ACADEMY OF TECHNOLOGY
Aedconagar, Hooghly – 712 121 (W. B.)
[image:]
 Department of
 Computer Science & Engineering
 [image: C:\Program Files\Microsoft Office\MEDIA\CAGCAT10\j0292020.wmf]
Topic
CONCURRENCY CONTROL OF TRANSACTION
A Technical report by:
SANTLAL PRAJAPATI (CSE(Y) 39)

 CERTIFICATE BY THE SUPERVISOR

Soumodip Ghosh
Ast.Professor, Dept. Of Computer Science Engineering
Academy of Technology
Adisaptagram.

This is to certify that the Technical Report entitled “CONCURRENCY CONTROL OF TRANSACTION” is a document of work done by Santlal prajapati(CSE-39), under supervision.

(SOUMODIP GHOSH)

STATEMENT BY THE CANDIDATE

SANTLAL PRAJAPATI
B.Tech 6th Semester
Dept. of CSE
Academy of Technology

I hereby state that the Technical Report entitled “CONCURRENCY CONTROL OF TRANSACTION” has been prepared by me to fulfill the requirements of CS-682.

 (SANTLAL PRAJAPATI)

ACKNOWLEDGMENT

It is pleasure to acknowledge the assistance received from several individuals during the preparation of this technical report.
I am greatly indebted to Prof. Prashanta Das, Head of the dept. Computer science & technology , Prof. Krisno Bhowal and Ast.Prof. Soumodip Ghosh for giving proper guideline to prepare this technical report.
I am much obliged to Prof Dilip Kumar Maity, who gives the guidance to prepare the report
Finally, I owe a debt to gratitude to my parent for their love, care and understanding.

INDEX

 TOPIC PAGE NO.
 1. Introduction ……………………………………………………… 1
2. Definition …………………………………………………… 1
3. Need of concurrency control …………………………………… 2
4. Concurrency control mechnism…………………………………………………… 2
5. Data base transaction and ACID rule……………………………………… 3
6. Block of transaction …………………………………………. 7
Bibliography …………………………………………. 11

[bookmark: Transactions]Introduction to Transactions
Business transactions. A business transaction is an interaction in the real world, usually between an enterprise and a person, where something is exchanged.
Online transaction. An online transaction is the execution of a program that performs an administrative or real-time function, often by accessing shared data sources, usually on behalf of an online user (although some transactions are run offline in batch). This transaction program contains the steps involved in the business transaction. This definition of an online transaction is important because it makes it clear that there is far more to this topic than database transactions.
[image: G:\ppt\transactionControl_files\concurrencyControlTransactions.gif]

Transaction
		The concept of transaction provides a mechanism for describing logical unit s of database processing.

Concurrency Control
	Concurrency control is a database management systems (DBMS) concept that is used to address conflicts with the simultaneous accessing or altering of data that can occur with a multi-user system.
Example
To illustrate the concept of concurrency control, consider two travellers who go to electronic kiosks at the same time to purchase a train ticket to the same destination on the same train. There's only one seat left in the coach, but without concurrency control, it's possible that both travellers will end up purchasing a ticket for that one seat. However, with concurrency control, the database wouldn't allow this to happen. Both travellers would still be able to access the train seating database, but concurrency control would preserve data accuracy and allow only one traveller to purchase the seat.

Why is concurrency control needed?
If transactions are executed serially, i.e., sequentially with no overlap in time, no transaction concurrency exists. However, if concurrent transactions with interleaving operations are allowed in an uncontrolled manner, some unexpected, undesirable result may occur. Here are some typical examples:
1. The lost update problem: A second transaction writes a second value of a data-item (datum) on top of a first value written by a first concurrent transaction, and the first value is lost to other transactions running concurrently which need, by their precedence, to read the first value. The transactions that have read the wrong value end with incorrect results.
2. The dirty read problem: Transactions read a value written by a transaction that has been later aborted. This value disappears from the database upon abort, and should not have been read by any transaction ("dirty read"). The reading transactions end with incorrect results.
3. The incorrect summary problem: While one transaction takes a summary over the values of all the instances of a repeated data-item, a second transaction updates some instances of that data-item. The resulting summary does not reflect a correct result for any (usually needed for correctness) precedence order between the two transactions (if one is executed before the other), but rather some random result, depending on the timing of the updates, and whether certain update results have been included in the summary or not.

