Distributed Database Architecture for Global Roaming in
Next –Generation Mobile Network
INTRODUCTION

The next-generation mobile network will be an integrated global system that provides heterogeneous services across network providers, network backbones, and geographical regions. Global roaming is a basic service of the future mobile networks, where terminal mobility, personal mobility, and service provider portability must be supported. A nongeographic personal telecommunication number (PTN) for

each mobile user is desirable to implement these types of mobile freedom. With location-independent PTNs, users can access their personalized services regardless of terminal or

attachment point to the network; they can move into different service provider’s network and continue to receive subscribed services without changing their PTNs. Another advantage of the flat PTN scheme is that it is much more efficient in terms of capacity than the location-dependent numbering scheme where the capacity of the subscriber number (SN) may be exhausted in a highly populated area, whereas the SN’s capacity is

wasted in a sparsely populated area [22]. However, using the location-independent numbering plan may introduce large centralized databases into a mobile system. To make things worse, each call may require an interrogation to the centralized databases, thus signaling traffic will grow considerably and call setup time may increase dramatically. The large centralized databases may become the bottleneck of the global mobile system, thus necessitating research into the design and performance of high-throughput database technologies as used in mobile networks to meet future demands. Location management is one of the most important functions to support global roaming. Location management procedures involve numerous operations in various databases. These databases record the relevant information of a mobile user, trace the user’s location by updating the relevant database entries, and map the user’s PTN to its current location. In current cellular networks location tracking is based on two types of location databases, the home location register (HLR) and the visitor location register (VLR). In general, there is an HLR for each mobile network. Each mobile subscriber has a service profile stored in the HLR. The user profile contains information such as the service types subscribed, the user’s current location, etc. The VLR where a mobile terminal (MT) resides also keeps a copy of the MT’s user profile. A VLR is usually collocated with a mobile switching center (MSC), which controls a group of registration areas (RAs). Whenever an MT changes its

RA, the HLR is updated to point to the new location, and the MT is deregistered from the old VLR. As an incoming call arrives, the called MT’s HLR is queried to get the location of the serving VLR of the MT, then a routing address request message is sent to the MSC/VLR. The MSC allocates a temporary local directory number (TLDN) to the called MT and sends back the TLDN to the HLR, which in turn relays this information to the

calling MSC. A connection to the called MSC then can be set up through the SS7 network. An MSC/VLR may not know the address of an MT’s HLR, and a global title translation (GTT) is needed to get the address of the MT’s HLR. With the two-level

HLR-VLR database architecture, the HLR needs to be accessed for each location update or call delivery. Due to an expected much higher user density in the future mobile networks, the updating and querying loads on the location databases will be very

heavy and the two-level database architecture will become infeasible.

In this system a distributed hierarchical database architecture based on the location-independent PTN plan is proposed to support location tracking in a global mobile system. Before further addressing the proposed database architecture, we describe related work first.

1.1 Overview of the System

The distributed database in Global Mobile network is a wireless network. So the system discussed here is simulated exactly. In wireless network , a node will be present in a region and each region will have a Mobile Switching Station(MSS). Or tower. Each MSS will have upto date information of all the nodes under its cpntrol. Nodes will continuously roaming that is it will change its location rapidly. Whenever a node leaves a region and enters another region , two region’s MSS will be updated. Each Mobile Switching Station contains two databases namely Home Location Register(HLR) and Visitor Location Register(VLR). HLR contains information about the nodes which are registered to operate in that area. VLR contains location information about the nodes which are current in its area. This HLR and VLR is the existing and now we propose database scheme that contains three levels. This three level scheme will provide minimum number of updates or evaluations(queries) when various service providers are going to be combined.There will be different node and different service provider under same area. These service provider may combine in future, then number of user will be increasing tremendously. In this case the three level proposed scheme data base will work efficiently.

The proposed database system is a multitree structure (Fig. 1), consisting of a number of distributed database subsystems (DSs), each of which is a three-level tree structure. More than three levels may be adopted in a DS. However, adding

more levels will introduce longer delays in location registration and call delivery. These DSs communicate with each other only through their root databases, DB0s, which are connected to

[image: image1.png]

Fig. 1. Proposed multitree database architecture.

the others by the public switched telephone network (PSTN), ATM networks, or other networks. The proposed database architecture is motivated by the following.

