DHANALAKSHMI SRINIVASAN ENGINEERING COLLEGE
PERAMBALUR
DISTRIBUTED DATABASE
PRESENTED BY

 T.ANUPRIYA

 T.RAJESWARI

 III-MCA

 Email :anupriya.mca03@yahoo.com

 Email : sriraji_2050@yahoo.co.in

 OUTTLINE

Abstract
Introduction

Definition
· Distributed database (DDB)

· Distributed database system (DDBS)

Motivations

DDBS Architecture
 The Hardware

· Homogenous Distributed Database Systems

· Heterogeneous Distributed Database Systems

· Client/Server Database Architecture

 The Software

Fragmentation, Replication

Query Processing
Concurrency and Recovery
Forms of Distributed Data
Important consideration
Database Link
Advantages of distributed databases
Disadvantages of distributed databases
Conclusion
 DISTRIBUTED DATABASE

Abstract:
 Distributed databases are becoming more widespread, fueled by advances in technology and demand for system availability. The purpose of this paper is to present an introduction to distributed databases, issues related to the motivations of DDBS, architecture, design, performance, concurrency control, database links, advantages and disadvantages of distributed databases.
 A distributed database is a database that is under the control of a central database management system (DBMS) in which storage devices are not all attached to a common CPU. It may be stored in multiple computers located in the same physical location, or may be dispersed over a network of interconnected computers.

A key objective for a distributed system is that it looks like a centralized system to the user. The user should not need to know where a piece of data is stored physically.

Introduction:
 In today’s world of universal dependence on information systems, all sorts of people need access to companies’ databases. In addition to a company’s own employees, these include the company’s customers, potential customers, suppliers, and vendors of all types. It is possible for a company to have all of its databases concentrated at one mainframe computer site with worldwide access to this site provided by telecommunications, networks, including the Internet. Although the management of such a centralized system and its databases can be controlled in a well-contained manner and this can be advantageous, it poses some problems as well. For example, if the single site goes down, then everyone is blocked from accessing the databases until the site comes back up again. Also the communications costs from the many far PCs and terminals to the central site can be expensive. One solution to such problems, and an alternative design to the centralized database concept, is known as distributed database.

 The idea is that instead of having one, centralized database, we are going to

spread the data out among the cities on the distributed network, each of which has its

own computer and data storage facilities. All of this distributed data is still considered to

be a single logical database. When a person or process anywhere on the distributed

network queries the database, it is not necessary to know where on the network the

data being sought is located. The user just issues the query, and the result is returned.

This feature is known as location transparency. This can become rather complex very quickly, and it must be managed by sophisticated software known as a distributed database management system or distributed DBMS.

A database that consists of two or more data files located at different sites on a computer network. Because the database is distributed, different users can access it without interfering with one another.
 Collections of data (e.g. in a database) can be distributed across multiple physical locations. A distributed database can reside on network servers on the Internet, on corporate intranets or extranets, or on other company networks. Replication and distribution of databases improve database performance at end-user worksites.

 To ensure that the distributive databases are up to date and current, there are two processes: replication and duplication. Replication involves using specialized software that looks for changes in the distributive database. Once the changes have been identified, the replication process makes all the databases look the same. The replication process can be very complex and time consuming depending on the size and number of the distributive databases. This process can also require a lot of time and computer resources. Duplication on the other hand is not as complicated. It basically identifies one database as a master and then duplicates that database. The duplication process is normally done at a set time after hours. This is to ensure that each distributed location has the same data. In the duplication process, changes to the master database only are allowed. This is to ensure that local data will not be overwritten. Both of the processes can keep the data current in all distributive locations.

Definition:
 A distributed database (DDB) is a collection of multiple, logically interrelated databases distributed over a computer network.

 A distributed database management system (DDBMS) is the software that manages the DDB, and provides an access mechanism that makes this distribution transparent to the user.

 Distributed database system (DDBS) is the integration of DDB and DDBMS. This

integration is achieved through the merging the database and networking technologies

together. Or it can be described as, a system that runs on a collection of machines

that do not have shared memory, yet looks to the user like a single machine.

Motivations:
· The natural architecture of some applications. The concept of global vs.

local scopes. A very common example of that would be a bank that has local branches, which mainly deals with data related to local customers, on the other hand this bank has a head quarters, which controls the entire chain of the local banks. Therefore, the database of this bank is naturally distributed among the different local sites.