Database transaction and the ACID rules
The concept of a database transaction (or atomic transaction) has evolved in order to enable both a well understood database system behavior in a faulty environment where crashes can happen any time, and recovery from a crash to a well understood database state. A database transaction is a unit of work, typically encapsulating a number of operations over a database (e.g., reading a database object, writing, acquiring lock, etc.), an abstraction supported in database and also other systems. Each transaction has well defined boundaries in terms of which program/code executions are included in that transaction (determined by the transaction's programmer via special transaction commands). Every database transaction obeys the following rules (by support in the database system; i.e., a database system is designed to guarantee them for the transactions it runs):
· Atomicity - Either the effects of all or none of its operations remain ("all or nothing" semantics) when a transaction is completed (committed or aborted respectively). In other words, to the outside world a committed transaction appears (by its effects) to be indivisible, atomic, and an aborted transaction does not leave effects at all, as if never existed.
· Consistency - Every transaction must leave the database in a consistent (correct) state, i.e., maintain the predetermined integrity rules of the database (constraints upon and among the database's objects). A transaction must transform a database from one consistent state to another consistent state (it is the responsibility of the transaction's programmer to make sure that the transaction itself is correct, i.e., performs correctly what it intends to perform while maintaining the integrity rules). Thus since a database can be normally changed only by transactions, all the database's states are consistent. An aborted transaction does not change the state.
· Isolation - Transactions cannot interfere with each other. Moreover, usually the effects of an incomplete transaction are not visible to another transaction. Providing isolation is the main goal of concurrency control.
· Durability - Effects of successful (committed) transactions must persist through crashes (typically by recording the transaction's effects and its commit event in a non-volatile memory).

Concurrency control mechanisms
Types of mechanisms
· Optimistic- Delay the checking of whether a transaction meets the isolation and other integrity rules (e.g., serializability and recoverability) until its end, without blocking any of its (read, write) operations ("...and be optimistic about the rules being met..."), and then abort a transaction to prevent the violation, if the desired rules are to be violated upon its commit. An aborted transaction is immediately restarted and re-executed, which incurs an obvious overhead (versus executing it to the end only once). If not too many transactions are aborted, then being optimistic is usually a good strategy.
· Pessimistic - Block an operation of a transaction, if it may cause violation of the rules, until the possibility of violation disappears. Blocking operations is typically involved with performance reduction.
· Semi-optimistic - Block operations in some situations, if they may cause violation of some rules, and do not block in other situations while delaying rules checking to transaction's end, as done with optimistic.
Many methods for concurrency control exist. Most of them can be implemented within either main category above. The major methods, which have each many variants, and in some cases may overlap or be combined, are:
1. Locking (e.g., Two-phase locking - 2PL) - Controlling access to data by locks assigned to the data. Access of a transaction to a data item (database object) locked by another transaction may be blocked (depending on lock type and access operation type) until lock release.
2. Serialization graph checking (also called Serializability, or Conflict, or Precedence graph checking) - Checking for cycles in the schedule's graph and breaking them by aborts.
3. Timestamp ordering (TO) - Assigning timestamps to transactions, and controlling or checking access to data by timestamp order.
4. Commitment ordering (or Commit ordering; CO) - Controlling or checking transactions' order of commit events to be compatible with their respective precedence order.

Block of transaction control
string connectionString = ".........";
SqlConnection myConnection = new SqlConnection(connectionString);
myConnection.Open();
// Start transaction.
SqlTransaction myTransaction = myConnection.BeginTransaction();
// Assign command in the current transaction.
SqlCommand myCommand = new SqlCommand();
myCommand.Transaction = myTransaction;
try
{
.........................
Database operations
........................
myTransaction.Commit();
Console.WriteLine("Records are modified in the database.");
}
catch(Exception e)
{
myTransaction.Rollback();
Console.WriteLine(e.ToString());
Console.WriteLine("Neither record was written to database.");
}
finally
{
myConnection.Close();
}
 Bibliography
file:///G:/ppt/Concurrency_Control.htm
file:///G:/ppt/Concurrency_Control.htm
http://www.google.com/search?ie=UTF-8&oe=UTF-8&sourceid=navclient&gfns=1&q=defination+of+Concurrency+control
http://www.wikkipidia.com/

image1.png

image2.wmf

image3.gif

