Abhishek Chimalgi		Data Placement Issues in Grid Environments

1. [bookmark: _Toc210178458][bookmark: _Toc311667452] INTRODUCTION

We know that most IT departments are being forced to do more with less. Budgets are tight, resources are thin, and skilled human resources can be scarce or expensive. Almost every organization is sitting on top of enormous, unused computing capacity, widely distributed. Mainframes are idle 40% of the time. UNIX servers serve something less than 10% of the time. And most PCs do nothing for 95% of a typical day. Grid computing is an emerging technology, where we can unite a pool of servers, PCs, storage systems and networks into one large system to deliver nontrivial qualities of service. For an end user or application it looks like one big virtual computing system. Grid computing is a network of computation. Grid technology allows organizations to use numerous computers to solve problems by sharing computing resources

While Grid job scheduling has received much attention in the recent years, relatively few researchers have studied data placement issues. Although job management is important in Grid computing, data management and placement is likely to be among the most challenging issues for future Grid applications.

[bookmark: _Toc311667453]2. WHAT IS A GRID

The name Grid computing originates from the comparison of a computational Grid with the power grid, which provides access to electricity on demand through wall sockets. Users do not have to concern themselves with how and where the electricity is coming from. In the overall Grid vision, a Grid is a system that provides access to computational resources on demand without requiring knowledge about how and where these resources are located. One of the pioneers in the field of Grid computing, created a three point checklist that defines a Grid as a system that:

1. Coordinates resources that are not subject to centralized control
2. Using standard, open, general-purpose protocols and interfaces
3. To deliver nontrivial qualities of service

Grid users want to get direct access to computers, software, data or other resources, e.g., devices such as sensors. To coordinate the usage of resources in a controlled way without a centralized point of control, individuals and institutes have to make up sharing rules, e.g., who is allowed to access resources and under what conditions sharing is acceptable. A set of individuals and/or institutes defined by such sharing rules forms a Virtual Organization (VO). The term virtual implies that the organizations can internally consist of different physical participating and contributing organizations and resources. VOs can also be viewed as allocations of computing and storage resources. The resources to be coordinated are typically computing resources, e.g., PCs, workstations, servers, storage elements, etc. For communication with the Grid, as well as within in the Grid, standard, open, general-purpose protocols and interfaces, e.g., Web services, are used. These protocols increase the value of interconnecting resources. The nontrivial qualities of service that are provided by a Grid indicate that the Grid adds greater value than can be obtained from using the resources individually. In practice, a Grid is built on top of a heterogeneous computing infrastructure, e.g., specialized hardware and commodity computers are combined to form a collaborative infrastructure. To utilize these heterogeneous resources and enable interoperability between them, the principles of a Service-Oriented Architecture in combination with Web services are often used. Both these paradigms are described in the following sections.

[bookmark: _Toc311667454]2.1 Types of Grid

Often, grids are categorized by the type of solutions that they best address. The three primary types of grids are computational grid scavenging grid and data grid. There are no hard boundaries between these grid types and often grids may be a combination of two or more of these. The type of grid environment that we are using will affect many of our decisions about the applications that are developed to run in a grid environment.

Computational grid: A computational grid is focused on setting aside resources specifically for computing power. In this type of grid, most of the machines are high performance servers.

Scavenging grid: A scavenging grid is most commonly used with large numbers of desktop machines. Machines are scavenged for available CPU cycles and other resources. Owners of the desktop machines are usually given control over when their resources are available to participate in the grid.

Data grid: A data grid is responsible for housing and providing access to data across multiple organizations. Users are not concerned with where this data is located as long as they have access to the data. For example, consider two universities doing life science research, each with unique data. A data grid would allow them to share their data, manage the data, and manage security issues such as who has access to what data.

[bookmark: _Toc311667455]3. DATA PLACEMENT ISSUES AND SOLUTIONS

Data placement issues are mostly a result of the distributed nature of the Grid and arise from the commonly used functionalities offered by data placement services. The herein discussed issues are storage discovery, storage allocation, file name virtualization, data replication, file consistency control, reliable file transfer, job-aware data placement optimization and ensuring system state consistency. The issues and their possible solutions are formulated without loss of generality to make it possible to adapt the ideas to other systems than the DPS. In the following sections the term user refers to a human user of the system whereas client refers to either a human user or a client application.
[bookmark: _Toc311667456]3.1 Storage Discovery