· Availability and reliability. Reliability is defined as, the probability that the

system will be up at a given time. The availability is defined as, the probability that the system will be up continuously during a given time period. These important system parameters are improved with the DDBS. In the centralized DBS, if any component of

the DB goes down, the entire system will go down, whereas in the DDBS, only the effected site is down, and the rest of the system will not be effected. Further more, if the data is replicated at the different sites, the effects is greatly minimized.

· Performance improvement. When large DB is distributed onto number of sites, the local subset of the database is a lot smaller, which will improve the size of

transactions and the processing time. For the transactions that need accessing more than one site, the processing can proceed in parallel, improving response time.

 For the DDBS to be able to provide the previous advantages, it should be capable of the following functionalities:

· The ability to communicate via a computer network to send and receive data and queries from/to other sites on the network.

· To keep track of the database distribution and replication among the different sites. This is maintained in the DDBMS catalog.

· The adaptation of the new concept of distributed transactions: the ability of

devising a strategy to execute a transaction that involve accessing more than one site .

· The ability to maintain the consistency of replicated data across the network
DDBS Architecture
 The Hardware

 Due to the extended functionality the DDBS must be capable of, the DDBS design

becomes more complex and more sophisticated. At the physical level the differences between centralized and distributed systems are:

· Multiple computers called sites.

· These sites are connected via a communication network, to enable the

data/query communications.
 Networks can have several types of topologies that defines how nodes are physically and logically connected. One of the popular topologies used in DDBS, the client-server architecture is described as follows: the principle idea of this architecture is to define specialized servers with specific functionalities such as: printer server, mail server, file server, etc. these serves then are connected to a network of clients that can access the services of these servers. Stations (servers or clients) can have different design complexities starting from diskless client to combined server-client machine.

 Here we will discuss the different architectures of DDBS for the two main

types, the client/server, and the distributed databases:

 The client/server: The file server approach: the simplest tactic is known as the file server approach. When a client computer on the LAN needs to query, update, or otherwise use a file on the server, the entire file must be sent from the server to that client. All ofthe querying, updating, or other processing is then performed in the client computer. If changes were made to the file, the entire file is then shipped back to the server. Clearly, for files of even moderate size, shipping entire files back and forth across the LAN with any frequency will be very costly. In terms of concurrency control, obviously the entire file must be locked while one of the clients is updating even one record in it. Other than providing a basic file-sharing capability, this arrangement’s drawbacks render it not very practical or useful.

 DBMS server approach: A much better arrangement is variously known as the

database server or DBMS server approach. Again, the database is located at the server,

but this time, the processing is split between the client and the server, and there is much

less data traffic on the network. Say that someone at a client computer wants to query the database at the server. The query is entered at the client, and the client computer performs the initial keyboard and screen interaction processing, as well as initial syntax checking of the query. The system then ships the query over the LAN to the server where the query is actually run against the database. Only the results are shipped back to the client. Certainly, this is a much better arrangement than the file server approach! The network data traffic is reduced to a tolerable level, even for frequently queried databases. Also, security and concurrency control can be handled at the server in a much more contained way. The only real drawback to this approach is that the company must invest in a sufficiently powerful server to keep up with all of the activity concentrated there.

Two-tier client/server: Another issue involving the data on a LAN is the fact that

some databases can be stored on a client PC’s own hard drive while other databases

that the client might access are stored on the LAN’s server. This is also known as a
two-tier approach.

. [image: image1.emf]
Software has been developed that makes the location of the data transparent to the user at the client. In this mode of operation, the user issues a query at the client, and the software first checks to see if the required data is on the PC’s own hard drive. If it is, the data is retrieved from it, and that is the end of the story. If it is not there, then the software automatically looks for it on the server.

 Three-tier approach: In another use of the term three-tier approach, the three tiers are the client PCs, servers known as application servers, and other servers known as database servers. In this arrangement, local screen and keyboard interaction is still handled by the clients, but they can now request a variety of applications to be performed at and by the application servers. The application servers, in turn, rely on the database servers and there databases to supply the data needed by the applications.

