1. INTRODUCTION


Cryptography is the science of keeping private information from unauthoaccess, of ensuring data integrity and authentication, and other tasks. In this survey will focus on quantum-cryptographic key distribution and bit commitment protocol we in particular will discuss their security. Before turning to quantum cryptograph me give a brief review of classical cryptography, its current challenges and it’s his development. 


Two parties, Alice and Bob, wish to exchange messages via some in channel in a way that protects their messages from eavesdropping. An algorithm was called a cipher in this context, scrambles Alice’s message via some rule such restoring the original message is hard—if not impossible—without knowledge secret key. This “scrambled” message is called the cipher text. On the other hand (who possesses the secret key) can easily decipher Alice’s cipher text and obtain original plaintext. Figure 1 in this section presents this basic cryptographic scenario.
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Fig. 1. Communication between Alice and Bob, with Eve listening,




2. CLASSICAL CRYPTOGRAPHY

Overviews of classical cryptography can be found in various text books (see, e.g., Rothe [2005] and Stinson [2005]). Here, we present just the basic dentition of a cryptosystem and give one example of a classical encryption method, the one-time pad. Dentition 2.1.  A (deterministic, symmetric) cryptosystem is a ﬁve-tuple (P, C, K, and E, D) satisfying the following conditions: 

· P is a ﬁnite set of possible plaintexts.
· C is a ﬁnite set of possible cipher texts. 
· K is a ﬁnite set of possible keys. 
· For each k є K, there are an encryption rule ek є E and a corresponding decryption rule dk є D, where ek: P→ C and dk: C→ P are functions satisfying dk (ek (x)) = x for each plaintext element x є P. 


In the basic scenario in cryptography, we have two parties who wish to communicate over an insecure channel, such as a phone line or a computer network. Usually, these parties are referred to as Alice and Bob. Since the communication channel is insecure, an eavesdropper, called Eve, may intercept the messages that are sent over this channel. By agreeing on a secret key k via a secure communication method, Alice and Bob can make use of a cryptosystem to keep their information secret, even when sent over the insecure channel. This situation is illustrated in Figure 1. 


The method of encryption works as follows. For her secret message m, Alice uses 

The key k and the encryption rule ek to obtain the cipher text c = ek (m). She sends Bob the cipher text c over the insecure channel. Knowing the key k, Bob can easily decrypt the cipher text by the decryption rule dk: dk (c) = dk (ek (m)) = m. 

Knowing the cipher text c but missing the key k, there is no easy way for Eve to determine the original message m. 

There exist many cryptosystems in modern cryptography to transmit secret messages. An early well-known system is the one-time pad, which is also known as the Verna cipher. The one-time pad is a substitution cipher. Despite its advantageous properties, which we will discuss later on, the one-time pad’s drawback is the costly effort needed to transmit and store the secret keys. 
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Fig.2. Letters and punctuation marks encoded by numbers from 0 to 29.

	Plain text ‘m’
	O
	N
	E
	-
	T
	I
	M
	E
	
	P
	A
	D

	‘m’ encoded
	14
	13
	04
	28
	19
	19
	12
	04
	26
	15
	00
	03

	Key k


	06
	13
	02
	01
	14
	14
	07
	18
	05
	26
	13
	28

	‘c’ encoded
	20
	26
	06
	29
	03
	03
	19
	22
	01
	11
	13
	01

	Chipper text c
	U
	
	G
	.
	D
	N
	T
	W
	B
	L
	N
	B


         Fig. 3. Encryption and decryption example for the one-time pad.


Example 2.2 (One-Time Pad). For plaintext elements in P, we use capital letters and some punctuation marks, which we encode as numbers ranging from 0 to 29, see Figure2. As is the case with most cryptosystems, the cipher text space equals the plaintext space. Furthermore, the key space K also equals P, and we have P =C= K= {0, 1, 29}.