In a typical Grid environment all resources, e.g., computing nodes, storage nodes and broker nodes, have a dynamic life-cycle. They can become available at virtually any time and disappear without notice. With special focus on data placement, the resources of interest are the StorageElements(SEs). The problem is known as storage discovery. There are at least two possible methods that are usable on both Grid and user side to discover storage resources. One option is to implement dynamic storage discovery using broadcast messages. A broadcast message is a message that, once sent to the network, is received by every device on the network. Figure 3.1 illustrates how the discovery process works. The StorageBrokerService (SBS) in the figure offers clients the functionality to discover storages that are available in the Grid for data placement. Notably, a data placement service need not necessarily have a service called SBS, but this role simplifies the illustration of the discovery process. In Step 1, the client sends a storage request to the SBS. The SBS sends a broadcast message to the network in Step 2. As a result of the properties of broadcast, all connected computers receive the broadcast message, in Step 3, and can react to it accordingly. Computational Nodes (CN) can ignore the broadcast message and not respond. In case the receiving computer is a SE, it returns a message in Step 4 including storage information. This response message might include information about the SE, e.g., available storage space, the supported transfer protocols, and the SE's address. The aggregated information about the available SEs is pre-processed by the StorageBrokerService and then returned to the client in Step 5. There is no need for a central SE index as each client discovers the available SEs. Each client has the possibility to cache the discovery responses for a certain amount of time to avoid network congestion. Even though this solution has no single point of failure it is unfeasible as not all computer networks support broadcasting.

[image:]
Figure 3.1 Storage discovery with broadcast messages

A solution for this may be the usage of multicast instead of broadcast, e.g., all resources of a Grid join a multicast group. Next, a client needs to send a multicast message to the multicast group and all Grid resources receive the message. However, this solution is also unfeasible as this would require multicast-aware routers in the network, e.g., multicast messages have to be exchanged between all participating subnetworks and thus adds more complexity to the network's routing and security configuration. This excludes the typical virtual organization, e.g. Grid environment. The solution offers poor scalability as the SBS has to wait longer for discovery responses with increasing number of SEs. A broadcast-based or multicast-based solution might only work for smaller workgroups located on the same local network.

An alternative solution to dynamic storage discovery is to use a central SE index. Such a discovery scenario is shown in Figure 3.2. Here, all SEs publish their system information to the central index, as illustrated by the asterisk symbol in the figure. Much like the previous approach, the client sends a request to the SBS in Step 1. The SBS then polls the index and can pre-select SEs given constraints such as free space in Step 2. SE administrators have the possibility to define constraining policies and publish them in the central index alongside the SE information. Possible policies include, e.g., the maximum size of a single file, the maximum amount of data a user is allowed to upload, restrictions on allowed users, restrictions on allowed file types etc. After the SBS has gathered all necessary information and filtered it, the information is returned to the client in Step 4. Central index services are quite common in Grid environments even though they are considered to be a potential single point of failure. The primary advantage of storage discovery with a central index service is that it is easy to deploy in existing Grid infrastructures. The scalability of this solution is better than the scalability of the broadcast-based solution as the indices can be arranged in a hierarchical structure, but limited through the central index at the same time.
[image:]
Figure 3.2 Storage discovery with central SE index.

[bookmark: _Toc311667457]

3.2 Storage Allocation

The motivating scenario for storage allocation is similar to the one for storage discovery. A user wants to upload one or more files to a set of SEs. In order to do this there has to be enough space on the SEs. As multiple users can upload files to an SE concurrently, the storage may become full, even though all users assert that free space is available before starting their uploads. The problem is that the space requirements are not met during the whole file transfer and that the aggregated space requirements for multiple users could not be fulfilled by the SE. Therefore, it should be possible to allocate space for a file transfer. This should be possible both on a per file basis and a bulk basis. The latter is to allocate storage space for a set of files instead of allocating once per file. Soft space reservations are one approach to solve the storage allocation problem. A soft space reservation is represented by a soft-state, e.g., no space is physically reserved on the SE. If a user reserves space on a specific SE, a soft-state with the amount of space to reserve and period of validity is created. After this period of time, the space reservation is removed unless the reservation is renewed. These soft-state reservations have to be handled by a Soft Space Reservation Manager (SSRM) that can be deployed at the SE. The allocation and reservation process is illustrated in Figure 3.3. SEs has to register them at the SSRM with their storage space information and keep this information up-to-date through periodic updates, as illustrated by the asterisk symbol.
In Step 1, the client reserves space by sending a request message to the SSRM identifying themselves and specifying the desired amount of space. The SSRM holds an internal list of active space reservations. Based on this information, the SSRM calculates the available storage space and decides whether the client's request can be granted. If the client's request cannot be fulfilled, the client receives an error message indicating this. Conversely, if the client's request can be fulfilled, the SSRM creates a soft space reservation for the user. As shown in Figure 3.3, this reservation includes user name, amount of space and an expiration date. The client receives the reservation information in Step 2 and can (in Step 3) start to transfer the file(s) to the SE. As the client is aware of the expiration date of the space reservation, it has to update the reservationperiodically in Step 4.
An advantage of soft space reservations is that the reserved space on the SE is freed automatically in case of a client failure because of the period of validity. If a client crashes, or simply forgets to release its reservation, it is released as well. In this way, lazy reservations can be realized. The term lazy reservation means that the user reserves space on the SE, uploads the data to the SE and forgets to release the reservation. Two problems that might occur when using soft-states to represent space reservations and allocations are virtually full storages and malign or crashing clients. The problem of virtually full storages is easy to comprehend. If users repeatedly reserve storage space on a certain SE without actually using it, e.g., without uploading files, the SSRM states that the SE is full after some time.