1) A location-independent PTN provides a basis for global roaming in the next-generation mobile networks where terminal mobility, personal mobility, and service provider portability will be implemented. A mobile subscriber can retain its lifelong PTN regardless of its location and service provider.

2) The multitree database architecture is much more robust than the one-root hierarchical architecture. In the proposed architecture, an MT’s profile is stored in one of

the root databases according to its current location. Thus, each root database only maintains a small portion of the user profiles in the global mobile system. The crash of

one root database will not disrupt the operation of other root databases, and the recovery of the failed root database is much easier than in the one-root database architecture

where all user profiles need to be recovered once the root is crashed.

3) The multitree database architecture is scalable, which is crucial to support continuously increasing number of mobile subscribers in future mobile networks. When the capacity of a root database is saturated, a new DS is readily added. More importantly, the end-to-end delay in location registration and call delivery will not increase due

to such an expansion in the mobile network. On the other hand, with the one-root structure, when the capacity of the root or a high-level database is saturated, more levels of databases need to be added in order to reduce the burden on the root or high-level databases. This will increase the delays in location registration and call delivery.

4) The proposed multitree database system is easy to expand and maintain in the multioperator environment of a global mobile system. With the multitree architecture, each service provider can have its own DSs and it is straightforward for a service provider to expand its service coverage by adding new DSs. It is also easy to operate and

manage a DS when the DS is wholly owned by a single service provider. The one-root architecture, however, may not have such advantages.

5) No GTT is required in the proposed database architecture, where a signaling message is only sent from a database to another database in an adjacent level within the same

subtree or from a DB0 to another DB0. Since a message sender always contains the address of the receiver in its database, no GTT is required. This greatly simplifies the

implementation of the proposed architecture.

In addition to the multitree location database architecture, this paper also proposes indexing schemes for each type of location databases and analyzes their efficiency and cost in terms of database access time and storage requirement. The location registration and call delivery procedures based on the proposed database structure are also given. Analysis models are developed to study the service response time of each type

of databases in the proposed multitree architecture as well as the end-to-end delays incurred by the proposed location registration and call delivery procedures. The proposed architecture is compared with the one-root architecture as well as the HLR-VLR architecture in terms of the signaling loads due to location registration and call delivery. Numerical results have demonstrated that the proposed database architecture outperforms the one-root architecture and the HLR-VLR architecture, and can effectively cope with the anticipated high access rates to various location databases in future mobile

Abstract
The next-generation mobile network will support terminal mobility, personal mobility, and service provider portability, making global roaming seamless. A location-independent personal telecommunication number (PTN) scheme is conducive to implementing such a global mobile system. However, the nongeographic PTNs coupled with the anticipated large number of mobile users in future mobile networks may introduce very large centralized databases. This necessitates research into the design and performance of high-throughput database technologies used in mobile systems to ensure that future systems will be able to carry efficiently the anticipated loads. This project proposes a scalable, robust, efficient location database architecture based on the location-

independent PTNs.
The proposed multitree database architecture consists of a number of database subsystems, each of which is a three-level tree structure and is connected to the others only through its root. By exploiting the localized nature of calling and mobility patterns, the proposed architecture effectively reduces the database loads as well as the signaling traffic incurred by the location registration and call delivery procedures. In addition, two memory-resident database indices, memory-resident direct file and

T-tree, are proposed for the location databases to further improve their throughput. Analysis model and numerical results are presented to evaluate the efficiency of the proposed database architecture. Results have revealed that the proposed database architecture for location management can effectively support the anticipated

high user density in the future mobile networks.
3. Description of Problem
In wireless network , a node will be present in a region and each region will have a Mobile Switching Station(MSS). Or tower. Each MSS will have upto date information of all the nodes under its cpntrol. Nodes will continuously roaming that is it will change its location rapidly. Whenever a node leaves a region and enters another region , two region’s MSS will be updated. Each Mobile Switching Station contains two databases namely Home Location Register(HLR) and Visitor Location Register(VLR). In future when all the service providers combined and work in global. In that case the two level architecture results in very high query evaluation takes place and which will not work out. So this project present a three level architecture that can work efficiently when all service provider combined together.
3.1 Existing Method
The existing method uses current two-level database architecture. Two main categories of strategies have been proposed: auxiliary strategies based on the two-level database architecture and distributed strategies employing the hierarchical database architecture.