Next, we describe how Alice and Bob use the one-time pad to transmit their messages. A concrete example is shown in Figure 3. Suppose Alice and Bob share a joint secret key k of length n = 12, where each key symbol ki є {0, 1, 29} is chosen uniformly at random. Let m = m1m2.  . . mn be a given message of length n, which Alice wishes to encrypt. For each plaintext letter mi, where 1 ≤ i ≤ n, Alice adds the plaintext numbers to the key numbers. The result is taken modulo 30. For example, the last letter of the plaintext from Figure 3, “D,” is encoded by “m12=03.” The corresponding key is 
“m12= 28,” so we have c12= 3 + 28 = 31. Since 31 ≡ 1 mod 30, our plaintext letter “D” is encrypted as “B.” Decryption works similarly by subtracting, character by character, the key letters from the corresponding ciphertext letters. So the encryption and decryption can be written as respectively ci= (mi+ ki) mod 30 and mi= (ci− ki) mod 30, 1 ≤ i ≤ n. 
2.3. Limitations

Cryptographic technology in use today relies on the hardness of certain mathematical problems. Classical cryptography faces the following two problems. First, the security of many classical cryptosystems is based on the hardness of problems such as integer factoring or the discrete logarithm problem. But since these problems typically are not provably hard, the corresponding cryptosystems are potentially insecure. For example, the famous and widely used RSA public-key cryptosystem [Rivest et al. 1978] could easily be broken if large integers were easy to factor. The hardness of integer factoring, however, is not a proven fact but rather a hypothesis.1.We mention in passing that computing the RSA secret key from the corresponding public key is polynomial-time equivalent to integer factoring [May 2004]. 


Second, the theory of quantum computation has yielded new methods to tackle these mathematical problems in a much more efficient way. Although there are still numerous challenges to overcome before a working quantum computer of sufficient power can be built, in theory many classical ciphers (in particular public-key cryptosystems such as RSA) might be broken by such a powerful machine. However, while quantum computation seems to be a severe challenge to classical cryptography in a possibly not so distant future, at the same time it offers new possibilities to build encryption methods that are safe even against attacks performed by means of a quantum computer. Quantum cryptography extends the power of classical cryptography by protecting the secrecy of messages using the physical laws of quantum mechanics. 

3. QUBITS

The most important unit of information in computer science is the bit. There are two possible values that can be stored by a bit:  the bit is either equal to “0” or equal to “1.” These two different states can be represented in various ways, for example by a simple switch or by a capacitor: if not charged, the capacitor holds the value zero; if charged, it holds the value one. 

There exist many possibilities to physically represent a qubit in practice, as every quantum system with at least two states can serve as a qubit. For example, the spin of an atom or the polarization5 of a light particle can represent the state of a qubit. Even a cat with its two basic states “dead” and “alive,” introduced by Schrödinger [1935] to visualize fundamental concepts of quantum mechanics, might serve as a representation. The cat’s problem—or fortune from the animal’s point of view—when being used as a quantum system is its sheer size compared to that of an atom or light particle. There is no way to protect such a big quantum instance from interaction with its environment, which in turn will result in decoherence of the superposition of the cat. 

3.1. Qubit Representation

In general, a quantum state |ψ) is an element of a finite-dimensional complex vector space (or Hilbert space) H. We denote the scalar product of two states |ψ) and |φ) by (ψ|φ), where (ψ| = |ψ) T is the conjugate transpose of |ψ). It is convenient to deal with normalized states, so we require (ψ|ψ) = 1 for all states |ψ) that have a physical meaning. 


The quantum analog of the bit is called qubit, which is derived from quantum bit. 

A qubit |ψ) is an element of a two-dimensional Hilbert space, in which we can introduce an orthonormal basis, consisting of the two states |0) and |1). Unlike its classical counterpart, the quantum state can be in any coherent superposition of the basis states: 

|ψ) = α|0) + β|1)                                 (1)
where α  and  β  are, in general, complex coefficients. This is due to the fact that the quantum mechanical equation of motion, the Schrödinger equation, is linear: Any linear superposition of its solutions (the quantum  states) is also a solution. Since we require quantum states to be normalized, we find that the coefficients in (1) have to fulfill 

 |α|2 + |β|2 = 1, where | · | denotes the absolute value. 
4. QUANTUM CRYPTOGRAPHY

