductor wafer manufacturing is more closely related to the properties of the materials and to the technological aspects than to resource contention.
Another approach is based on the fact that sample paths of parametric DESs contain a considerable amount of information that allows to predict the behavior of the  system when the values of the parameters are perturbed. Both infinitesimal perturbation analysis (IPA)   and likelihood ratio (LR) methodology have been used in conjunction with various gradient based stochastic optimization schemes (39). These techniques significant results in problems like routing in communication networks or load balancing in distributed processing systems.

In order to define a timed DES, a mechanism for generating the event time instance sequence {tk}k ∈ N  has to be added to the untimed model. This mechanism should also take into account the randomness of the event lifetime τσ, σ ∈ Σ. Cassandras and Strickland (36) have introduced a model to study the properties of the sample paths of a timed DES.  The generator:
                                      G={Q,Σ,δ,s,F}                                                                      (3)
contains, in  addition to  the  components of an  untimed DES

[Eq.  (1)], the event lifetime generator:
                                         F={Fσ (.), σ ∈ Σ}                                                                (4)

Which is a set of probability distribution functions (pdfs) associated with the events.
The basic simplifying hypothesis is that all events are  generated through renewal processes, i.e., each  pdf Fσ (.) depends only  on  the  event σ, not on other factors such as the states before and after the event occurs and the count of how many event of type 𝜎  have already occurred.
Figure 5 shows a typical sample path of a timed DES.  In the  general case,  the  set  of events Σ contains several types of events and it is possible that for some states q there are nonfeasible events σ  ,  i.e.,  σ ∉  Σ f(q).  In  the  simplest case, when there is only one type of  event in Σ and this event is feasible for all the states in the path, the kth  lifetime  τk,i  of the  event of type i characterized by the pdf Fi(.) gives the interval between two successive   occurrences of the event tk +1- tk =𝜏 k,i   where k  = 1,2,.....

                            [image: image4.emf]
Figure 5.  Generic sample path of a timed DES with one event type. The  moment t divides the  kth lifetime  τk,i of event of type i into the age xk,i  and the residual lifetime yk,i..
A certain time instant t in this interval, t  ∈  [tk, tk + 1], divides it into two parts that define the  age xk,i = t-tk of the event i (the time elapsed since its most recent occurrence), and the  residual lifetime yk,i = tk+1 – t = τk,i - xk,i  of the  event of type i (the time until its next occurrence). When several types of events are possible, the next event occurrence is determined by the currently feasible event with the smallest residual lifetime                           σ k | 1 = argminσiΣ f(qk ) {yk,i}, where yk,i  is    a random variable generated with the  pdf:
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The dynamic model of a timed DES, allowing the step-by-step construction of a sample path, is thus given by
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are random variables drawn from Fj(.) for all  j. This stochastic dynamic model generates a generalized semi-Markov process. For such processes, a state is actually defined by two components: the discrete state
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), for all i. A GSMP offers a convenient framework for representing timed DESs. The deterministic mechanism for the state transitions, defined here by the function
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, can also be replaced by a probabilistic state transition structure.  Even more than in the case of untimed DESs, despite the conceptual simplicity of the dynamics, the exhaustive analysis of a stochastic timed DES model can be of prohibitive computational complexity, not only because of the large number of states but also because of the nonlinearity of the equations and the age-dependent nature of the pdfs Hk,i(u, xk,i).  On the other hand, if the dynamic equations are seen as a sample path model, than the timed trajectories of DES can be generated relatively simple when the lifetime distributions Fi(.) are known for all 
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. This allows the use of techniques like perturbation analysis (38) or the likelihood ratio (39, 40) method for performance evaluation, control, or optimization purposes.
The  stochastic model can be reduced to a deterministic one if the lifetimes are considered to be constants for  all  
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with x1,i = 0. The event time instances are given by the time Eq.  (7)
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2.4 FORMAL LANGUAGES AND AUTOMATA DES MODELS
Formal Languages—Regular Expressions. Using the previous notation, let the  generator G of an untimed (logical)  DES have the  finite  state set Q, the finite set of events   , and the behavior described by the set of all (physically) possible finite event strings 
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 the set of all finite strings built with elements of the  alphabet, including the empty string. In the formal language approach, let us consider that each event is a symbol, the event set is an alphabet, each sample event path 
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 of the DES is a word, and the (event) behavior L(G) is a language over 
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. The length |w| of a word w (i.e., of a sample path) is the number of symbols from the alphabet (i.e., events) it contains. The length of ϵ is zero.
Given two languages, L1 and L2, their union is defined by
L1 + L2 = L1 ∪ L2 = {w|w ∈ L1   or    w ∈ L2 }



(12)
Whereas their concatenation is
L1 L2  = {w|w = w1 w2 , w ∈ L1  or  w ∈ L2 }
           

(13)
The Kleene (iterative) closure of a language L is
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The union, concatenation, and Kleene closure are regular operators.
A string u is a prefix of
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A language L is prefix closed if
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, i.e., if it contains the prefixes of all its words. The (event) behavior of a DES can be modeled as a prefix closed language L over the event alphabet. In the following, the main relevant propositions will be stated, but the proofs will be omitted for briefness. We will write v*, u+v, and so on, instead of 
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A regular expression in L1, L2,.., Lm ⊂ Σ* is any  expression  in  L1,  L2,  .  .  ., Lm containing a finite number of regular operators. A language is called regular if it can be defined by a regular expression in a finite set of symbols, i.e., events.
The set R of regular languages over an alphabet is the smallest set of languages satisfying:
1. 
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3. 
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Regular expressions are notations for representing the regular languages, constructed with these rules:

1.     
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Obviously, a regular expression can be considered itself a word (a string of symbols) over the  alphabet 
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4. 
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It can be shown that a language is regular if it is represented by a regular expression. The  set  of all  the  words  constructed with the  symbols from  an  alphabet  
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 including  the  empty  word , ϵ is  represented  by  the  regular  expression  
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2.5 DES DETERMINISTIC GENERATORS.
Consider the generator of a DES modeled by a finite deterministic state machine (automaton) defined now by the  5-tuple

           G = {Q, S, d, s, Qm}







(18)
where Q is a (finite)  state set, is the (finite)  alphabet recognized by 
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 is the  transition function,  
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 Q is the  set  of marker states. For sake of simplicity, we considered here 
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 see comments on Eq. (1)]. As already mentioned, the marker states have been introduced by Ramadge and Wonham (16) to represent the completed tasks of a DES by the state trajectories that end in (or contain a) marker state. Therefore, along with B(G), the previously defined unmarked behavior of a DES  [Eq. (2)], we define the  marked behavior
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Which includes all the system trajectories that end in a marked state, i.e., result in the accomplishment of a certain task. Correspondingly, in  addition to the  language generated by  G,  the   subset 
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 of  all  the  (physically)  possible words generated by G over the alphabet 
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,

L(G) = {w = σ1 σ2 , .. ., σn  ∈ ∑|q0σ1 q1 σ2 ,.. ., σn qn ∈ B(G) }                        (20)
We define the language marked or accepted by G, as the restricted subset Lm(G)  ⊆  L(G)