The auxiliary strategies try to exploit the spatial and temporal locality in each user’s calling and mobility patterns to reduce the signaling traffic and database loads. Examples include the forwarding strategy, the anchoring strategy, the caching strategy,

and the replication strategy. In the forwarding strategy , a forwarding pointer is set up in the old VLR pointing to the new VLR of an MT to avoid a location update at the HLR as the MT changes its RA. When a call for the MT arrives, the HLR is queried first to determine the first VLR which the MT was registered at, and a forwarding pointer chain is followed to locate the MT in its current VLR. The forwarding strategy reduces location

update signaling but increases the call setup delay. Thus, the length of the forwarding point chain needs to be limited. It is shown that this scheme may not always result in a cost savings as compared to the standard IS-41 scheme. The forwarding scheme is effective only when the call arrival rate is low relative to the mobility rate for an MT. With the anchoring strategy , location updates are performed at a nearby VLR (i.e, local

anchor) for an MT to reduce signaling traffic between the HLR and the VLRs. The HLR maintains a pointer to the MT’s local anchor. As an incoming call occurs, the HLR forward the call to the local anchor, which in turn queries the serving VLR of

the MT for a TLDN. The call delivery time is increased due to one extra database query to the local anchor. Similar to the forwarding scheme, the local anchoring scheme is efficient only when an MT’s call arrival rate is low relative to its mobility rate.

With the caching strategy , an MT’s location obtained from a previous call is cached and re-used for subsequent calls to that MT. After a cache entry of the MT’s location information is created at a signal transfer point (STP), if another call for the MT

is received by the STP, the STP will forward the call to the VLR as specified by the cache. If the MT is still in the same VLR, a hit occurs and the call is successfully delivered. However, if the MT has moved to another VLR, a miss occurs and the IS-41

call delivery process has to be followed to find the MT, thus incurring a much longer setup delay. When an MT changes its location more often than receiving calls, the caching scheme may become inefficient in reducing cost. In the replication strategy

, an MT’s location is replicated at selected local databases, so that calls to the MT originating from the service area of these replicated databases can be routed without querying the HLR. When the MT changes its location, all replicated databases need

to be updated for the MT, thus incurring a high database update load and signaling traffic, especially for highly mobile users. In summary, each auxiliary strategy outperforms the IS-41 only under certain calling and mobility parameters. As the cell sizes become smaller to support an increasing user density and the number of mobile subscribers increases, even these augmentations will not be sufficient to meet the future demands of mobile networks.

It becomes obvious that reducing the access rate to the centralized HLR is a critical step to support an increasing number of mobile subscribers. The hierarchical database architecture can reduce the access load on an upper-level database by distributing query load into the lower-level databases, thus it has been studied extensively in previous research. An extra level of databases called directory registers

(DRs), was added between the HLR and the VLRs of current cellular systems. The DR periodically computes the location information distribution strategy for each associated MT in order to achieve a reduced access rate to the HLR. The performance

of this scheme depends on the availability and accuracy of the user’s calling and mobility parameters. It is usually computationally intensive to obtain these parameters. Given the large number of MTs, the burden on the DRs would be very heavy.

3.2 Proposed System
The proposed database architecture for location tracking is a multitree structure, where each subsystem is a three-level architecture (Fig. 1), referred to as a database subsystem (DS) in this project. Various DSs may represent networks operated possibly

by different service providers. All these DSs are interconnected together via a fixed network, such as PSTN or ATM network, and communicate with each other only through their root databases. This architecture can support a multioperator environment

which is expected in future mobile networks. In each DS, databases DB0 and DB2 may correspond to the HLR and the VLR in the two-level database system, respectively. Each

DB2 may control an RA where a user can roam freely without triggering registrations. Each DB2 is colocated with an MSC, which performs call processing on origination or termination calls. A number of DB2s are grouped into one DB1 and several DB1s are connected to a single DB0. Each DB1 and DB0 also needs a switch, called the STP, that provides routing functionality for message exchange between various location databases.