Quantum Cryptography, or Quantum Key Distribution (QKD), uses quantum mechanics to guarantee secure communication. It enables two parties to produce a shared random bit string known only to them, which can be used as a key to encrypt and decrypt messages. An important and unique property of quantum cryptography is the ability of the two communicating users to detect the presence of any third party trying to gain knowledge of the key. These results from a fundamental part of quantum mechanics: the process of measuring a quantum system in general disturbs the system. A third party trying to eavesdrop on the key must in some way measure it, thus introducing detectable anomalies. By using quantum superposition or quantum entanglement and transmitting information in quantum states, a communication system can be implemented which detects eavesdropping. If the level of eavesdropping is below a certain threshold a key can be produced which is guaranteed as secure (i.e. the eavesdropper has no information about), otherwise no secure key is possible and communication is aborted. 


The security of quantum cryptography relies on the foundations of quantum mechanics, in contrast to traditional public key cryptography which relies on the computational difficulty of certain mathematical functions, and cannot provide any indication of eavesdropping or guarantee of key security. 


Quantum cryptography is only used to  produce and distribute a key, not to transmit any message data. This key can then be used with any chosen encryption algorithm to encrypt (and decrypt) a message, which can then be transmitted over a standard communication channel. The algorithm most commonly associated with QKD is the one-time pad, as it is provably secure when used with a secret, random key. 


Quantum cryptography exploits the quantum mechanical property that a qubit cannot be copied or amplified without disturbing its original state. This is the statement of the No-Cloning Theorem [Wootters and Zurek 1982], which is easily proven: Assume there exists a unitary transformation U that can copy two states |ψ1) and |ψ2): where |0) is an arbitrary input state. If we equate the scalar products of the left-hand and right-hand sides, it follows by the unitarity of U that (ψ1|ψ2) = (ψ1|ψ2)2, which implies that (ψ1|ψ2) 
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equals 0 or 1. This means that we can copy only orthogonal or identical states. In contrast, arbitrary unknown states cannot be perfectly cloned. (Note that orthogonal or identical states are not viewed as “unknown” states, since we do know they are orthogonal, for example.) 


The essence of this theorem is the main ingredient of quantum key distribution, where Alice and Bob use a quantum channel to exchange a sequence of qubits, which will then be used to create a key for the one-time pad in order to communicate over an insecure channel. Any disturbance of the  qubits, for example caused by Eve trying to measure the qubits’ state, can be detected with high probability. Quantum cryptographic devices typically employ individual photons of light and take advantage of either the Heisenberg Uncertainity principle  or  Quantum Entanglement.
4.1. Uncertainity 

Unlike in classical physics, the act of measurement is an integral part of quantum mechanics. So it is possible to encode information into quantum properties of a photon in such a way that any effort to monitor them disturbs them in some detectable way. The effect arises because in quantum theory, certain pairs of physical properties are complementary in the sense that measuring one property necessarily disturbs the other. 

This statement is known as the Heisenberg uncertainty principle. The two complementary properties that are often used in quantum cryptography, are two types of photon's polarization, e.g. rectilinear (vertical and horizontal) and diagonal (at 45° and 135°). 

4.2. Entanglement

It is a state of two or more quantum particles, e.g. photons, in which many of their physical properties are strongly correlated. The entangled particles cannot be described by specifying the states of individual particles and they may together share information in a form which cannot be accessed in any experiment performed on either of the particles alone. This happens no matter how far apart the particles may be at the time.
4.3. BB84 Protocol 

The BB84 protocol was proposed by Charles H.Bennett and Gilles Brassard [1984]. This is the first protocol designed to employ quantum mechanics for two parties to agree on a joint secret key. In this protocol, Alice and Bob use a quantum channel to send qubits. They are also connected by a classical channel, which is insecure against an eavesdropper but unjammable. Alice and Bob use four possible quantum states in two 

conjugate bases (say, the rectilinear basis+and the diagonal basis×).We use |0)+ and |0)×= 

(|0)++|1)+ )/√2 for the classical signal “0,” and we use |1)+ and |1)× = (|0)+ − |1)+ )/√2for the classical signal “1.” Note that the two bases are connected by the so-called Hadamard transformation in the following way: We have H|0)+ = |0)× and H|1)+ = |1)× , and vice versa, since      H2 = 1. 
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	Alice’s string
	1
	1
	0
	1
	0
	0
	1
	0
	1