[image: image2.emf]
Distributed Database
1. No replication: The first and simplest idea in distributing the data would be to disperse the six tables among the five sites. If particular tables are used at some sites more frequently than at other sites, it would make sense to locate the tables at the sites at which they are most frequently used. Benefits include: local autonomy (security, concurrency,

backup, recovery), efficient local transaction. Problems include: if one site goes down, then it is not accessible by the rest of the system. Expensive joins. The security can be argued, one single place, one database is more secure then DDBS.

2.Replication the entire DB at each site: Benefits include, better availability. If more than one site requires frequent access to a particular table, the table can be replicated at each of those sites, again minimizing telecommunications. And copies of a table can be located at sites that have tables with which it may have to be joined. Problems include,

less security, concurrency and consistency. At the extreme: all tables are replicated, very efficient for availability and join, whereas it is the worst alternative for concurrency,

consistency, and disk space.
3.Selective replication: replicate all at the headquarters (improves join, all joins at

the headquarters, and replicate each table only once in the network, so you have 2 copies of each on the entire network

Distributed Database Architecture

 A distributed database system allows applications to access data from local and remote databases. In a homogenous distributed database system, each database is an Oracle Database. In a heterogeneous distributed database system, at least one of the databases is not an Oracle Database. Distributed databases use a client/server architecture to process information requests.

· Homogenous Distributed Database Systems

· Heterogeneous Distributed Database Systems

· Client/Server Database Architecture

Homogenous Distributed Database Systems

 A homogenous distributed database system is a network of two or more Oracle Databases that reside on one or more machines. Figure 1 illustrates a distributed system that connects three databases: hq, mfg, and sales. An application can simultaneously access or modify the data in several databases in a single distributed environment. For example, a single query from a Manufacturing client on local database mfg can retrieve joined data from the products table on the local database and the dept table on the remote hq database.

 For a client application, the location and platform of the databases are transparent. You can also create synonyms for remote objects in the distributed system so that users can access them with the same syntax as local objects. For example, if you are connected to database mfg but want to access data on database hq, creating a synonym on mfg for the remote dept table enables you to issue this query:

SELECT * FROM dept;

 In this way, a distributed system gives the appearance of native data access. Users on mfg do not have to know that the data they access resides on remote databases.

[image: image3.png]
 Figure1. Homogeneous Distributed Database
Distributed Databases Versus Distributed Processing

The terms distributed database and distributed processing are closely related, yet have distinct meanings. There definitions are as follows:

 Distributed database

 A set of databases in a distributed system that can appear to applications as a single data source.

 Distributed processing

 The operations that occurs when an application distributes its tasks among different computers in a network. For example, a database application typically distributes front-end presentation tasks to client computers and allows a back-end database server to manage shared access to a database. Consequently, a distributed database application processing system is more commonly referred to as a client/server database application system.

 Distributed database systems employ a distributed processing architecture. For example, an Oracle Database server acts as a client when it requests data that another Oracle Database server manages.

Distributed Databases Versus Replicated Databases

 The terms distributed database system and database replication are related, yet distinct. In a pure (that is, not replicated) distributed database, the system manages a single copy of all data and supporting database objects. Typically, distributed database applications use distributed transactions to access both local and remote data and modify the global database in real-time.

 The term replication refers to the operation of copying and maintaining database objects in multiple databases belonging to a distributed system. While replication relies on distributed database technology, database replication offers applications benefits that are not possible within a pure distributed database environment.

Most commonly, replication is used to improve local database performance and protect the availability of applications because alternate data access options exist. For example, an application may normally access a local database rather than a remote server to minimize network traffic and achieve maximum performance. Furthermore, the application can continue to function if the local server experiences a failure, but other servers with replicated data remain accessible.

Heterogeneous Distributed Database Systems

 In a heterogeneous distributed database system, at least one of the databases is a non-Oracle Database system. To the application, the heterogeneous distributed database system appears as a single, local, Oracle Database. The local Oracle Database server hides the distribution and heterogeneity of the data.

 The Oracle Database server accesses the non-Oracle Database system using Oracle Heterogeneous Services in conjunction with an agent. If you access the non-Oracle Database data store using an Oracle Transparent Gateway, then the agent is a system-specific application. For example, if you include a Sybase database in an Oracle Database distributed system, then you need to obtain a Sybase-specific transparent gateway so that the Oracle Database in the system can communicate with it.