The DB0 maintains the service profile for each user currently residing in its service area, and maintains an entry for each user in the global mobile system. The entry contains either a pointer to another DB0 where the user is residing or a pointer to the user

record that contains a pointer to the DB1 with which the user is currently associated. Each DB1 has an entry for every currently residing user, storing a pointer to the DB2 the user is currently visiting. Every DB2 has a copy of the service profiles of the

users currently roaming within its area. With this architecture, the frequency of queries to the higher level databases is greatly reduced due to the locality of calling and mobility patterns. However, when a call or a location update is not local, more databases—including the large centralized database DB0—need to be visited. This increases the end-to-end delays in call setup and location registration. In addition, as the number of mobile subscribers increases, the access time of each database is increased, which also increases the end-to-end delays. To meet the delay demands in call setup and location

registration, the number of database levels in a DS has to be limited. Moreover, to support a larger amount of mobile subscribers while keeping the end-to-end delays low, it is critical to reduce the access times to the databases. Thus, investigation into efficient database access indices for the location databases is as important as research into the overall location database architecture.

3.3 System Environment
The front end is designed and executed with the J2SDK1.4.0 handling the core java part with User interface Swing component. Java is robust , object oriented , multi-threaded , distributed , secure and platform independent language. It has wide variety of package to implement our requirement and number of classes and methods can be utilized for programming purpose. These features make the programmer’s to implement to require concept and algorithm very easier way in Java.

The features of Java as follows:

Core java contains the concepts like Exception handling, Multithreading , Streams can be well utilized in the project environment.

The Exception handling can be done with predefined exception and has provision for writing custom exception for our application.

Garbage collection is done automatically, so that it is very secure in memory management.

The user interface can be done with the Abstract Window tool Kit and also Swing class. This has variety of classes for components and containers. We can make instance of these classes and this instances denotes particular object that can be utilized in our program.

Event handling can be performed with Delegate Event model. The objects are assigned to the Listener that observe for event, when the event takes place the cooresponding methods to handle that event will be called by Listener which is in the form of interfaces and executed.

This application make use of ActionListener interface and the event click event gets handled by this. The separate method actionPerformed() method contains details about the response of event.

Java also contains concepts like Remote method invocation, Networking can be useful in distributed environment.

3.4 System Requirement
Hardware specifications:

 Processor

:

Intel Processor IV

 RAM

:

128 MB

 Hard disk

:

20 GB

 CD drive

:

40 x Samsung

 Floppy drive

:

1.44 MB

 Monitor

:

15’ Samtron color

 Keyboard

:

108 mercury keyboard

 Mouse

:

Logitech mouse

 Software Specification
Operating System – Windows XP/2000

Language used – J2sdk1.4.0
4. System Analysis
System analysis can be defined, as a method that is determined to use the resources, machine in the best manner and perform tasks to meet the information needs of an organization.
4.1 System Description

It is also a management technique that helps us in designing a new systems or improving an existing system. The four basic elements in the system analysis are

· Output

· Input

· Files

· Process

The above-mentioned are mentioned are the four basis of the System Analysis.
4.2 Proposed System

The proposed system maintain three level architecture. . This architecture can support a multioperator environment

which is expected in future mobile networks. In each DS, databases DB0 and DB2 may correspond to the HLR and the VLR in the two-level database system, respectively. Each

DB2 may control an RA where a user can roam freely without triggering registrations. Each DB2 is colocated with an MSC, which performs call processing on origination or termination calls. A number of DB2s are grouped into one DB1 and several DB1s are connected to a single DB0. Each DB1 and DB0 also needs a switch, called the STP, that provides routing functionality for message exchange between various location databases
4.2.1 Data base Design

A database usually consists of two parts: an index file and a data file. The index file contains an access structure called index, which provides search paths for locating the records in the data file. The index determines the database access time, thereby being the critical component for improving database throughput. Efficient indices should be based on application characteristics such as the types of storage devices available, the affordable storage capacity, the types of queries required, the available keys, etc.