	Alice’s basis
	+
	+
	+
	X
	X
	+
	X
	X
	X

	Bob’s basis
	+
	X
	+
	+
	X
	+
	X
	+
	X

	Bob’s string
	1
	R
	0
	R
	0
	0
	1
	R
	1

	Same basis
	Y
	N
	Y
	N
	Y
	Y
	Y
	N
	Y

	Bits to keep
	1
	
	0
	
	0
	0
	N
	
	1

	Test
	Y
	
	N
	
	N
	Y
	1
	
	N

	Key
	
	
	0
	
	0
	
	
	
	1


The protocol works as follows (see also Table I for illustration):
· Alice randomly prepares 2n qubits, each in one of the four states |0)+, |0)×, |1)+, or|1)×, and sends them to Bob. 
· For each qubit that Bob receives, he chooses at random one of the two bases (+ or ×) and measures the qubit with respect to that basis. In the case of a perfectly noiseless channel, if Bob chooses the same basis as Alice, his measurement result is the same as the classical bit that Alice prepared. If the bases differ, Bob’s result is completely random.
· Alice tells Bob via the classical channel which basis she used for each qubit. They keep the bits where Bob has used the same basis for his measurement as Alice. This happens in about half the cases, so they will have approximately n bits left. These are forming the so-called sifted key. 
· Alice and Bob choose a subset of the sifted key to estimate the error-rate. They do so by announcing publicly the bit values of the subset. If they differ in too many cases, they abort the protocol, since its security cannot be guaranteed. 
· Finally, Alice and Bob obtain a joint secret key from the remaining bits by performing error correction and privacy amplification.

 Eve’s goal is to learn at least some part of the key. Thus, an obvious strategy for her is to intercept the qubits being transmitted from Alice to Bob. She cannot simply copy the qubits, since this would contradict the No-Cloning Theorem. In order to extract some information, she is forced to measure (and thus destroy) them. But since she does not know the basis in which they were prepared (Alice announces this information only after Bob received all signals), she can only guess or just flip a coin for the selection of the measurement basis. In about half the cases, she will happen to choose the same basis as Alice and get completely correlated bit values. In the other half, her results will be random and uncorrelated. Bob certainly expects to receive something from Alice, so Eve needs to send some qubits to him. However, she still has no idea which basis Alice used, so she prepares each qubit in the same basis as she measured it (or she chooses a basis at random). These newly created qubits again match Alice’s bases in only half of the cases. After Bob receives Eve’s qubits, he measures them, and Alice and Bob apply the sifting. Because of Eve’s disturbance, about half of Bob’s key was measured in a different basis than it was prepared by Alice. Since Bob’s result is random in those cases, his sifted key will contain about 25% errors. In the error-estimation stage, if Alice and Bobobtain such a high error rate, it would be wise for them to abort the protocol. 

If the error rate is below an agreed threshold value, Alice and Bob can eliminate errors with (classical) error correction. A simple method for error correction works as follows: Alice chooses two bits at random and tells Bob the XOR-value of the two bits. Bob tells Alice if he has the same value. In this case, they keep the first bit and discard the second bit. If their values differ, they discard both bits. The remaining bits form the key. 


The last stage of the protocol is privacy amplification [Maurer 1993; Bennett et al. 1995]—a procedure in which Alice and Bob eliminate (or, at least, drastically reduce) Eve’s knowledge about the key. They do so by choosing random pairs of bits of the sifted key and replacing them by their corresponding XOR-values. Thus, they halve the length of the key, in order to “amplify” their privacy. Note that Eve has less knowledge about the XOR-value, even if she knew the values of the single bits with high probability (but not with certainty). 

Note that these simple methods for error correction and privacy amplification do not always work. For the general case, there exist more sophisticated strategies. 