Lm (G) = {w = σ1 σ2 ,.. ., σn  ∈  ∑∗ |q0 σ1 q1 σ2 ,.. ., σn qn ∈ Bm (G)}
(21)

Which is composed the words that start from the specified initial  state 
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, and lead  to a marked state qn ∈ Qm. Because the marked language Lm(G)  is a subset of the  language L(G), so is its  prefix  closure [see Eq. (15)] 
[image: image71.wmf]()()

m

LGLG

Í

,  i.e.,  every prefix  of Lm(G)  is  also  an  element of L(G).  A generator G is called nonblocking if the  equality 
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 holds,  meaning that every word  in L(G)  is a prefix  of a word  in Lm(G).  In this case, every sample path of events in L(G) can be extended to include a marker state or—in  other words—can be continued  to the  completion of a task. The links between  the  states 
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 can  be  put  on  a  more  formal basis using the  concept of configuration. The  configuration of a  finite  automaton is  defined  by the  ordered pair 
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A configuration 
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The execution of an automaton on  a  word  w  is 
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            (23)
For a deterministic automaton each word w defines a unique execution, thus a unique trajectory of the system.
Using this formalism, a word w is accepted or marked by a generator (automaton) G if the  execution of the automaton on the given word leads to a marker state qn 
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The language Lm(G)  accepted or marked by the  automaton  G is the  set  of words  accepted by G:
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2.6 DES NONDETERMINISTIC GENERATORS.  
A finite nondeterministic state machine (automaton) is the 5-tuple
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where 
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 retain the  meanings defined for deterministic generators [Eq.  (18)],  whereas the  evolution law  is given  by the  transition relation 
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The deterministic generator can be seen as a special case  of the nondeterministic generator with the property that, for all q
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It is convenient to extend further the definition of the evolution law to a relation 
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Using the relation 
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and the language accepted or marked by G as the restricted subset 
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A configuration 
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 is derivable in one step from the configuration (q,w) by the  generator G, the relation of which is denoted by 
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A class of equivalent states is a set of states that have the property that the system can pass from one state in the class to another without the occurrence of any  event, i.e., by transitions on the empty word ϵ. The equivalence class E(q) of a state q is defined as an equivalence  class comprising the state, q, i.e., the set of states reachable from the state q by transitions on the empty word:
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Two generators G1 and G2 are called equivalent if  
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For any nondeterministic finite generator
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, it is possible to build formally an equivalent deterministic  finite  generator 
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, for which the  states are  replaced with classes of equivalent states.  Correspondingly, the state set becomes  the  set of equivalence classes 
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(the  set  of the  subsets of the  state set  Q), the initial state is  replaced by  the  set  
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 of states in which  the  generator can  be before any event occurs, the transition function is defined by   
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, and  the  set  of marker equivalence classes is 
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. The last equation shows that a ‘state’’ of 
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 is a marker state if it contains a marker state of G.

2.7 REGULAR LANGUAGES AND FINITE AUTOMATA REPRESENTATION.  
As stated earlier, regular expressions and finite automata are formalisms adequate for representing regular languages, as well as for representing the behaviors of DESs, which are languages over  some  alphabets of events.
                                   [image: image145.emf]
Figure 6. Elementary automata that accept the languages corresponding to the basic regular expression
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The following propositions express the fundamental links between regular languages and finite automata:
a) A language is regular if it is accepted by a finite automaton.
b) If a language can be constructed by a regular expression, then it is accepted by a finite nondeterministic automaton.

c) For each basic regular expression
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,
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,
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 there is an automaton that  accepts the corresponding language as shown in Fig.  6.
d) For  each  composed regular expression 
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, an automaton accepting the  same language can  be built based on  the automata A1 and  A2 that accept the language  described  by 
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2.8 ALGORITHM FOR CONSTRUCTING THE MARKED LANGUAGE OF A  

GENERATOR G. 
Consider again the generator of a DES G=
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, with the finite set of states
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, where the order is arbitrary. Let us find the language Lm(G)  marked by G, i.e.,  the  set of words  over  the  alphabet 
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that end in  a marker state [see  comments on Eq. (30)].
Let  us denote by R(i,  j, k) the  partial language made up  of the  set  of words  allowing the  transition from  the  state qi  to the   state qj,  passing either directly, or  only  through states with indices lower  than k. Then
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(32)
and the following recurrence relation holds:
R (i, j, k + 1) = R (i, j, k) ∪ R (i, k, k) ∪ R (k, k, k) ∗ R (k, j, k),


(33)
                     k = 1, 2,..., n
Choosing the initial state s = q1, the language Lm(G)  marked by G results:
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Both the partial languages R and the language Lm(G)  are  regular languages.
Example 3.  Consider a simple DES, having the generator G given by Eq. (26), with the state set Q= {q1, q2}, the event set 
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the initial state s = q1, the set of marker states          Qm = {q2}, and the transition relation:
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, for which corresponds the transition graph in Fig. 7. Using the relations (32) and (33), the partial languages R(i,  j, k), i, j, k =1, 2, of G listed in Table 1 can be computed successively. Thus, the language accepted by G results:
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[image: image168.emf]
Figure 7. Transition graph of a simple determinist generator. The initial state s=q1 is marked with an entering arrow, whereas the marker state q2 is represented with a double circle.

2.9 MAX-PLUS ALGEBRA REPRESENTATION OF TIMED DISCRETE EVENT   

SYSTEMS
The max-plus (max, +) algebra deals with a subclass of the timed Petri nets, namely the timed event graphs. Originally, Petri nets were introduced as nontimed logical models. Timed Petri nets have been developed for modeling and performance analysis, but were found less adequate for control purposes. The theory of timed DES emerged from the combination of the   max-plus algebra framework with the system-theoretic concepts. Max-plus algebra is a convenient formalism for the systems in which synchronization is a key request for event occurrence, including both discrete events systems and continuous systems that involve synchronization. Max-plus algebra adequately describes systems for which the start of an activity requires the completion of all the activities that provide the inputs needed to perform the considered activity. In such cases, maximization is the basic operation. The complementary case is that of the systems in which an activity starts when at least one input becomes available. Minimization is the basic operation and the min-plus algebra is the adequate algebraic structure.  These two limit cases correspond to the AND and OR operators from the binary logic, respectively. In mixed systems, both types of conditions can be present, and other related (usually isomorphic) dioid algebraic structures must be used. In the following we will refer only to the  max-plus case.
[image: image169.emf]
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Figure 8.  Section of a  timed event graph showing only  the  edges coming  into  the  node  attached to event i. Input variables xj(k);  j= 1,..., n  give  the   moments when events j  occur  at step k,  and the weights Aij; j= 1,..., n of the  edges  correspond to the  delays produced  by the  transport from  j to i.

Consider the section of a timed event graph represented in Fig.  8. Each node  corresponds to  a  certain activity, whereas the  arcs  coming  into  a node  represent the  conditions required to initiate the  activity attached to the  node.  An event i (e.g., the  start of a  process) occurs  at step k+ 1  in  the  moment xi(k+ 1) when all the  input events (e.g., the  end  of the  prerequisite processes) have occurred at step k in the  respective moments xj(k);  j= 1, ..., n,  and  have propagated from  j to  i with the  transport delays Aij; j=1,..., n. The corresponding discrete-time dynamic system model is given by the equations:
xi (k + 1) = max(Ai1 + x1(k ) ,..., Aij  + xj(k ) ,.. ., Ain + x(k ) ),    i = 1,..., n
(35)

The analysis of this model  is  significantly simplified by  the max-plus algebra formalism.