In this paper, we focus on the indices suitable for a variety f databases in mobile systems. There are two classes of indices: the disk-oriented index, such as the B -tree, and the

memory-resident index, such as the AVL-tree and the T-tree. While the disk-oriented indices are designed primarily to minimize the number of disk block accesses and to minimize disk space, the memory-resident indices aim to reduce computation

time while using as little memory as possible. For real-time applications, the memory-resident indices are preferred due to their much faster access times than the disk-resident indices. The indices can also be classified into the following two

categories: the order-preserving indices and the randomizing indices. The primary order-preserving indices include arrays, B-trees, AVL-trees, T-trees, and direct files. The randomizing indices include various hashing indices. Essentially, the direct

file is a special form of hashing indices. We can call the direct file perfect hashing due to its collision-free property and use it in the DB0s due to its fast response time and easy implementation. The hashing indices have been applied in various

[image: image2.png]parent poiner

enty | niy)

e

[NV Y N B —

i dus

ey

et o

igh chid poier

Fig. 2. (a) T-node. (b) T-tree.

computer and communications systems. For example,a hash function was used to balance the query load across multiple GTT servers by distributing users’ PTN-to-HLR address

mappings evenly among the GTT servers. In the peer-to-peer systems, hash-based techniques were used to map file names to their locations in the peer-to-peer systems while balancing the query load amongst all nodes. The hardest task of applying hashing techniques is to design efficient hash functions that can minimize collisions while keeping memory usage low. On the other hand, the order-preserving indices are much

easier to implement and provide guaranteed upper bounds on the search time while keeping memory usage efficient. It has been shown that among the order-preserving

indices-array, B-tree, AVL-tree, and T-tree, the T-tree provides the best overall performance for a mix of searches, inserts, and deletes at a relatively low storage cost. Inserts and deletes incurred by location update as well as searches required by call

delivery in the DB1 and the DB2 make the T-tree suitable for these databases. On the contrary, the biggest drawback with the array is that data movement is for each update, thus the array seems only suitable for a read-only environment [12]. The

AVL-tree has poor storage utilization since each node stores only one data item while requiring two pointers and some other control information. As mentioned earlier, we also suggest that the memory-resident direct file be used as the index for large databases such as DB0, etc., due to its much faster speed than the other order-preserving indices.

1) T-Tree: The T-tree, which evolved from the AVL-tree and the B-tree, is a binary tree in which each node called T-node contains a number of data items, a parent pointer, a left-child pointer, a right-child pointer, and some other control information (Fig. 2). The T-tree is fast since it retains the intrinsic binary search nature of the AVL-tree. On the other hand, unlike the AVL-tree that holds only one data item in each

node, the T-tree contains a number of data items in each node similar to the B-tree, thus having good storage utilization. In a T-node, the data items are arranged in increasing order of their keys. To find a value in the T-tree, a search algorithm for the T-tree is needed. One efficient search algorithm for the T-tree can be described as follows:
1) each search begins with the root node;
2) if the search value is less than the minimum value of the node, then the left-child node

is searched.
Otherwise, the current node is marked for future consideration and the search goes down the subtree pointed to by the right-child pointer. When the search reaches a leaf, the

last marked node is searched using a binary search. The search fails when the search value is not found in the marked node that bounds the search value (this node is called the bounding node) or when the bounding node does not exist in the T-tree.
2) Direct File: In the direct file, there is a direct relationship between the record key and its storage location. The fastest searching method to access a direct file is direct addressing . The key value is used as a relative record number that can be translated into a hardware address by the system. When the direct file is memory resident, the hardware address is the memory address. One potential disadvantage of direct addressing is that

space must be reserved for every possible key value, resulting in wasting large amounts of storage. However, when the number of possible key values is relatively close to the number of actual key values, direct addressing is very cost effective. Whenever

access time is the vital criterion, even lower packing densities are acceptable. To use direct addressing, the key values must be numeric, in ascending order, and the records must have fixed length. The location-independent PTN numbering plan makes