[image:]
Figure 3.3: Soft storage allocation.

In the most extreme form the SE is not used at all in the physical sense, but the SSRM states that all storage space is reserved. This situation should, however, be handled by the expiration date that is defined for every storage space allocation. The second problem with malign or crashed clients is harder to prevent. In order for the soft space reservations to work, all space allocation requests, both from Grid clients and local users, have to pass through the SSRM. The consequence of this constraint can be reduced by integrating the SSRM in server daemon software for example. The server daemon has to query the SSRM before it grants upload requests. A further complication with reservations is that the SEs used for the DPS need to be configured to ensure the up-loader is the user that previously created reservation. Researcher [1] describes how storage allocation in the Storage Resource Manager (SRM) is modeled. The SRM is an open standard that allows Grid middleware tools to communicate with site specific storage fabrics [2]. It supports storage allocation in a similar way to the one described here. However, storage allocation with SRM is possible in a more fine-grained way, e.g., a user requests storage space and the system returns the total reserved space and the guaranteed space. In addition to this two-level classification, the user has the possibility to include quality-of-service parameters in its request, e.g., retention policy and access latency requirements.
[bookmark: _Toc311667458]3.3 Data Replication

An SE can become unavailable due to, e.g., planned maintenance or crashes. As a result, all files provided by the SE become unavailable to Grid users and jobs. In order to prevent loss of data and reduce the impact of SE failure in the Grid, copies of files can be stored on multiple SEs. The storage of physical copies of a file on several SEs is known as data replication. In addition to the additional fault tolerance, data replication enables load balancing between the SEs when the same set of files is requested by users and jobs. It should be noted that the data replication described here is for read-only files. Data replication for read-write enabled files would require an additional discussion concerning distributed update distribution, distributed replica consistency, etc. In order for a data placement service to support data replication, file name virtualization is needed, e.g., the mapping of a system wide unique identifier to the physical locations of the file. Another component that simplifies data replication is a reliable file transfer service that ensures that replicas are valid copies of the original file. In addition to these technical aspects, a data replication solution also requires policies for replication. Policy aspects include, e.g., the selection of replication sources, the selection of replication targets, and the number of replicas that should be created. Furthermore, rudimentary service level agreements can be supported by such policies, e.g., guaranteeing a minimum or maximum number of replicas of a file in the Grid. The component performing data replication is called the replicator. The replicator uses the LFN to retrieve a list of already existing physical copies of the file inside the Grid. After the replicator has gathered all information needed to perform replication and decided upon replication sources and replication targets, the transfer of the files is started. The transfer should be performed by a reliable file transfer service to ensure consistent copies of the original file throughout the Grid. The last step performed by the replicator is the registration of the new physical copies of the file to the LFN in a file virtualization system, e.g., the CatalogService of the DPS.
[bookmark: _Toc311667459]

3.4 Data Consistency Control

Data that is stored in the Grid on SEs might get corrupted over time. An SE crash can accidently corrupt files, a hard disk error can erase files and, network failures, perhaps the most common type of error, can corrupt data transfers. If users are to trust the Grid as a reliable data storage and computation environment, data consistency must be guaranteed. Jobs running inside the Grid also rely on correct input data. A way to efficiently ensure data consistency is to use checksums generated by a hash function. A hash function is a mathematical function that maps some kind of data, for example the content of a file, to a much smaller, yet unique, hash value often called the checksum. A hash collision means that the hash function maps different data to the same value. Unless the content of the file itself is used as hash value, hash collisions are possible. The problem with a not collision-free hash function is that the same checksum may be mapped to two files with different content. Although it is unlikely, the files on a SE could be replaced by different files and the recalculation of the checksums would generate the same values even though the content of the files has changed. The probability for such a collision can be minimized by carefully choosing the hash function.