4.4. Ekert Protocol 

In 1991 Artur Ekert proposed a new QKD protocol whose security relies on the entangled pairs of photons. These can be created by Alice, by Bob, or by some source separate from both of them, including eavesdropper Eve. The photons are distributed so that Alice and Bob each end up with one photon from each pair. The scheme relies on two properties of entanglement. First, the entangled states are perfectly correlated in the sense that if Alice and Bob both measure whether their particles have vertical or horizontal polarizations, they will always get the same answer with 100% probability. The same is true if they both measure any other pair of complementary (orthogonal) polarizations. However, the particular results are completely random; it is impossible for Alice to predict if she (and thus Bob) will get vertical polarization or horizontal polarization. 

Second, any attempt at eavesdropping by Eve will destroy these correlations in a way that Alice and Bob can detect. 

5. QUANTUM BIT COMMITMENT PROTOCOL


When talking about quantum cryptography, everyone is thinking about key distribution. There are, however, other cryptographic applications as well, such as bit commitment. A bit commitment protocol based on quantum mechanics was introduced by Brassard et al. [1993]. The unconditional security of the protocol (which means that the security of the protocol is independent of the computational resources, such as computing time, amount of memory used, and computer technology of the cheater) has been accepted without proof [Yao 1995]. Two years after it had been proposed, the protocol turned out to be insecure [Mayers 1995]. 


A commitment protocol is a procedure in which one party, say Alice, deposits a message such that no one (and in particular not Alice) can read it nor change it. At some point in the future, Alice can announce her message, and with high certainty it can be proven that the revealed message is the same as the one Alice had deposited originally. 


To illustrate this situation, suppose Bob wants to auction off a diamond ring, subject to the condition that each person wishing to participate in the auction can bid only one single amount of money. After each person has chosen a specific amount, the highest bidder gets the ring. So everyone writes their own bid on a piece of paper, puts it into a personal safe, which is then locked and given to Bob. Until all bids have been submitted to Bob, each bidder keeps the key matching the lock of his or her safe. In this way Bob cannot see any of the bids, which in turn cannot be changed once they have been submitted, since only Bob has access to the committed safes. All keys are handed over to Bob after he has received all safes from the people participating in the auction. The different offers are compared in public, so that everybody can be sure that only the highest bidder walks away with the diamond and an empty wallet. 


We can describe this commitment protocol mathematically as follows: The protocol has two stages, the commit phase and the unveil phase. Alice commits herself to the data m by computing c = f (m) and she sends c to Bob. Alice unveils the commitment by showing Bob the reimage m of  c. In classical cryptography, and in particular in public-key cryptography, one-way functions are used for commitment. In quantum cryptography, we want to make use of the laws of quantum mechanics to create a fair protocol for both sides. Bit commitment is a special case of a commitment protocol, where the data m consists of only one single bit.  

It is widely believed that it is impossible to create a perfectly secure classical bit commitment protocol. Regarding the extension to the quantum world, it was shown that unconditionally secure quantum bit commitment is also impossible [Mayers 1997; Lo and Chau 1997]. However, when relaxing the security constraints, quantum bit commitment becomes possible in slightly modified frameworks. One example is Kent’s quantum bit commitment protocol, which is based on special relativity theory [Kent 1999]. Another example is due to Damgard et al. [2005] who proposed a quantum bit commitment 

protocol that is secure in the bounded storage model.  
5.1. BB84 Quantum bit commitment protocol
A quantum bit commitment protocol can be created from the BB84 quantum key distribution protocol with a few minor changes in the BB84 protocol[Bennett and Brassard 1984]. Just as in the classical bit commitment protocol, the quantum protocol starts with the commit phase and ends with the unveil phase. 
5.1.1. The commit procedure: 

(1) Alice chooses a bit b є {0, 1}. 


(2) Alice creates a random binary string w = w1 · · ·wn with n bits. 


(3) If Alice wants to commit to 0, she does a quantum encoding of each bit wi in the two 

      basis states of the rectilinear basis +. If she wants to commit to 1, she encodes the bits 
      in the two basis states of the diagonal basis ×. Let θi denote the basis chosen for wi . 


(4) Alice sends the sequence of n encoded quantum states to Bob. 


(5) Bob chooses a random measurement basis (rectilinear or diagonal) for each of 

                             
      received quantum states, i.e., he chooses a string of random bases =1 n є {+,×}n.