The max-plus algebra ( 
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x ⊕ y = max(x, y)
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and the  multiplicative operation 
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 is the  usual addition
                             xy = x ⊕ y = x + y
                    




(37)
The  neutral element e with respect to 
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(the  ‘‘one’’ element of the  structure) is  0,  whereas the  neutral  element ϵ with respect  to 
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. This dioid is not a ring because, in general, an element of 
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. One distinctive feature of this structure is the idempotency of the addition:

                           x ⊕ x = x, 
∀x ∈
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The matrix product AB= A
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B of two matrices of fitting sizes (m
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The matrix sum A
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B of two matrices of the same size (m
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n) is defined by

(A ⊕ B)ij = Aij  ⊗ Bij  = max(Aij , Bij), i = 1,..., m; j = 1,..., n
(39)

The multiplication by a scalar a of a matrix A is defined by

(a ⊗ A)ij   = a ⊗ Aij  = a + Aij




                                    (40)
With the formalism of the max-plus algebra, the  equations of a time event graph become
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or, in matrix form,
                                    x(k + 1) = Ax(k)






(42)
where x(k) =
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 is the  state vector at time k, and A = [Aij, i, j=1, ..., n] is the   (n 
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n) system matrix.
The  weighted graph corresponding to a square (n
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n) matrix  A is the  triple G(A)=(N, E,
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), where N  is the  set  of n nodes, E is the  set  of edges, each  representing a nonzero entry of A, and  
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 E if and  only if Aij 
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 . The weight of the edge  eij is Aij. In the following, only graphs for which there is at most one edge between any ordered pair of nodes, oriented from the first node to the second, will be considered.

Example 4.  The graph in Fig.  9 corresponds to the system matrix

A = 
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Considering the state at step k given by the vector x(k)  [3, 2, 1]T, the  vector  at step (k+1) is

                                    x(k + 1) = Ax(k)    
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A path in a graph is a sequence of adjacent edges and nodes: 
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. In general, it is accepted that a path can pass twice  through the  same node  or through the  same edge.  A circuit is a closed path, i.e., a path for which the initial and the final node coincide. In the following, we will consider only elementary circuits, i.e., circuits that do not pass twice through the same node. The length of a path (circuit) is defined as the number of edges in the path (circuit). The weight of a path (circuit) is defined as the 
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. The average weight of a path is its weight divided (in the classical way) by its  length. For a circuit, the   average weight is sometimes called the circuit mean.
                                                  
[image: image210]
Figure 9.  Timed event graph corresponding to the system matrix in Example 4.

Example 5. Examples of paths in the graph in Fig. 9 are
[image: image211.emf]
There are  three (elementary) circuits in this graph:

     [image: image212.emf]
A graph is strongly connected if there exists a path between any two nodes of the graph. The matrix corresponding to a strongly connected graph is called irreducible. For an irreducible matrix A, then is a permutation P such that PTA P is an upper triangular matrix.
Example 6.  The graph in Fig. 9 is strongly connected.

          Ak = A ⊗ Ak−1, k ∈
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where A0 =I  is  the identity matrix, which  has (A0)ij =e if i= j, and  (A0)ij = ϵ if i
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 j. The entry (Ak)ij of the kth power of a square matrix A equals the maximum weight for all the paths of length k from  node j to node i.
A square matrix is aperiodic if there exists k0
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for all k
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k0. Aperiodicity implies irreducibility because (Ak)ij ≠ 𝜖 means that there exists at least one path of length k from  node j to node  i with weight (Ak)ij.  The reverse is not true.

Example 7.  The matrix A corresponding to the graph in Fig. 9 is aperiodic with k0 = 4. As in conventional algebra, if for a square matrix A there exist a vector v
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[ ε, ε,..., ε ]T  and  a scalar 
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 such  that

                        A ⊗ v = λ ⊗ v







(44)
then v is called an eigenvector of A, and 
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 is the corresponding eigenvalue.
Example 8. It is easy to check that:
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where A is  the  matrix corresponding to  the  graph in  Fig.  9.

The vector v = [7 3 e]T   is  an  eigenvector of A for  the  eigenvalue 
[image: image222.wmf]l

=5.
Some very important properties of the eigenvalue and eigenvectors of irreducible matrices are stated below.

a) Every square matrix has at least one eigenvalue.

b) The eigenvalue is unique for an irreducible matrix.

c) For an irreducible matrix, the eigenvalue equals maximum circuit mean taken over all   circuits in strongly connected graph corresponding to the matrix.

Any circuit for which the circuit mean is maximum is called a critical circuit.
Example 9.  The critical circuit of the graph in Fig. 9 is
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, which has the maximum average weight over  all circuits of  the   graph. This weight determines the eigenvalue 
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= 5 of the matrix A.

The matrix A
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 is defined by

      A+= 
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Each entry 
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 of the matrix gives the maximum weight for all paths of arbitrary length from node j to node i. The length increases unboundedly, so that the matrix A
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 diverges. For an irreducible matrix A, with the eigenvalue 
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, a matrix A
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is defined by

                                     Aλ = λ−1 A                                                                                    (46)

meaning that 
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The matrix A
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 has the remarkable property that
                
[image: image233.wmf]11

n

kk

kk

AAA

lll

¥

+

==

=Å=Å







          (47)
Where n is the dimension of the square matrix A. As before, (
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)ij is the maximum weight for all  paths of arbitrary length from  node  j to node  i, in  the  directed graph corresponding to A
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. The critical circuit in this graph has the weight e. A
[image: image236.wmf]l

 has the same eigenvectors as A, but for the eigenvalue e. For any node j in a critical circuit of A, the jth column of 
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is an eigenvector of A (and of A
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 ).
Example 10.  For the matrix A considered earlier, the matrix A diverges, but we can readily calculate A
[image: image239.wmf]l

 and 
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The first two columns of 
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 are eigenvectors of A for the eigenvalue 
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= 5. It happens that the third column is also an eigenvector.

The asymptotic behavior of the systems described by irreducible matrices is periodic. Remarkably enough, the steady state is reached within a finite number of steps. The periodic regime is determined only by the length and the average weight of the critical circuit, which is the slowest circuit in the system. If A is irreducible and the corresponding graph has a unique critical circuit of length m and average weight
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(the eigenvalue of A), then A is asymptotically periodic with period m,  i.e., there exists a kA
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        Ak+m = λm Ak , for all k ≥ kA
               





(48)
Example 11. For the matrix A considered in Example 4, the length of the critical path m = 2, its average weight (the eigenvalue of A) is 
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 = 5, and kA= 4, so that A6 =10
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A4. Indeed, in the max-plus algebra 10 = 5
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5 = 52.

The max-plus algebra can thus be used to evaluate the performance of timed discrete systems, in the asymptotic steady state. For this purpose, the eigenvalue is the key parameter of a system described by an irreducible matrix because determines the speed in the periodic state. Usually, 1/
[image: image252.wmf]l

 is referred to as the throughput of the system.