[image:]
Figure 3.4: Basic reliable file transfer.
In a data Grid, the checksum and the name of the used hash function used can be stored in a central index along with the LFN-PFN mappings. This information can then be used to perform data consistency controls on both the client-side and the SE.
Data consistency is ensured as follows. A program on the SE calculates the checksums of all files on storage and compares the calculated checksums with the checksums in the central index. If the checksums do not match, possible error handling actions can be performed. The file can be deleted from the SE and its PFN removed from the central index. Another possibility is to replace the corrupted copy of the file with a valid one. In case the only available copy is the corrupted file, its LFN and PFN are removed from the Grid completely. The behavior used can be implemented as a policy for the SEs on an individual SE basis. Furthermore, by matching the list of actual existing files and the list of files posted by the central index, catalog inconsistencies can be resolved. Each SE is thus responsible for the correctness of its entries in the index and the correctness of its own files. This ensures a completely self-checking, self-healing catalog-storage system. However, such a solution may not be feasible and/or scalable due to the tight synchronization requirements.
[bookmark: _Toc311667460]3.5 Multi-Protocol Reliable File Transfer

Transferring files from a client to the Grid and inside the Grid are common tasks for a data placement service. The correctness of data placement systems and of jobs using input data provided by the Grid relies on correct file transfers. In the latter case, jobs can fail, produce incorrect output, or behave in an unforeseen fashion. As a result, file transfers must be done in a reliable manner. In order to be as robust as possible for clients and the underlying Grid infrastructure, file transfers should be reliable regardless of the transfer protocol used.
Figure 3.4 illustrates reliable file transfer in the general case. The File Transfer Controller is a service that monitors the transfer between A and B. A and B are data locations and represent either a client or an SE. As illustrated with an arrow between the two data locations, a transfer from A to B is to be monitored. B indicates how many bytes of the file it has already received to the File Transfer Controller and whether the transfer is still active. Possible transfer errors include network errors and system errors, the latter including hard disk errors, temporary system overload, power outage etc. The File Transfer Controller is configured to solve possible error situations according to a defined policy. This policy can include, e.g., the maximum number of retries for a retransmission, whether a file should be retransferred from the beginning or from a checkpoint, and, if the transfer consists of a set of files, whether the whole transfer should be aborted if one transfer fails, e.g., removal of already transferred files from the destination.
[image:]
Figure 3.5: Multi-protocol reliable file transfer using a transfer cache.
The applicability of such policies is, however, dependent on the transfer protocol used. Transfer protocols such as GridFTP support check-pointing and retransmission, but the presented approach also works with other transfer protocols. There are error situations that cannot be recovered, e.g., if A or B become unavailable, if the File Transfer Controller itself fails or the communication between the data location to be monitored and the File Transfer Controller fails. The latter two cases can be prevented by carefully choosing the placement of the File Transfer Controller. The transfer state can be stored in a data base and thus enable file transfer recovery if the File Transfer Controller crashes.
Most contemporary Grid infrastructures support and use the de-facto standard GridFTP as transfer protocol. Some Grid infrastructures include legacy data servers and data management systems. These systems often have their own transfer protocols. To successfully integrate these systems in the Grid data infrastructure, the file transfer between these legacy systems and the other SEs must be reliable as well. One approach to this problem is to deploy a GridFTP server on the respective data servers and enable them to communicate with the Grid. Another approach is to implement multi-protocol reliable file transfer. Figure 3.5 shows a simple multi-protocol enabled reliable file transfer architecture. Similar to Figure 3.4, the central component in this architecture is the File Transfer Controller. The main difference from Figure 3.4 is, that A and B use different transfer protocols and that a new component, the Transfer Cache is introduced. The Transfer Cache is a special data location that supports several transfer protocols and provides sufficient storage capacity to relay all data that is sent from A to B. All data transferred from A is cached by the Transfer Cache and forwarded to B. The proxy design pattern [3] may be a good choice to realize the Transfer Cache as a proxy between A and B. The File Transfer Controller monitors two physical transfers, A to Transfer Cache and Transfer Cache to B, that are mapped to one logical file transfer, A to B. The obvious drawback of this approach is that the amount of data transferred is doubled.
This can be prevented using the adapter design pattern [3], e.g., the Transfer Cache is placed on A's or B's side, acting as an adapter. Existing solutions such as the Stork [4] system use a similar approach to implement multi-protocol reliable file transfer.
[bookmark: _Toc311667461]3.6 Job-Aware Data Placement Optimization