direct addressing quite suitable for large centralized databases

The organization of DB0 consists of an index file and a data file. Each DB1 consists of only one part called the index file. The DB2 consists of an index file and a data file.
4.2.2 Location Registration and Call Delivery Procedures
The location tracking procedures are described, based on the proposed multitree database architecture as well as the proposed database organizations. Location tracking consists of two procedures: the location registration procedure and the call delivery procedure. Location registration is the procedure through which a user reports its location to the network whenever the user enters a new location. As an incoming call arrives,

the call delivery procedure is invoked to deliver the call to the user. For simplicity, in this paper, it is assumed that a DB2 only controls one RA. In real applications, a DB2 may control several RAs.

Location Registration Procedure

With the previously defined file structures of DB0, DB1, and DB2 as well as the proposed multitree location database architecture, the location update procedure in a global mobile system can be described as follows.

1) When a user enters a new RA, a registration request message

is sent to the associated DB2 which in turn sends a registration request message to the DB1 controlling this area. If the user has no entry in this DB1, go to step 3;

otherwise, go to step 2.

2) The fact that the user has an entry in this DB1 indicates that the new DB2 is within the same DB1 area as the old DB2. A pointer to the new DB2 replaces the old one

in the user’s entry in the DB1. No further query to the DB0 is needed. The DB1 sends a registration cancellation message to the old DB2, then go to step 8.

3) The fact that the user has no entry in this DB1 indicates that the user has moved to a new DB1 area. In the new DB1 an index entry is added to contain a pointer to the new DB2 of the user. An update request is also sent to the associated DB0.

4) The DB0 is checked to see if it contains the user’s service profile. If no, this means that the user enters a new DS, then go to step 5a; otherwise, the DB0 updates the user’s service profile to point to the new DB1 and sends a registration cancellation message to the old DB1, then go to step 7.

5)a) The new DB0 sends a query to the old DB0 to request the user’s service profile.

b) The new DB0 stores the user’s service profile and updates the service profile to point to the new DB1. A copy of the user’s service profile is also sent to

the new DB2.
6) a) The old DB0 sends the user’s service profile to the new DB0.

b) The old DB0 updates the user’s entry in the index file to point to the new DB0, and deletes the user service profile from its data file. A registration cancellation

message is sent to the old DB1.

7) The old DB1 deletes the user’s index entry, and sends a registration cancellation message to the old DB2.

8) If the old DB2 is in the same DS as the new DB2, a copy of the user’s service profile is sent to the new DB2. The user’s index entry as well as the user’s service profile is removed from the old DB2.

9) After receiving the user’s service profile, the new DB2 sets up an index entry for the user and creates the user’s service profile. The location registration procedure is

completed.
Note that when a user changes its DS, with the preceding location registration procedure, only the old DB0 points to the new DB0 directly. All other DB0s (except for the new DB0) still point to the old DB0. A forwarding pointer chain corresponding to each of these DB0s is generated, like in the general forwarding strategy [8]. The length of these forwarding pointer chains will increase as the user continues to change its DS. As a result, the end-to-end setup delay will increase for inter-DS calls. Compared to the single root structure, the proposed multitree structure achieves its robustness, scalability,

maintainability, etc., at the expense of the necessary of synchronizing the DB0s to contain the call setup delay as an MT changes its DS.
Call Delivery Procedure

When an incoming call arrives, the call delivery procedure for the callee can be performed in the following steps:

1) When a call is detected in the caller’s MSC, the caller’s DB2 is checked to see if an index entry for the callee exists. If yes, go to step 5, and no further queries to the

DB1 and the DB0 are required. Otherwise, a query is sent to the associated DB1, then go to step 2.
2) The DB1 examines if the callee has an entry in its index file. If yes, go to step 4, and no further query to the DB0 is required. Otherwise, a query is sent to the associated DB0, then go to step 3.

3) The DB0 examines if the callee is associated with one of its DB1s. If yes, the DB0 sends a routing address request message to the DB1, then go to step 4; otherwise, go to step 7.

4) The DB1 determines the callee’s DB2 and sends a query to the DB2 to request the routing address.
5) The DB2 searches for the callee. If the callee is found, a TLDN is allocated to the callee and sent back to the calling MSC.