2.10 PETRI NETS MODELS
Petri nets theory has  been  developed as  a formalism able  to describe in  a  unified way  systems that  included computers, programs, and  a certain environment. Previously, the  various components of such  systems had  to  be described in  different and  unrelated formalisms: automata theory for the  computer hardware, code in a sequential programming language for the program, and  narrative prose  for  the  interaction of the program with the  environment. From the three mentioned elements, at most one the program is sequential so that the capacity to deal with the characteristics of parallel systems was a basic request. The timed Petri nets have been  introduced  in the  late seventeen to quantitatively study the  performances of parallel systems, especially referring to (i) concurrence,  the   possibility that  events occur   independently; (ii) synchronization, the  necessity that some  events wait  for the others before  they  can  occur;  and (iii) conflicts, the  mutual exclusion of some  events. Petri nets have the advantage to have a precise semantics and to allow the efficient use of algebraic techniques. The event graphs, which are adequate for modeling collision free synchronous systems, form a special class of Petri nets and can be described by linear equations when using max-plus algebra. An overview of Petri nets and of the concepts related to their properties can be found in the survey paper of Murata (26).
2.10.1 UNTIMED PETRI NETS.  
An untimed Petri net is defined by (S, M0), where S describes the structure of the graph attached to the net and M
[image: image253.wmf]0

 is the initial marking of the net. The structural part is characterized by the 5-tuple:
S = (P, T, F, r, s)




                   
(49)
with P the  (finite)  set  of places and  T the  (finite)  set  of transitions. The places P (customarily represented by circles) and the transitions T (drawn as bars) form the vertices of a graph. The arcs of the graph are given by
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 give the (positive) integer weights of the arcs going from the places toward the transitions, and from the transitions toward the places, respectively.
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Figure 10.  Firing of a transition in a Petri net.  (a)  Transition t is fireable because  for  ∀ p ∈  *t  { p1,  p2 },  the  markings  exceed  the threshold:  M(p1) =  2 ≥  r(p1, t) =  2 and  M(p2)  =   2 ≥ r(p2,  t)  =  1.  (b) After  the  firing,  the  markings  are  M’ (p1) =   M(p1) -  r(p1,  t)     = 0, M’ (p2) =  1, M’ (p3) =  M(p3) +  s(t, p3)  = 1, M’ (p4) =  4, M’ (p5) =  2.

It is customary to inscribe only the arcs with the weights exceeding one, whereas the arcs without any inscription have unit weight by default. Sometimes, edges with a larger weight are represented by the corresponding number of unit weight arcs in parallel. The places may contain zero or more tokens, usually drawn as black circles. A marking or ‘‘state’’ of a Petri net  is given  by the  distribution of the  tokens at a certain moment: M : P  → ℕ  , where M(p) gives the  number of tokens in  the   place  p  ∈  P.  The initial marking is given by M0.

Given a transition t  ∈  T, the  input place  set  of t is defined by
∗t = { p ∈ P : ( p, t ) ∈ F }






(50)
and the  output place  set,  by:
                           t∗ = { p ∈ P : (t, p) ∈ F }






(51)
Similarly, for a place p  ∈   P, the  input transition sets  of p is:
∗ p = {t ∈ T : (t, p) ∈ F }






(52)
Whereas the output transition set  is
                          p∗ = {t ∈ T : ( p, t ) ∈ F }





(53)
The dynamics of the Petri net is determined by the marking M. A transition t is enabled on a  marking M, if the number of tokens in each place p from which there is an arc toward the  transition t exceeds or at least equals the weight of the arc, i.e., if M(p)  ≥  r(p, t) for all         p ∈  *t. An enabled transition may fire. When a transition t fires, the number of tokens in the places p ∈ *t ∪ t* ⊂ P changes. The number of tokens is decreased for each input place         p ∈ *t with r(p, t) pieces  and increased with each  output place  p ∈ t* with s(t, p)  pieces. Consequently, the marking of the network places changes from M(p) to M(p), according to the  rule:
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Example 12.  Figure 10(a) represents a transition for which the firing conditions are fulfilled. Figure 10(b) gives the marking resulted after the fire.

A marking M2 is reachable from a marking M1 if a sequence of transition firings leading from M1 to M2 exists. The set of markings reachable when starting from a marking M and firing   transitions is denoted by R(M). The reachability problem—given M1 and M2, establish if        M2 ∈ R(M1) is exponentially decidable.
A marking M is bounded if for any  place  p ∈  P the  number of tokens is bounded, i.e.,  there is a constant integer b∈ ℕ * such  that  M(p) <  b, ∀ p ∈  P. A  Petri net is bounded for a given initial marking M0 if it is uniformly bounded for any M ∈ R(M0).  A Petri net is safe if the bound is 1. A Petri net is structurally bounded if it is bounded for any initial marking M0. A Petri net is conservative if the number of tokens is constant during the evolution of the system:
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Example 13.  The Petri net in figure 10 is not conservative. A transition t in a Petri net is alive for a marking M ∈ R(
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M

), if there exists M’  ∈  R(M) such  that t is fireble  under M . A transition is structurally alive if it is alive for any initial marking. A Petri net is (structurally) alive if all its transitions are (structurally) alive.
The incidence matrix of a Petri net  is the  │T │ × │ P │ matrix A with the  elements.
                                    Aij  = s(i, j ) − r( j, i)





(55)
The evolution vector uk  at step k is a unipolar binary vector of size  |T|

                                  uk = (1, 0, 1,.. ., 0, 0) T 





(56)
which  has  the  entries one  for the  transitions that fire at step k and  zero  for the  others.
The  net  marking at step k  can  be  described by  a  vector Mk   for which  the  evolution law  is

                                Mk = Mk−1 + 
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A firing sequence {uk| k  = 1, 2, ..., d}  is globally characterized  by the  firing  vector
                          x =
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whereas the  final  marking is given  by
                                  M f = M0  + AT x






(58)
Where M0 is the initial marking, and Mf is the  final  marking.
Example14. Untimed Petri nets have been used for the validation of communication protocols. The Petri net in Fig.11 shows such  a protocol  with acknowledge of reception.

[image: image266] Figure 11.  Untimed Petri net   model of a communication protocol with acknowledge of   

 reception.

The system comprises cycles on the emitting and receiving parts. The position of the tokens gives the state of the system, whereas the actions are represented by the transitions. The sending side waits for confirmation from the receiving part before proceeding to the transmission of the next message. The receiving side is ready for a new message only after having sent out the acknowledgment for the preceding one. The arrival of the next   message can then trigger a new cycle for sending out the  confirmation.
2.10.2 TIMED PETRI NETS.  
Timed Petri nets offer a general formalism adequate for including a measure of time in the description of a DES. Petri nets are especially adequate to model concurrent or parallel discrete systems. A First In–First-Out (FIFO) discipline is usually adopted for all the Places and all the transitions. Time-related parameters are attached to each process taking place  in the net. If the nth token enters a place p at the moment u, it becomes ‘‘visible’’ for the transitions in p* only after the moment 
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is the rest time of the nth token in place p. An initial latency time is also ascribed to each initial token in a place p.  If M0(p) ≥ n, the nth token existing in place p at the initial moment becomes available for the transitions in  p* starting from a moment 
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. The initial latency time is a special case of the rest time and allows modeling the peculiarities of the initial phase, whenever necessary. Similarly, the  nth fire of a transition  t  started  at  a  moment  u,  ends  at  moment 
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, is the duration of the nth firing of the transition t. The tokens are taken from the input places of the transition t and moved to the output places at the moment 
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 The time parameters have to satisfy certain natural restrictions:

(a) All the rest times and transition durations must be non-negative σp(n) ≥ 0,  φt(n) ≥ 0 for all p ∈  P,  t ∈  T,  and n ∈  N*.

