INDEX

1. INTRODUCTION
2. HISTORY OF CLUSTER COMPUTING
3. APPLICATIONS OF CLUSTER COMPUTER

4. CLUSTER CATEGORIZATIONS

5. CLUSTER NETWORK COMPUTING ARCHITECTURE

6. DESIGNING A CLUSTER COMPUTER
7. BUILDING A SIMPLE CLUSTER COMPUTER

8. APPLICATION OF CLUSTER COMPUTER

9. CONCLUSION
10. REFERENCES
INTRODUCTION

A computer cluster is a group of linked computers, working together closely thus in many respects forming a single computer. The components of a cluster are commonly, but not always, connected to each other through fast local area networks. Clusters are usually deployed to improve performance and/or availability over that of a single computer, while typically being much more cost-effective than single computers of comparable speed or availability. Today, a wide range of applications are hungry for higher computing power, and even though single processor PCs and workstations now can provide extremely fast processing; the even faster execution that multiple processors can achieve by working concurrently is still needed. Now, finally, costs are falling as well. Networked clusters of commodity PCs and workstations using off-the-shelf processors and communication platforms such as Myrinet, Fast Ethernet, and Gigabit Ethernet are becoming increasingly cost effective and popular. This concept, known as cluster computing, will surely continue to flourish: clusters can provide enormous computing power that a pool of users can share or that can be collectively used to solve a single application. In addition, clusters do not incur a very high cost, a factor that led to the sad demise of massively parallel machines.
 Clusters, built using commodity-off-the-shelf (COTS) hardware components and free, or commonly used, software, are playing a major role in solving large-scale science, engineering, and commercial applications. Cluster computing has emerged as a result of the convergence of several trends, including the availability of inexpensive high performance microprocessors and high speed networks, the development of standard software tools for high performance distributed computing, and the increasing need of computing power for computational science and commercial applications.
Cluster Computer Characteristics?

There are some general characteristics of cluster computer.

· Consists of many of the same or similar type of machines
(Heterogeneous clusters are a subtype, still mostly experimental)

· Tightly-coupled using dedicated network connections

· All machines share resources such as a common home directory
(NFS can be a problem in very large clusters, so binaries and data must be pushed to scratch on each node.)

· They must trust each other so that rsh or ssh does not require a password,
otherwise you would need to do a manual start on each machine.

· Must have software such as an MPI implementation installed to allow programs to be run across all nodes.
HISTORY OF CLUSTER COMPUTING

 The first commodity clustering product was ARCnet, developed by Datapoint in 1977. ARCnet wasn't a commercial success and clustering didn't really take off until DEC released their VAXcluster product in the 1980s for the VAX/VMS operating system. The ARCnet and VAXcluster products not only supported parallel computing, but also shared file systems and peripheral devices. They were supposed to give you the advantage of parallel processing while maintaining data reliability and uniqueness. VAXcluster, now VMScluster, is still available on OpenVMS systems from HP running on Alpha and Itanium systems. The history of cluster computing is intimately tied up with the evolution of networking technology. As networking technology has become cheaper and faster, cluster computers have become significantly more attractive. How to run applications faster? There are 3 ways to improve performance: Work Harder Work Smarter Get Help Era of Computing Rapid technical advances the recent advances in VLSI technology software technology & grand challenge applications have become the main driving force Parallel computing.
APPLICATIONS OF CLUSTER COMPUTER

· Database Replication - MySQL database replication cluster as a backend for a website.
· Batch Processing - When many tasks need scheduling.
· Render Farm - Distributed rendering cluster configuration.
· Software Development Architecture - Compile Farm - Clusters for software development.
· Message Passing Architectures - Essentially Supercomputers for true high performance applications
LOGICAL VIEW OF CLUSTER
A Beowulf cluster uses multi computer architecture, as depicted in figure. It features a parallel computing system that usually consists of one or more master nodes and one or more compute nodes, or cluster nodes, interconnected via widely available network interconnects. All of the nodes in a typical Beowulf cluster are commodity systems- PCs, workstations, or servers-running commodity software such as Linux.
The master node acts as a server for Network File System (NFS) and as a gateway to the outside world. As an NFS server, the master node provides user file space and other common system software to the compute nodes via NFS. As a gateway, the master node allows users to gain access through it to the compute nodes. Usually, the master node is the only machine that is also connected to the outside world using a second network interface card (NIC). The sole task of the compute nodes is to execute parallel jobs. In most cases, therefore, the compute nodes do not have keyboards, mice, video cards, or monitors. All access to the client nodes is
provided via remote connections from the master node. Because compute nodes do not need to access machines outside the cluster, nor do machines outside the cluster need to access compute nodes directly, compute nodes commonly use private IP addresses, such as the 10.0.0.0/8 or 192.168.0.0/16 address ranges. From a user’s perspective, a Beowulf cluster appears as a Massively Parallel Processor (MPP) system. The most common methods of using the system are to access the master node either directly or through Telnet or remote login from personal workstations. Once on the master node, users can prepare and compile their parallel applications, and also spawn jobs on a desired number of compute nodes in the cluster. Applications must be written in parallel style and use the message-passing programming model. Jobs of a parallel application are spawned on compute nodes, which work collaboratively until finishing the application. During the execution, compute nodes use 10 standard message-passing middleware, such as Message Passing Interface (MPI) and Parallel Virtual Machine (PVM), to exchange information.
CLUSTER CATEGORIZATIONS