Alternatively, you can use generic connectivity to access non-Oracle Database data stores so long as the non-Oracle Database system supports the ODBC or OLE DB protocols.

Client/Server Database Architecture

A database server is the Oracle software managing a database, and a client is an application that requests information from a server. Each computer in a network is a node that can host one or more databases. Each node in a distributed database system can act as a client, a server, or both, depending on the situation.

In Figure -2, the host for the hq database is acting as a database server when a statement is issued against its local data (for example, the second statement in each transaction issues a statement against the local dept table), but is acting as a client when it issues a statement against remote data (for example, the first statement in each transaction is issued against the remote table emp in the sales database).

 Figure -2 An Oracle Database Distributed Database System
[image: image4.png]

A client can connect directly or indirectly to a database server. A direct connection occurs when a client connects to a server and accesses information from a database contained on that server. For example, if you connect to the hq database and access the dept table on this database as in figure-2, you can issue the following:

SELECT * FROM dept;

This query is direct because you are not accessing an object on a remote database.

In contrast, an indirect connection occurs when a client connects to a server and then accesses information contained in a database on a different server. For example, if you connect to the hq database but access the emp table on the remote sales database as in figure-2, you can issue the following:

SELECT * FROM emp@sales;

This query is indirect because the object you are accessing is not on the database to which you are directly connected.

The Software

 In a typical DDBS, three levels of software modules are defined:

· The server software: responsible for local data management at site.

· The client software: responsible for most of the distribution functions; DDBMS catalog, processes all requests that require more than one site. Other functions for the client include: consistency of replicated data, atomicity of global transactions.

· The communications software: provides the communication primitives, used by

the client/server to exchange data and commands.
 Fragmentation, Replication

 In distributing and allocating the database in the previous section, we assumed that the entire relations are kept intact. However, in DDBS we need to define the logical unit of DB distribution and allocation. In some cases it might be more efficient to split the tables into smaller units (fragments) and allocate them in different sites.

Fragmentation has three different types:

· Horizontal Fragmentation

· Vertical Fragmentation
· Hybrid Fragmentation
Query Processing
 DDBS adds to the conventional centralized DBS some other types of processing expenses, because of the additional design (hardware & software) to handle the distribution. These expenses present as the cost of data transfer over the network. Data transferred could be, intermediate files resulting from local sites, or final results

need to be sent back to the original site that issued the query. Therefore, database

designers are concerned about query optimization, which target minimizing the

cost of transferring data across the network.
Concurrency and Recovery
 DDBS design of concurrency and recovery , has to consider different aspects other than of those of centralized DBS. These aspects include

· Multiple copies of data: concurrency has to maintain the data copies consistent. Recovery on the other hand has to make a copy consistent with others whenever a site recovers from a failure.

· Failure of communication links

· Failure of individual sites

· Distributed commit: during transaction commit some sites may fail, so the two phase commit is used to solve this problem.

· Deadlocks on multiple sites.
Forms of Distributed Data
 There are five categories of distributed data:

 replicated data,
 horizontally fragmented data,
 vertically fragmented data,
 reorganized data,
 separate-schema data.

Replicated Data

 Replicated data means that copies of the same data are maintained in more than one location. Data may be replicated across multiple machines to avoid transmitting data between systems.

 Replicas can be read only or writable. Read only replicas have changes made to the original and then propagated outwards to the replicas. Writable replicas propagate changes back to the original using either a "write through" or a "write back" strategy. Write through implies a synchronous connection and a "real-time" update to the original. The write back strategy allows changes to be propagated when it is most appropriate (i.e., a "store-and-forward" or an asynchronous concept).

Horizontally Fragmented Data

 Horizontally fragmented data means that data is distributed across different sites based on one or more primary keys. This type of data distribution is typical where, for example, branch offices in an organization deal mostly with a set of local customers and the related customer data need not be accessed by other branch offices.

Vertically Fragmented Data

 Vertically fragmented data is data that has been split by columns across multiple systems. The primary key is replicated at each site. For example, a district office may maintain client information such as name and address keyed on client number while head office maintains client account balance and credit information, also keyed on the same client number.