(b) The initial latency times can be both positive and negative, but they are restricted by the weak compatibility conditions that require that for each place p: (1) there exists no  transition before the initial moment t = 0 so that M0(p) retains its meaning of initial marking, (2) the initial tokens in a place p are taken by the output transitions in p* before  the tokens supplied to p by the input transitions in *p.

A timed Petri net is thus defined by the  n-tuple
                       TPN (S, M0,∑ , φ, Ξ )  






(59)
Where S is the structural part, M0 is the initial marking, Σ = { σp(n); n∈  N*/ p ∈  P} is the set of rest times, ϕ = {φt(n); n ∈ N*/t ∈ T} is the set of transition durations, and                 Ξ={
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x

(n);n  ∈ N*/ p ∈  P}  is the  set  of initial latencies.
Equivalent Petri nets having only timed transitions or only timed places can be built, as shown in Fig. 12(a, b).

The following state variables are defined to describe the time evolution of a Petri net:
(a) The  schedulers: xt(n),  yt(n) is  the  beginning and  the  end moments, respectively, of the nth fire  of the  transition t  ∈ T;  vp(n),  wp(n)  is  the release moments, respectively of the  nth token in the  place  p ∈ P,
(b) The  counters: xt(u), yt(u) is the  number of times the  transition t ∈ T has  started and  ended, respectively, the fire at moment u; vp(u),  wp(u)  is the  number of tokens enter- ing and  leaving, respectively, place  p at moment u.

The following conventions are commonly accepted:

(a) xt(0)=  yt(0)= vp(0)=wp(0) = -∞,
(b) xt(n) = yt(n) = vp(n) = wp(n)= ∞, if the transition t never fires  n times, or the  place  p never receives n tokens,

(c) xt(u) = yt(u)  = wp(u)  = 0 and  vp(u)   = M0(p)  for u  <  0.


                                       
[image: image274]
Figure 12.  (a) Petri net  comprising only timed transitions where the rest time of place  p has  been  assigned as  the  duration of the  equivalent  transition tp. (b) Dual  case  of a net  comprising only timed places where transition t has  been  replaced with place  pt.

For any transition t  ∈ T, where n  ∈  N*

yt (n) = xt (n) + ϕt (n)






(60)
The FIFO rule requires
wp (n) ≥ vp (n) + σp (n)                for ∀ p ∈ P, ∀n ∈ N ∗



(61)
meaning that the  order of the  tokens are  not  changed at any of the  places, and
y t [ yt(n)] = xt[xt (n)]                           for ∀t ∈ T, ∀n ∈ N*



(62)
meaning that a transition cannot start its (n  + 1)th  fire before ending the  nth one.

A Petri net is called FIFO if all its places and transitions observe the FIFO discipline. Usually, the stronger conditions of constant rest times and constant transition durations are used. The FIFO constrained can result from the structure of network, without any hypothesis on the  net  temporizations.

Figure 13.  Cyclic transition with structurally restricted FIFO behavior.

Example 15.  The Petri net in Fig. 13 contains a cyclic transition which behaves FIFO for any sequencing of the firing.

Timed Petri nets can be used for quantitative performance evaluation, e.g., when studying various queuing types. Most classical networks like Jackson single classes, fork-join queues, and token rings can be modeled with Petri nets, whereas others like multiclass networks, Kelly networks, and processor-sharing systems cannot.

Example 16.  Figure 14 represents the Petri net models of some classic types of queues. The Kendall notation is used to describe a queue. The simplest queue, with any  input process (.), any distribution of the timings of the server (.), one server (1) and an unlimited buffer (∞) is designated by ././1/ ∞ .

Petri nets allow a unified treatment of a large class of systems, avoiding the usual case-by-case performance evaluation. It has been shown that Petri nets with inhibitor edges (i.e.,  with a  special kind of edges  from  places to  transitions, which  trigger the  transitions only  when the  place  is  empty) have the  computing power  of a Turing machine.

The Petri nets can be characterized both by basic qualitative properties like stability, existence of a stationary state, and  the  duration of the  transient state and  by  performance parameters like throughput of a transition or average number of tokens in a place. Petri nets include as special cases other frequently used models like state machines, event graphs, and free-choice nets. The following structural conditions define the mentioned special cases: 
(a) A state machine is a Petri net  for which

|*t|= |t*|= 1; ∀t ∈ T






(63)
i.e., each transition has exactly one input place and one output place. As a consequence, between any two places pi and pj   there is  at most  one  transition that would  be denoted by tij, with {pi }= *tij, { pj } = tij*,  {tij } = pi* ∩ *pj, as shown in Fig.  15(a).
(b) An event graph is a Petri net with

 

|∗ p|= |p∗ |= 1;∀ p ∈ P






(64)
i.e., each place has exactly one input transition and one output transition. Correspondingly, between any two transitions ti and tj, there is  at most  one  place  pij,  with {ti } = *pij, { tj } =  pij*,   pij  =  ti* ∩ *tj, as shown in Fig. 15(b).
(c) A free-choice net is a Petri net for which

∀ p ∈ P, |p∗ | > 1 ⇒ ∀t ∈ p∗ , |∗t|= 1



(65)
meaning that if a place p has more than one output transition, than the place p is the only input place for each of its output transitions. It results that a free-choice graph contains substructures of the type shown in Fig.16, so it can model both synchronization [Fig.16(a)]  and choice [Fig.16(b)], but not both of them for the same process. Free-choice machines include the state machines and the event graphs, again as special cases. The event graphs model only synchronization; they exclude choice. It has been shown than an event graph is alive if each circuit in the  graph contains at least one  token. In the opposite case, the net will run into a dead lock after a finite number of firing instances. In a timed event graph, a place containing k tokens can be replaced by k chained places, each one containing exactly one token, interlaced with k -1 transitions (Fig. 17). The rest time σp of the initial place is attributed to one of the places in the chain, all the other places and transitions having no delays.
                                      
[image: image275]
Figure 14.  Queue theory and  Petri net  models of some  classic types of queues: (a)  Infinite buffer, single server; (b) Finite buffer, single server; (c) Infinite buffer, double  server.


[image: image276]
Figure 15.  Special cases  of Petri nets: (a) model  of a state machine, (b) model  of an  event graph.