6) After receiving the TLDN, the calling MSC sets up a connection to the called MSC associated with the callee’s current DB2. Then the call delivery process stops.

7) If the callee is residing in another DS, a query is sent to the associated DB0. The searching process is repeated from step 3.

It is worthwhile to point out that no GTT is required in the location registration and call delivery procedures based on the proposed database architecture. This will simplify the deployment of the proposed strategy while reducing the overall system

cost.
5. System Design

Design is concerned with identifying software components specifying relationships among components. Specifying software structure and providing blue print for the document phase.

Modularity is one of the desirable properties of large systems. It implies that the system is divided into several parts. In such a manner, the interaction between parts is minimal clearly specified.
Design will explain software components in detail. This will help the implementation of the system. Moreover, this will guide the further changes in the system to satisfy the future requirements.
5.1 Form design
Form is a tool with a message; it is the physical carrier of data or information. The user
Interface form is design to accept Number of nodes and Roaming details as input. As the system is wireless network , according to user input the application simulates the network model by randomly generating the node.
[image: image3.png]Input.

=

[image: image4.png]Input

Enter RoamingTime:

100

o] [coner

[image: image5.png]tributed Database Architecture for Global Roaming

(574,381
diacency List =]
reg0 [regl [reg? |regd |reg# region0: 156 |
o © region1:02567
s © b |
Teg5 |reg6 |req7 |ress |resd Fegionts. 0 5
region15: 2
o region17: 2
region1a: 3 |
[Feq®0 | regi1 | regiz | regga | regis, regionta: 4 -
Po [StartRooming |
o s Start Roaming
regi5| regip [regi’ | 5egie| regis’ Nodes-Path
o o °©
° o
Simulation Time: 6 Current Node: -1
Total Nodes: 30

Then user can click start roaming button, the nodes ie mobile given in red circle starts roaming randomly by changing the region. In this case of chaging the region the Query evaluation takes place between the Mobile Swtiching Stations. This query evaluation is diplayed to the user in one frame. The node location during roaming is also displayed to user in separate frame, as follows.

[image: image6.png]& pistributed Database Architecture for, Global Roaming

(432,4149)

I& Query-Table

Tog0 |regl [reg2 J regd |regd

diacency List B

region0: 156

regiont: 02567
<

Tegs |rego |reg7 |regp d regd
°

72010 b Teg12 | reg1s | regis
9 ;93;},, 9 9 g

00

FegionTs: 0
regiont6: 1
region17: 4
region18: 0
region19: 0

D

R1Z: (170, 21012
R13: (225, 21012
R14: (280, 21013
R15: (80, 2705-(11
R16: (115, 27051
RIT: (170, 27052
R18: (225, 27012
R19: (280, 27013

¥egis | regls | regizd regis | reglo

Simulation Time: 6 Current Node: -1
Total Nodes: 30 RoamingTime: 100

Node 279, 13,14,8, 13
Node 289, 14,19, 14,9,
Nade 29: 15,10, 16,1

025 atR17

026 3tR11
027 atR8

028 3tR11
029 3tR17

£ NodeLocation.

[image: image7.png] Ouery-Table.

R12: (170, 2101225, 270)
R13: (225, 210)-(280, 270)
R14: (280, 210-(335, 270)
IR15: (60, 270)-(115, 330)
R16: (115, 2701(170, 330)
R17: (170, 270-(225, 330)
R18: (225, 270)-(280, 330)
R19: (280, 270)-(335, 330)

[image: image8.png]

[image: image9.png]£ Result

025 atR7
026 3tR12
027 atR18E
028 3tR13
029 atR18

Updates: 49
Datahase Access Evaluations: 402

025 atR7
026 3tR12
027 atR18E
028 3tR13
029 atR18

Updates: 49
Datahase Access Evaluations: 157

5.2 Input design

Inaccurate input data is the most common case of errors in data processing. Errors entered by data entry operators can control by input design. Input design is the process of converting user-originated inputs to a computer-based format. Input data are collected and organized into group of similar data.

5.3 Code Design

The entire application is divided into four modules as follows:

· First as it is wireless model the network is simulated according to user input.