 Reorganized Data

 Reorganized data is data that has been derived, summarized, or otherwise manipulated in some way. This type of data organization is common where decision-support processing is performed. There may be some instances where the on-line transaction processing (OLTP) and decision-support database management systems are different. Decision-support typically requires better query optimization and ad hoc SQL support than does OLTP. OLTP usually requires optimization for high-volume transaction processing.

 Separate-Schema Data

 Separate-schema data maintains separate databases and application programs for different systems. For example, one system may manage inventory and one may handle customer orders. There may be a certain amount of duplication with separate-schema data.

Important considerations
Care with a distributed database must be taken to ensure the following:

· The distribution is transparent - users must be able to interact with the system as if it were one logical system. This applies to the system's performance, and methods of access among other things.

· Transactions are transparent - each transaction must maintain database integrity across multiple databases. Transactions must also be divided into subtransactions, each subtransaction affecting one database system.

Database Links

 The central concept in distributed database systems is a database link. A database link is a connection between two physical database servers that allows a client to access them as one logical database.

 A database link is a pointer that defines a one-way communication path from an Oracle Database server to another database server. The link pointer is actually defined as an entry in a data dictionary table. To access the link, you must be connected to the local database that contains the data dictionary entry.

A database link connection is one-way in the sense that a client connected to local database A can use a link stored in database A to access information in remote database B, but users connected to database B cannot use the same link to access data in database A. If local users on database B want to access data on database A, then they must define a link that is stored in the data dictionary of database B.

A database link connection allows local users to access data on a remote database. For this connection to occur, each database in the distributed system must have a unique global database name in the network domain. The global database name uniquely identifies a database server in a distributed system.

 Shared database link

A shared database link is a link between a local server process and the remote database. The link is shared because multiple client processes can use the same link simultaneously.

When a local database is connected to a remote database through a database link, either database can run in dedicated or shared server mode. The following table illustrates the possibilities:

Local Database Mode Remote Database Mode
Dedicated Dedicated

Dedicated Shared server

Shared server Dedicated

Shared server Shared server
Advantages of distributed databases:
· Management of distributed data with different levels of transparency.

· Increase reliability and availability.

· Reflects organizational structure - database fragments are located in the departments they relate to.

· Improved performance - data is located near the site of greatest demand, and the database systems themselves are parallelized, allowing load on the databases to be balanced among servers. (A high load on one module of the database won't affect other modules of the database in a distributed database.)

· Economics - it costs less to create a network of smaller computers with the power of a single large computer.

· Modularity

· Reliable transactions - Due to replication of database.

· Hardware, Operating System, Network, Fragmentation, DBMS, Replication and Location Independence.

· Continuous operation.

· No reliance on central site.

· Distributed Query processing.

· Distributed Transaction management
 Disadvantages of distributed databases:
· Complexity
· Economics — increased complexity and a more extensive infrastructure means extra labour costs.

· Security — remote database fragments must be secured, and they are not centralized so the remote sites must be secured as well. The infrastructure must also be secured (e.g., by encrypting the network links between remote sites).

· Difficult to maintain integrity

· Inexperience — distributed databases are difficult to work with, and as a young field there is not much readily available experience on proper practice.

· Lack of standards – there are no tools or methodologies yet to help users convert a centralized DBMS into a distributed DBMS.

· Database design more complex – besides of the normal difficulties, the design of a distributed database has to consider fragmentation of data, allocation of fragments to specific sites and data replication.

· Additional software is required.

· Operating System should support distributed environment.

· Concurrency control: it is a major issue. It is solved by locking and time stamping.

Conclusion
 Today’s business environment has an increasing need for distributed database and client/server applications as the desire for reliable, scalable and accessible information is steadily rising. Distributed database systems provide an improvement on communication and data processing due to its data distribution throughout different network sites. Not only is data access faster, but a single-point of failure is less likely to occur, and it provides local control of data for users. However, there is some complexity when attempting to manage and control distributed database systems. A distributed database allows faster local queries and can reduce network traffic. With these benefits comes the issue of maintaining data integrity.
 Single big server could hardly handle requirement of high availability, data warehousing and fast data storage simultaneously. The distributed database satisfies them by separating functions at low cost. The grid computing is becoming the

main stream of information technology. Not only computation, we expect database grid will also be a key technology in the future.