[image: image277]
Figure 16.  Special cases  of Petri nets—the free-choice nets: (a) sub- structures  modeling synchronization, (b) substructures  modeling choice.
.
Timed event graphs can be represented as linear systems by using max-plus algebra. Because of the special structure of a timed event graph, it is convenient to make the analysis in terms of the transitions. Let us denote by xi(n) the start moment of the nth firing instance of the  transition ti, i = 1,.  .  ., k; k   =   │ T │, and  by ●ti  the  set  of the  input transitions of ti:
•ti  = ∗ (∗ti ) = {t j |t j  ⊂ ∗ p, ∀ p ∈ ∗ti }⊂ T





(66)
Consider the nth firing of a transition ti ∈ ●ti. Using the equivalence in Fig. 16, the place     pji ∈ P contains at most one token. If M(pji) = 0, then the  token enables the  nth firing  of ti; else  if M(pii) = 1, it enables the  (n  +  1)th  firing of ti. This results in the equation:
xj (n + 1)> 
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       (67)
where x = xj[n  + 1 -  M(pji)] is the start moment of the [n+1 - M(pji)]th firing of the  transition tj, x  + 
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[image: image280.wmf]t

j

+
[image: image281.wmf]p

ji

s

is  the  moment the transition ti  is enabled by tj.
With the delay matrices A α,  α = 0,1, defined by

[image: image282.wmf](

)

(

)

,  

 

,   otherwise

ifttandMp

tpiiji

iji

A

ij

jsa

a

ìü

+Î·=

ïï

=

íý

ïï

Î=-¥

îþ



(68)
Eq.  (67) can be written in the  matrix form
x(n + 1) ≥ A0 x(n + 1) ⊕ A1 x(n)







(69)
With

                  
[image: image283.wmf]*

0

0

00

k

ii

AAAIA

ii

¥

+

=Å=Å=+

==


(70)
[see  Eq.  (45)],
                         A∗0 (I − A0 ) = A∗0 (I − A0 ) = I
               


(71)
results. Relation (69) becomes
                           x(n + 1) ≥ A∗0 A1 x(n)






(72)

[image: image284]
Figure 17.  Equivalence of a place  containing k tokens with k chained places each  one containing exactly one token.

[image: image285]
Figure  18.  Chained queues:  (a)   no deadlocks, (b)   after-service deadlock.

The minimal solution of (71) is given by the linear recurrence relation

x(n + 1) = A∗0  A1  x(n)






(73)
Using the max-plus algebra framework, the equations of a timed event graph become linear. As shown at Eq.(48), a relation in the form of Eq.(73) determines a periodic stationary solution. This means that event graphs have a cyclist property: after n firings of each transition, the marking returns exactly to the initial marking. However, this is only a formal result valid in the firing event ordering scale, not in the time scale. The nth firing for different transitions occurs at different time moments xt (n) so  that there exists no  time period which  after the  marking is repeated.

Example 17.  Figure 18 presents two examples of chained queues and their corresponding Petri net (event graph) models. The systems contain each of two servers preceded by queues. The example in Fig. 18(a), for which both queues have infinite buffers, has no deadlocks. The example in Fig. 18(b), exhibits an after-service deadlock. A client leaving the first queue when the buffer of the second queue is full must wait in place p2; consequently, the access of a new client to the first service is denied.

3. CONTROL OF DISCRETE EVENT SYSTEMS
One major goal in studying DESs has been to devise methods for controlling the trajectory of a system so as to reach a certain set of desired states, or to avoid some undesired states including deadlocks or traps. As pointed out in the work of Ramadge and Wonham (16–18), DESs fully qualify as objects for the control theory because they exhibit the fundamental features of potentially controllable dynamic systems. Actually, a large part of the work performed in the DES domain has been motivated by the search for proper techniques to control event sequences and to select the ones that comply with various restrictions or optimization criteria. In the following, we will explore the basics of DESs control within the framework of state machines and formal languages, as initiated by Ramadge and Wonham. The events are considered spontaneous and process-generated. The control consists of forbidding the occurrence of some of the events so as to restrict the behavior of a system to avoid undesirable trajectories. Automatic control is performed by means of another system,   which tests the controlled system and acts upon it according to the available information. Thus, the set of events can be partitioned into two disjoint subsets: Σu, containing the uncontrollable events, and Σc, containing the controllable ones. The control is provided by a  supervisor or a discrete event controller (DEC), which has the ability to influence the evolution of the system by enabling and disabling the controllable events, i.e., by allowing or prohibiting their occurrence, so as to perform a certain control task. Various control tasks can be defined: (i) control invariance requires that a specified predicate remains invariantly satisfied whenever initially satisfied, meaning that the behavior of the system remains con- fined within specified bounds, (ii) region avoidance requires that the system does not satisfy undesirable predicates when traversing the state space, and (iii) convergence requires that the system to evolve toward a specified target predicate from given initial conditions.
The main difficulty in modeling complex processes by considering all the states and all the events is the combinatorial explosion in the number of their states. A way to keep the complexity manageable is to use event internalization, or partial observation, which leads to nondeterministic process behavior. Markov chain representation, or GSMP models, can be used to describe complex DESs in a formalism that has the capability to relax the   requirement that all states and all event sequences be explicitly in the model. Other approaches to achieve an effective modeling are based on the concept of modularity and hierarchy that lead to structured models of lower complexity in comparison with the case   when all individual components are taken directly into account.
3.1 CONTROLLABILITY AND REACHABILITY
Consider a DES modeled by the generator G = (Q, Σ ,Δ , s, Qm), where Q  is the state space  (an arbitrary set), Σ is the event set (or the alphabet, a finite set), Δ is the evolution law [a  relation on Q × Σ  × Q, which generalizes the transition function, see comments on Eq. (26)], s  =  q0  is the start (initial) state, and Qm  ⊂  Q is the set of marker states. As mentioned before, the marker states were introduced by Ramadge and Wonham to identify the ‘‘completed tasks.’’ The set of events Σ is partitioned into Σc, the set of controllable events, and Σu, the set of uncontrollable events, with Σ  = Σc ∪ Σu, Σc ∩ Σu = 0 .
A state q ∈ Q is called reachable from the initial state s = q0, if there exists a path     (q0σ1q1σ2..  .. σnqn) ∈ B(G),  such that qn = q, i.e., if there exists w = σ1 σ 2 . . . σn  ∈  Σ*, such that (q0, w, qn)  ∈  Δ*.
A state q ∈ Q is called controllable if there exists w ∈ Σ * and  qm  ∈ Qm, such  that (q, w, qm) ∈ ∆*.
Correspondingly, a generator is called reachable (controllable) if all the states q ∈ Q are reachable (controllable).

A generator is called trim if it is both reachable and controllable.