He measures the ith state in the basis  i , and denotes the outcome by  .  If we take a look at the two density matrices for the n states corresponding to b = 0 and b = 1, respectively, it is easy to see that they are the same, and equal to the identity matrix. Thus, Bob has no chance to get any information about the bit b.  
5.1.2. The unveil procedure:
· Alice publishes b (i.e., the basis that she used for encoding) and the string w.
·  For about half of the n states, Bob used the same basis for his measurement as Alice used for encoding. In these cases Bob can verify that Alice’s revealed bits are matching his measurement results. 


How could a dishonest party cheat in this protocol? For example, Alice could choose the bit b = 1 for the commit phase, so she encodes the states with the diagonal basis ×. 

Later during the unveil phase, she changes her mind and tells Bob that she committed to the bit b = 0, so Bob assumes that Alice has used the rectilinear basis +. In approximately n/2 cases, Bob measures the states with the rectilinear basis +, and in these cases Alice has to guess the bits Bob measured. Since Alice’s success to make a right guess for one bit is 1/2, her overall cheating will not be detected with a probability of (1/2)n/2. Once n is chosen large enough, Alice has practically no chance to manipulate the protocol by this probabilistic method. 

But what if Alice uses specially entangled states? Alice could create n  pairs of entangled states and send one part of each pair to Bob. She doesn’t have to commit to a bit in the beginning, because she can perform a measurement right before the unveil phase. If, for example, she chooses bit b = 0, she measures the states that she has kept in the rectilinear basis +. Bob’s measurement results will be perfectly correlated, due to the shape of the entangled state. If Alice wants to choose bit b = 1 instead, she measures the states that she has kept in the diagonal basis ×. The state is form-invariant under a basis rotation by 45◦, Alice’s announced encoded states will again match Bob’s measurement results. Thus, Bob has no chance to notice the attack. 

6. OUTLOOKS

The security of quantum key distribution relies on the inviolable laws of quantum mechanics: non orthogonal quantum states are used as signal states in the BB84 protocol. The impossibility of perfect cloning of non orthogonal states implies the security of this protocol. In the security proof for the BB84 protocol, we have employed an equivalent entanglement-based protocol. The main idea is that local measurements on a maximally entangled state, shared by Alice and Bob, have perfectly correlated outcomes that can be used as the key. A maximally entangled state is necessarily pure, and a pure state cannot be entangled with an eavesdropper’s state—thus Eve cannot learn anything about the key. 

The idea for quantum cryptography with entangled states goes back to Ekert [1991], who suggested to confirm the existence of quantum correlations in the state of Alice and Bob by a Bell inequality test. 
6.1. Other quantum key distribution protocols

A variety of quantum key distribution protocols can be found in the literature. All known prepare-and-measure schemes can be seen as variations of the BB84 protocol, which are obtained by changing the number and/or dimension of the quantum states. Bennett [1992] proposed a protocol—which now is named after him the B92 protocol— in which only two non orthogonal states are used. In the so-called six-state protocol [Bruß 1998; Bechmann-Pasquinucci and Gisin 1999], the six eigenstates of the three Pauli operators are used. In this protocol, it is more difficult for Eve to retrieve any information, thus the security is enhanced. 


A recently suggested protocol [Scarani  et al. 2004] introduces a new sifting method: rather than announcing the basis, Alice gives Bob a list of two nonorthogonal states from which the signal state was taken. This protocol has certain security advantages that are connected with experimental implementations of quantum cryptography. 

6.2. Experimental status 

In recent years, much effort has been devoted to experiments on quantum cryptography, and much progress has been made. In most experiments, polarized photons are representing the qubits: photons are polarized if their electromagnetic field oscillates in a fixed direction of space. Polarization-based encoding works best for free-space communication systems rather than fiber-optic lines. Data are transmitted faster in free-space systems, but theycannot traverse the longer distances of fiber-optic links. In March 2004, NEC scientists in Japan sent a single photon over a 150-km fiber-optic link, breaking the transmission distance record for quantum cryptography. 