· Data base design construction as given in section 4.2.2

· Roaming of nodes in various region

· During roaming updation of respective information in the data base.

6. Output Design

6.1 System Flow Chart

7. Testing and Implementation

7.1 Software Testing

Software Testing is the process of confirming the functionality and correctness of software by running it. Software testing is usually performed for one of two reasons:

1) Defect detection

2) Reliability estimation.

White box testing is concerned only with testing the software product, it cannot guarantee that the complete specification has been implemented. Black box testing is concerned only with testing the specification, it cannot guarantee that all parts of the implementation have been tested. Thus black box testing is testing against the specification and will discover faults of omission, indicating that part of the specification has not been fulfilled. White box testing is testing against the implementation and will discover faults of commission, indicating that part of the implementation is faulty. In order to fully test a software product both black and white box testing are required
The problem of applying software testing to defect detection is that software can only suggest the presence of flaws, not their absence (unless the testing is exhaustive). The problem of applying software testing to reliability estimation is that the input distribution used for selecting test cases may be flawed. In both of these cases, the mechanism used to determine whether program output is correct is often impossible to develop. Obviously the benefit of the entire software testing process is highly dependent on many different pieces. If any of these parts is faulty, the entire process is compromised.

Software is now unique unlike other physical processes where inputs are received and outputs are produced. Where software differs is in the manner in which it fails. Most physical systems fail in a fixed (and reasonably small) set of ways. By contrast, software can fail in many bizarre ways. Detecting all of the different failure modes for software is generally infeasible.

`The key to software testing is trying to find the myriad of failure modes – something that requires exhaustively testing the code on all possible inputs. For most programs, this is computationally infeasible. It is commonplace to attempt to test as many of the syntactic features of the code as possible (within some set of resource constraints) are called white box software testing technique. Techniques that do not consider the code’s structure when test cases are selected are called black box technique.

Functional testing is a testing process that is black box in nature. It is aimed at examine the overall functionality of the product. It usually includes testing of all the interfaces and should therefore involve the clients in the process.

Final stage of the testing process should be System Testing. This type of test involves examination of the whole computer system, all the software components, all the hard ware components and any interfaces.

The whole computer based system is checked not only for validity but also to meet the objectives.

7.2 Implementation
Implementation includes all those activities that take place to convert from the old system to the new. The new system may be totally new, replacing an existing system or it may be major modification to the system currently put into use. This application is taken three different input in PGM file format with lost block of data and then processed on this algorithm. The pictures were taken from internet and only few pictures with the lost block can be got from internet. This pictures were stored in the images folder inside the source code folder. The application is given the path to retrieve image from this path. The input image will be drawn on JFrame called inFrm and output image that is reconstructed image will be drawn on JFrame named outFrm to the user. To see both input and output image at a time 50 % of monitor engages input and rest by output frame.

The control transfer information are displayed in the dos prompt with System.out.println() statement. That gives the sequence in which the application works. This application works fine with lost block of image. The result given in this document is verified with the three different types of images.

8. Conclusion
A distributed multitree database architecture has been proposed for location management in a global mobile system, where the location-independent PTNs are employed to support

seamless global roaming. To support the anticipated large number of mobile users in the future mobile system, two efficient database access structures—the memory-resident

direct file and the T-tree—were proposed to achieve high database throughput, so that the end-to-end delays in location registration and call delivery can meet the delay requirements in mobile networks. The proposed database architecture is scalable, robust, and efficient. Compared to the existing two-level location database architecture, the proposed database architecture can support a much higher user density while

reducing signaling load significantly. Compared to the one-root tree architecture, the proposed architecture provides better scalability and reliability while supporting a larger user population at a lower signaling cost. For performance evaluation,

analysis model was developed. Numerical results have revealed that the proposed database architecture can effectively handle the anticipated high update and query rates to the location databases in future mobile networks. The proposed database access structures are also suitable for other large centralized databases in mobile networks, such as the authentication center and the equipment identity register.
Start the process

Accept Number of Nodes and Roaming

 End

Updating Query evaluation and display

Roaming the node in random location across the region

 Construction of data base

 Simulating the network model