A generator is called deterministic [see Eq. (18)] if for all q ∈ Q and σ ∈ Σ, there exist at most one state q’ ∈ Q such that (q,σ, q’ ) ∈ ∆*. In this case, a transition (partial) function can be defined such  that q’=  δ (q,σ), as shown at Eq. (1) and discussed at Eq.  (26).
The control of a DES described by a generator G is provided through a control pattern γ :Σ → {0, 1}, defined such that for a state σ ∈ Σc, γ (σ ) = 1 if σ  is enabled and γ(σ) = 0 if σ is disabled. For all σ = Σu, γ(σ) = 1 as these events can not be disabled. The set of control patterns γ  is denoted by 
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For each control pattern, a new generator G(γ ) = (Q,  Σ  ,
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 , s, Qm) is obtained, where the controlled evolution relation
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is defined by

∀q, q’ ∈ Q, ∀σ ∈ Σ    : (q,σ , q’) ∈  Δ γ ⇔ (q,σ , q’ ) ∈ Δ   and γ (σ ) = 1      (74)
The set of enabled events, also called the control input, for a control pattern γ is given by      Σ e (γ )= {σ ∈ Σ |γ (σ ) = 1}=  
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Where the control pattern γ plays the role of the characteristic function of the set.
As mentioned earlier, Σ u ⊂ Σe(γ), for any control pattern γ. The set of feasible events for a state q ∈ Q of the generator G( γ) is given by Σ f(q) ∩ Σe(γ ).
The set of all control inputs is
                 Σe (
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The control of G through Γ consists in choosing a specific γ when the system is in a certain state q ∈ Q, after a certain sequence of events w ∈ L, according to the assumed controlling task.

The choice of a particular control pattern γ ∈ Γ can be considered itself an event, so that a controlled discrete event system (CDES) with the generator

                G(Γ) = (Q,Σ ×Γ,
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can be defined where the  evolution law  given  by

[q, (σ , γ ), q] ∈ ⇔ (q,σ , q’ ) ∈ Δγ                                                              (78)
Example 18. For the single model of a machine shown in Fig. 2, the control could consist of honoring or turning down requests to start a new task and passing from idle (I) to working state (W), taking into account the history of machine evolution.

The set Γ consist of two control patterns, namely γ0, which disables the requests
γ0 (S) = 0, γ0 (C) = γ0 (B) = γ0 (R) =1
and   γ1, which enables the requests

             γ1 (S) = γ1 (C) = γ1 (B) = γ1 (R) = 1
For the system in Fig. 4 comprising two simple machines, the control of one of the  machines can  be made dependent of the state of the other (e.g., the second machine accepts requests only if the  first  one is down).
3.2 SUPERVISION
In the standard control terminology, the generator G plays the role of the plant, the object to be controlled. The agent doing the controlling action will be called the supervisor. Formally, a supervisor over is a pair

                                            S =(T,ϕ)





(79)
Where T is a reachable deterministic generator T (Q’ ,Σ  , Δ ,s0’, Qm’ ) and ϕ : Q’ → Γ is the  map that specifies, for each state q’ ∈ Q reached by the generator of the supervisor, what con trol pattern γ = ϕ (q’) must be applied to G(Γ).
If the behavior of G( Γ ) is used to determine the state of T, a supervised generator results

                  (G, S) = [Q × Q’ ,Σ , Δ G,S , (s0 , s0’), Qm × Qm’] 

(80)

Where

                       [(q1, q1’),  σ , (q2, q’2)] ∈ ΔG,S       




(81)
(q1,σ , q2 ) ∈ Δ and (q1’,σ , q2’ ) ∈ Δ’  and γ(σ ) = [ϕ(q2)](σ ) = 1
The supervisor has authority only over controllable events. The uncontrollable events Σ f(q) ∩ Σu that may occur in a state q of  the  plant are called disturbances (disturbing events).
Again, in standard control theory terminology T is the observer, while φ implements the feedback, so that the supervised generator operates in closed loop. Various algorithms are   given in the literature for the synthesis of supervisors able to achieve different control tasks for deterministic or stochastic DESs.
The supervisor implements a map f : L(G) → Γe specifying for each observed string of events w ∈ L(G) the control input Σe(γ ) = f (w) that must be applied to G. When designing a supervisor, the objective is to obtain a CDES that obeys the control constraints imposed by the considered control task. This means suppressing the undesirable sequences of events, while restricting as little as possible the overall freedom of the system.

The behavior of the supervised generator is described by the language L(G, f ) defined by  ε ∈  L(G,  f ), w𝜎  ∈  L(G,  f ), if and only if w ∈ L(G,  f ), σ ∈ f (w) and  w𝜎  ∈   L(G).

The marked language controlled by f  in G  is  Lm(G,  f ) =  Lm(G)  ∩  L(G, f ), i.e., the  part of the original marked language that is allowed under the supervision. If Qm represents  completed tasks, the language Lm(G, f ) indicates the tasks that will be completed under supervision.

The supervisor S can also be modeled as another DES whose transition structure describes the control action on G. The following requirements have to be satisfied:

(a) If  s ∈  L(G,  f )  then  s  ∈  L(S),  and  s𝜎   ∈  L(S)  only  if σ  ∈  f (s). This condition ensures that the  transitions disabled by the  control are  not included in the  transition structure of S.
(b) If s  ∈  L(G,  f ), sσ  ∈   L(G)  and σ  ∈  f (s), then sσ  ∈   L(S). This   condition ensures that  a  transition  possible in  G and  allowed by  the  control is  included in  the  transitive structure of S.


[image: image293]
Figure 19.  The cat-and-mouse maze. The cat starts from room 2; the mouse starts from room 4. The cat and the mouse each use only the passages labeled c and m, respectively. Control the system by (minimally) forbidding some of the passages (except c7), to prevent the dangerous encounter of the parties.
An event can occur in G × S and produce the transition (q,  x) → (q’, x’), only if σ is  possible in both G and S, and produces the transitions q →  q’ and x →  x’ . This form of supervision can be obtained from the state realization (S, φ) by trimming the transition structure of S (16).
Consider a DES for which the unsupervised (open loop) behavior is given by a language L.  One of the key issues is to specify the properties of a sublanguage K ⊆ L that is achievable   under supervision. Because the uncontrollable events continue to occur even for the closed loop (supervised) system, the prefix closure 
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of such a controlled language K has to be invariant under the perturbation of the uncontrollable events. On the other hand, as K is a restriction of L, not any words in Σ* containing uncontrollable events can occur, but only those that are also generated in the open loop conditions (i.e., that belong to L). It results that every word that belongs to L and is composed by a prefix string w ∈ 
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, followed by an uncontrollable event  σ ∈  Σ u (i.e.,  every   word   of  the   form w𝜎   ∈  L), must also be a prefix string of K, i.e., w𝜎  ∈ 
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[image: image297]Figure 20.  Generator models for the  cat  and  for the  mouse moving independently in the  maze  of Fig.  19
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Figure 21.  The  generator of the  supervisor for  the  cat-and-mouse problem.

Thus, a language K  ⊆ L ⊆  Σ * is called  controllable if
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Consider now a nonblocking DES with the behavior L(G) and the marked behavior 
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(G). For any nonempty K ⊆ L, there exists a supervisor f such that Lf = K if and only if K is a prefix closed and controllable language. Similarly, for any nonempty K ∈ Lm, there exists a supervision f such that Lmf = K  and the closed loop behavior is not blocking if and only if K is controllable and Lm is closed  (i.e.,  
[image: image303.wmf]K

  ∩   Lm=  K).
Thus it is possible to find a supervisor f so that Lf = K when K is prefix closed and   controllable. The proof of this proposition (18) provides an algorithm for constructing the state realization (S, φ) of the supervisor f from a generator of the controllable language K.  For an arbitrary K ⊆ Σ*, the family of controllable sublanguages of K is nonempty and closed                  under the set union and has a unique supremal element K† under the partial order of subset inclusion. This supremal sublanguage (which can be the empty language) provides an optimal approximation of K by preserving the restrictions imposed by K, but requiring a minimally restrictive control. Denote by P( Σ*) the set of all languages over Σ*  (the power set of Σ*),   and define Ω  : P( Σ *) →  P(Σ*) by

          Ω(J ) = K ∩ sup[T : T ⊆  Σ ∗ , T = 
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The supremal sublanguage K† is the largest fixpoint of Ω, i.e., the largest language satisfying   Ω(J) = J. The iterations

           K j+1  = Ω (K j),    
j = 0, 1, 2,..., with K0  = K



         (84)
converge to K† after at most mn steps, where m and n are the number of states of the  generators of L and  K, respectively.