The most commercially viable QKD systems rely on fiber-optic links limited to 100 to 120 km. At longer distances, random noise degrades the photon stream. Quantum keys cannot travel far over fiber optic lines, and, thus, they can work only between computers directly connected to each other. As of March 2007 the longest distance over which quantum key distribution has been demonstrated using optic fiber is 148.7 km, achieved by Los Alamos/NIST using the BB84 protocol. Significantly, this distance is long enough for almost all the spans found in today's fiber networks. The distance record for free space QKD is 144km between two of the Canary Islands, achieved by a European collaboration using entangled photons (the Ekert scheme) in 2006, and using BB84 enhanced with decoy states[8] in 2007. The experiments suggest transmission to satellites is possible, due to the lower atmospheric density at higher altitudes. For example although the minimum distance from the International Space Station to the ESA Space Debris Telescope is about 400 km, the atmospheric thickness is about  an order of magnitude less than in the European experiment, thus yielding less attenuation compared to this experiment. 

6.3. Current Challenges  

 Like everything in the world of information security, quantum cryptography is not panacea. The main drawbacks of quantum cryptography are due to the following two reasons: Man in the middle attack Quantum cryptography is vulnerable to a man-in-the-middle attack when used without authentication to the same extent as any classical protocol, since no principle of quantum mechanics can distinguish friend from foe. As in the classical case, Alice and Bob cannot authenticate each other and establish a secure connection without some means of verifying each other's identities (such as an initial shared secret). If Alice andBob have an initial shared secret then they can use an unconditionally secure authentication scheme (such as Carter Wegman,) along with quantum key distribution to exponentially expand this key, using a small amount of the new key to authenticate the next session. Several methods to create this initial shared secret have been proposed, for example using a 3rd party or chaos theory. Photon number splitting attack 


In the BB84 protocol Alice sends quantum states to Bob using single photons. In practice many implementations use laser pulses attenuated to a very low level to send the quantum states. These laser pulses contain a very small amount of photons, for example 

0.2 photons per pulse, which are distributed according to a Poissonian distribution. This means most pulses actually contain no photons (no pulse is sent), some pulses contain 1 photon (which is desired) and a few pulses contain 2 or more photons. If the pulse contains more than one photon, then Eve can split of the extra photons and transmit the remaining single photon to Bob. This is the basis of the photon number splitting attack, where Eve stores these extra photons in a quantum memory until Bob detects the remaining single photon and Alice reveals the encoding basis. Eve can then measure her photons in the correct basis and obtain information on the key without introducing detectable errors. 


There are several solutions to this problem. The most obvious is to use a true single photon source instead of an attenuated laser. While such sources are still at a developmental stage QKD has been carried out successfully with them. However as current sources operate at a low efficiency and frequency key rates and transmission distances are limited. Another solution is to modify the BB84 protocol, as is done for example in the SARG04 protocol, in which the secure key rate scales as t3 / 2. The most promising solution is the decoy state idea, in which Alice randomly sends some of her laser pulses with a lower average photon number. These decoy states can be used to detect a PNS attack, as Eve has no way to tell which pulses are signal and which decoy. 

Using this idea the secure key rate scales as t, the same as for a single photon source. This idea has been implemented successfully in several QKD experiments, allowing for high key rates secure against all known attacks.
7. CONCLUSION AND FUTURE SCOPE


Quantum cryptography promises to revolutionize secure communication by providing security based on the fundamental laws of physics, instead of the current state of mathematical algorithms or computing technology. The devices for implementing such methods exist and the performance of demonstration systems is  being continuously improved. Within the next few years, if not months, such systems could start encrypting some of the most valuable secrets of government and industry. 

Future developments will focus on faster photon detectors, a major factor limiting the development of practical systems for widespread commercial use. Chip Elliott, BBN's principal engineer, says the company is working with the University of Rochester and NIST's Boulder Laboratories in Colorado to develop practical superconducting photon detectors based on niobium nitride, which would operate at 4 K and 10 GHz.  

The ultimate goal is to make QKD more reliable, integrate it with today's telecommunications infrastructure, and increase the transmission distance and rate of key generation. Thus the Long-term goals of quantum key distribution are the realistic implementation via fibers, for example, for different buildings of a bank or company, and free space key exchange via satellites. Quantum cryptography already provides the most advanced technology of quantum information science, and is on the way to achieve the (quantum) jump from university laboratories to the real world. 