A job executed in the Grid needs its input data in order to run. The input data might be stored at a different physical location than the machine where the job is to be run. Thus, the input data has to be transferred to the computation node running the job before the job can be executed. If the network between the computation node and the input data is slow, the job is delayed or may even fail if the data arrives too late. There is, however, no easy solution available for this problem.
Job-aware data placement optimization [5] requires interaction between the job scheduler and the data placement service. While the job scheduler is responsible for choosing a suitable computation node, the data placement service is responsible for placing the data on appropriate SEs. The decisions of both components must be combined in order to enable optimal job and data placement. Based on predefined heuristics, good placement decisions can be made. Example heuristics include, e.g., to minimize the amount of transferred data or the transfer time. Furthermore, such heuristics might determine that the latency of the network between data storage and computation node should lie below a certain value, e.g., quality-of-service parameters.
Assuming every computation node has its own file server daemon running, e.g., a GridFTP server, a data placement optimization system can be realized as follows. If a job is sent to a computation node, the computation node uses the data placement service to download a copy of the input file to its local storage. A potentially close SE is chosen by the data placement service before the download process is started. The replication functionality of the data placement service can be used to perform the transfer, thus increasing the availability of the file in the Grid. Furthermore, when the computation node finishes its computation and produced its output files, it uses the data placement service to upload the file to the Grid. Afterwards, the computation node frees its local storage resources by the deletion of both input and output files. Input and output data still exists in the Grid for further computation and analysis, but is of no interest for the computation node after job execution. This is, in fact, the way that the GT4 Grid Resource Allocation and Management (GRAM) interface performs file staging on job execution. GRAM is a set of services to submit, monitor, and cancel jobs on Grid computing resources. Even though GRAM is not a scheduler itself, it offers a job submission interface to job schedulers. GRAM uses the RFT service for reliable file staging.
Thus far, this discussion had made no assumptions about the Grid infrastructure and deployment, e.g., computation nodes and SEs are not arranged in a specific hierarchy. Even though this might represent the common infrastructure, an overlay hierarchy grouping computation nodes and SEs might improve and support job and data placement decisions. In such a setting the computation nodes of a Grid are arranged as computation groups, e.g., computations node on the same subnet form a computation group. These computation groups do not have to be fixed and might rearrange themselves into new dynamic groups. In order to provide a data storage backbone for each computation group, at least one SE is assigned to each group. These SEs are typically connected through a high bandwidth network, typically located on the same subnet and acting as a data cache for the computation groups. The data caches can also be grouped to form a high speed distribution network. Placement decision can take into account the number of computation nodes and data caches that are associated with a computation group. The replication mechanism of the data placement service is used to replicate the necessary input data for the job to the data cache node that acts as a high speed data repository for the associated computation nodes.
The computation nodes use the data cache to aggregate their output data to it. Depending on the Grid infrastructure, the output data can be replicated back into the Grid to publish the information to higher layers or store the data for future jobs in the same computation group.
A similar infrastructure is used by the Large Hadron Collider Computing Grid (LCG) for the distribution of experimentation data. The data is generated at Tier-0 level and distributed through a hierarchy of SEs down to individual personal computers running at Tier-3 level.
The computation nodes use the data cache to aggregate their output data to it. Depending on the Grid infrastructure, the output data can be replicated back into the Grid to publish the information to higher layers or store the data for future jobs in the same computation group. A similar infrastructure is used by the Large Hadron Collider Computing Grid (LCG) for the distribution of experimentation data. The data is generated at Tier-0 level and distributed through a hierarchy of SEs down to individual personal computers running at Tier-3 level. Researchers [5] investigate through simulation studies, how job and data scheduling, and data replication can be combined for job and data placement optimization. Their work assumes that data is placed in the Grid first, and the job placement decision is done thereafter.
[image:]
Figure 3.6: Job-aware data placement optimization [5]