Example 19.  Consider the famous cat-and-mouse maze (Fig.19) introduced by Ramadge and Wonham (16), and used as a typical example of untimed DES control ever since (e.g., see the attractive Ref.15). The cat uses only the doors labeled c1, ...,c7, whereas the mouse uses   only  those labeled m1,..., m6. The generator models for the cat and the mouse are shown in Fig.  20. The state i for either of them corresponds to the room it occupies, whereas the events correspond to the transitions i → j from  one  room  to another. We assume that door c7 is uncontrollable, Σu = {c7}, whereas all the other doors can be opened or closed to control the movement of the cat and the mouse. As shown earlier (see Figures (3) and (4) at Example 2), the joint generator model when composing the generators of two subsystems has the state set Q = Q1 × Q2, and the event set Σ = Σ1∪ Σ2. The problem is to find the control scheme that leaves the greatest freedom of movement to both parties but that ensures that they (1) never occupy the same room simultaneously and (2) can always return to their initial state, i.e., the cat in room 2 and the mouse in room 4. The first condition forbids the states   (i, i), while the second sets the marker state set Qm = {(2, 4)}. To build the generator of the controlled system, i.e., of the system obeying the constraints, the following pruning steps are performed on the composed generator model for both the cat and the mouse:
(i) Delete the forbidden states  {(i, i) │i      0, 1, ..., 4 }, that correspond to the cat and the   

            mouse being  in the  same room.

(ii) Eliminate the edges of the composed graph ending in the forbidden states, i.e.,
                
[image: image307]
(iii) Discard the states reachable only from the previously deleted states, i.e., the states     (4, 3) and  (2, 1).
(iv) Remove the states for which the output edges correspond to uncontrollable events          (Σu = {c7}) and lead to previously deleted states, i.e., the states (1, 3) and (3, 1).
(v) From the resulting graph retain only the trim part, containing the reachable and controllable states.

The supervisor can be further simplified by an aggregation of technique. The result is a supervisor S = (T, ϕ), where T is given in Fig. 21, and the map ϕ is given in Table 2. The state set Q’ of T is made up of only two states q0’, q1’. In the initial state q0’—when the cat is in room 2 and  the  mouse in room 4—all the transitions are enabled; in the state q1 ’—when  one of the  parties has left its initial room—the set of transitions c3, c5, m1, and m5 are  disabled. This actually isolates either the  mouse in room 4 (closing  c5  and  m5) when the  cat  is out  of room  2  or the   cat  in  room  2  (closing   c3   and   m1)  when the mouse is out  of room  4. It can  be noticed that transitions c5, c6, m1,  m2,  m3  can  no  longer occur  for  the  controlled system, being  either directly forbidden, or  impossible because of the restrictions.
Table 2.  Mapping of Supervisor States to  Control Patterns for  the Cat-and-Mouse Maze Example
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4. CONCLUSION
Over the past few decades, the rapid evolution of computing, communication, and sensor technologies has brought about the proliferation of “new” dynamic systems, mostly technological and often highly complex. Examples are all around us: computer and communication networks; automated manufacturing systems; air traffic control systems; highly integrated command, control, communication, and information (C3I) systems; advanced monitoring and control systems in automobiles or large buildings; intelligent transportation systems; distributed software systems; and so forth. A significant portion of the “activity” in these systems, sometimes all of it, is governed by operational rules designed by humans; their dynamics are therefore characterized by asynchronous occurrences of discrete events, some controlled (like hitting a keyboard key, turning a piece of equipment “on”, or sending a message packet) and some not (like a spontaneous equipment failure or a packet loss), some observed by sensors and some not. These features lend themselves to the term discrete event system for this class of dynamic systems.

The mathematical arsenal centered around differential and difference equations that has been employed in systems and control engineering to model and study the time-driven processes governed by the laws of nature is inadequate or simply inappropriate for discrete event systems. The challenge is to develop new modeling frameworks, analysis techniques, design tools, testing methods, and systematic control and optimization procedures for this new generation of highly complex systems. In order to face this challenge we need a multidisciplinary approach. First, we need to build on the concepts and techniques of system and control theory (for performance optimization via feedback control), computer science (for modeling and verification of event-driven processes), and operations research (for analysis and simulation of stochastic models of discrete event systems). Second, we need to develop new modeling frameworks, analysis techniques, and control procedures that are suited for discrete event systems. Finally, we need to introduce new paradigms that combine mathematical techniques with processing of experimental data. The role of the computer itself as a tool for system design, analysis, and control is becoming critical in the development of these new techniques and paradigms. 

The capabilities that discrete event systems have, or are intended to have, are extremely exciting. Their complexity, on the other hand, is overwhelming. Powerful methodologies are needed not only to enhance design procedures, but also to prevent failures, which can indeed be catastrophic at this level of complexity, and to deliver the full potential of these systems.
A software environment, called EDEN, that prototypes a recent approach to model-based diagnosis of discrete event system, is presented in (63). The environment integrates a specification language, called SMILE, a model base, and a diagnostic engine. SMILE enables the user to create libraries of models and systems, which are permanently stored in the model base, wherein both final and intermediate results of the diagnostic sessions are hosted. A hierarchical architecture is presented in (64) to facilitate control synthesis. Specifically, a conservative max-plus model for cyclically repeated processes is introduced on the upper level which provides an optimal online plan list. An enhanced min-plus algebra based scheme on the lower level not only handles unexpected events but, more importantly, addresses cooperation issues between sub-plants and different cycles. A rail traffic example is given to demonstrate the effectiveness of the proposed approach. The methods of the modeling and decomposition of the large and complex discrete event manufacturing systems are considered in (65) and a methodology is presented for hierarchical and distributed control, where the cooperation of each controller is implemented so that the behavior of the overall system is not deteriorated and the task specification is completely satisfied. The real-time supervisory control of an experimental manufacturing system is reported based on a recently proposed hybrid (mixed PN/automaton) approach (66). Assuming that an uncontrolled bounded Petri net (PN) model of a (plant) discrete event system (DES) and a set of forbidden state specifications are given, the proposed approach computes a maximally permissive and nonblocking closed-loop hybrid model.
The study of Disceret Event System is inevitable for understanding the Hybrid systems because the hybrid systems are a mixture of continuous dynamics and discrete events. The study of Discrete Event Systems helps to understand the discrete behavior in hybrid systems and to develop the methods to model, analyse and control the hybrid system.
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