The proposed, simulated architecture, illustrated in Figure 3.6, has three distinct modules, the External Scheduler, the Local Scheduler and the Dataset Scheduler. A user submits a job to the External Scheduler. Based on external information, e.g., load at a remote site or the location of a dataset, the External Scheduler selects a Local Scheduler running at a specific site that is thereafter responsible for the scheduling and execution of the job at this site. Each site has a Dataset Scheduler that keeps track of the popularity of data sets. Based on policies, data sets are replicated to other sites. Researchers conclude that job-aware data placement optimization can only be achieved if both placement decisions are combined. The best job placement algorithm identified in the article places a job at the site that contains the data needed by the job, thus minimizing network bandwidth usage. The article further concludes that it does not matter what replication algorithm is used for data replication as long as replication is performed. The presented replication algorithms replicate popular data sets to other sites if a sites computational load exceeds a threshold. However, the article makes no statement about where to place data in the Grid initially.
[bookmark: _Toc311667462]3.7 Transactions

The operations of a data placement service often involve interaction between several services and hosts. In the DPS, the upload of a file to the Grid involves storage discovery and allocation through the StorageBrokerService, file upload through the file transfer service, and at the end the registration of the file in the system wide CatalogService. It is important for both the DPS itself and the clients of the system that the whole file upload process is performed in a consistent manner. In case the process cannot be performed without a failure, e.g., the client crashes or the CatalogService is temporary unavailable, the system should still remain consistent. Consistency in this context means that if the process cannot be completed, it should either be repeated or the previous system state should be recovered. This illustrates the need for distributed transactions in a data placement service.
In general, distributed transactions describe a bundle of operations that involves two or more participating hosts. A transaction is created and managed by a transaction manager. The manager is responsible for the coordination of the actions that are specified in the transaction. The transaction must have certain properties, typically denoted ACID. ACID is an abbreviation for atomicity, consistency, isolation and durability. Atomicity is the ability of the transaction manager to perform either all of the tasks of the transaction or none of them. If one part of the transaction fails, the whole transaction fails. The consistency property ensures that the system remains in a consistent state both before and after the transaction. In case a part of the transaction fails, the entire transaction is rolled back to restore the initial system state. Isolation means that other operations cannot access or see data in an intermediate state during a transaction. Concurrent transactions are thus safe from interfering with each other through isolation. Durability is a guarantee that once the transaction completes, it is persistent and cannot be undone. By doing so, the transaction can handle system failures.
The ACID properties are of most interest for read-write transactions, e.g., data is read and written during the transaction. The data inside a Grid is mostly handled as read-only data, e.g., on replication. The metadata is, however, read-write data, e.g., the mapping between LFN and PFNs and the file checksum. This data may become inconsistent during a system failure and thus, the ACID theory works well for this scenario. Distributed transactions are of interest for many Grid applications and services in addition to data placement services. There are proprietary software products that support distributed transactions.

[bookmark: _Toc311667463]4. CONCLUSION

In this seminar we have discussed data placement issues that are common in the context of Grid computing and distributed data storage, e.g., storage discovery, storage allocation, data replication, data consistency control, reliable file transfers, job-aware data placement optimization, and transactions. Solutions to selected issues were also discussed.
Once a technology matures, it does not necessarily take long time for it to become widespread. The Issues and its Solution ideas could be applied to Grid Computing - if some of the fundamental issues holding it back are addressed then computing power could truly become as widespread and easily accessible as electricity is now.

[bookmark: _Toc311667464]5. BIBILIOGRAPHY

1. F. Donno and A. Domenici. Static and Dynamic Data Models for the Storage Resource Manager v2.2. Technical Report CERN-IT-Note-2008-005, CERN, Geneva, Jul 2008.
2. A. Shoshani and A. Sim and J. Gu. Storage Resource Managers: Essential Components for the Grid. Lawrence Berkeley National Laboratory, Berkeley, 2003.
3. E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns. Elements of Reusable Object-Oriented Software. Addison-Wesley Longman, Amsterdam, 1995
4. T. Kosar and M. Livny. A Framework for Reliable and Efficient Data Placement in Distributed Computing Systems. Journal of Parallel and Distributed Computing, 65(10):1146{1157, 2005.
5. K. Ranganathan and I. Foster. Simulation Studies of Computation and Data Scheduling Algorithms for Data Grids. Journal of Grid Computing, March 2003.

Department of Computer Science & Engineering
PDA College of Engineering, Gulbarga 	Page 1

image4.png

image5.png

image6.png

image7.png

image2.png

image3.png