Clusters are classified in to several sections based on the facts such as 1)Application target 2) Node owner ship 3) Node Hardware 4) Node operating System 5) Node configuration. Clusters based on Application Target are again classified into two: High Performance (HP) Clusters High Availability (HA) Clusters Clusters based on Node Ownership are again classified into two: Dedicated clusters & Non-dedicated clusters Clusters based on Node Hardware are again classified into three: Clusters of PCs (CoPs) Clusters of Workstations (COWs) Clusters of SMPs (CLUMPs) Clusters based on Node Operating System are again classified into: Linux Clusters (e.g., Beowulf) Solaris Clusters (e.g., Berkeley NOW) Digital VMS Clusters HP-UX clusters Microsoft Wolfpack clusters Clusters based on Node Configuration are again classified into:Homogeneous Clusters -All nodes will have similar architectures and run the same OSs Heterogeneous Clusters- All nodes will have different architectures and run different Oss.
High-availability (HA) clusters
High-availability clusters (also known as Failover Clusters) are implemented primarily for the purpose of improving the availability of services that the cluster provides. They operate by having redundant nodes, which are then used to provide service when system components fail. The most common size for an HA cluster is two nodes, which is the minimum requirement to provide redundancy. HA cluster implementations attempt to use redundancy of cluster components to eliminate single points of failure.

There are commercial implementations of High-Availability clusters for many operating systems. One such implementation is the Gridlock platform from http://www.obsidiandynamics.com. The Linux-HA project is one commonly used free software HA package for the Linux operating system.
Load-balancing clusters
Load-balancing is when multiple computers are linked together to share computational workload or function as a single virtual computer. Logically, from the user side, they are multiple machines, but function as a single virtual machine. Requests initiated from the user are managed by, and distributed among, all the standalone computers to form a cluster. This results in balanced computational work among different machines, improving the performance of the cluster systems.

 Compute clusters
Often clusters are used primarily for computational purposes, rather than handling IO-oriented operations such as web service or databases. For instance, a cluster might support computational simulations of weather or vehicle crashes. The primary distinction within compute clusters is how tightly-coupled the individual nodes are. For instance, a single compute job may require frequent communication among nodes - this implies that the cluster shares a dedicated network, is densely located, and probably has homogenous nodes. This cluster design is usually referred to as Beowulf Cluster. The other extreme is where a compute job uses one or few nodes, and needs little or no inter-node communication. This latter category is sometimes called "Grid" computing. Tightly-coupled compute clusters are designed for work that might traditionally have been called "supercomputing". Middleware such as MPI (Message Passing Interface) or PVM (Parallel Virtual Machine) permits compute clustering programs to be portable to a wide variety of clusters.

 Grid computing
Grids are usually computer clusters, but more focused on throughput like a computing utility rather than running fewer, tightly-coupled jobs. Often, grids will incorporate heterogeneous collections of computers, possibly distributed geographically, sometimes administered by unrelated organizations.

Grid computing is optimized for workloads which consist of many independent jobs or packets of work, which do not have to share data between the jobs during the computation process. Grids serve to manage the allocation of jobs to computers which will perform the work independently of the rest of the grid cluster. Resources such as storage may be shared by all the nodes, but intermediate results of one job do not affect other jobs in progress on other nodes of the grid.

An example of a very large grid is the Folding@home project. It is analyzing data that is used by researchers to find cures for diseases such as Alzheimer's and cancer. Another large project is the SETI@home project, which may be the largest distributed grid in existence. It uses approximately three million home computers all over the world to analyze data from the Arecibo Observatory radiotelescope, searching for evidence of extraterrestrial intelligence. In both of these cases, there is no inter-node communication or shared storage. Individual nodes connect to a main, central location to retrieve a small processing job. They then perform the computation and return the result to the central server. In the case of the @home projects, the software is generally run when the computer is otherwise idle. UC Berkley has developed an open source application BOINC to allow individual users to contribute to the above and other projects such as lhc@home (Large Hadron Collider) from a single manager which can then be set to allocate a percentage of idle time to each of the projects a node is signed up for. The Software can be downloaded and a project list can be found here BOINC
The grid setup means that the nodes can take however many jobs they are able to process in one session and then return the results and acquire a new job from a central project server.
FUTURE TRENDS - GRID COMPUTING
As computer networks become cheaper and faster, a new computing paradigm, called the Grid has evolved. The Grid is a large system of computing resources that performs tasks and provides to users a single point of access, commonly based on the World Wide Web interface, to these distributed resources. Users consider the Grid as a single computational resource. Resource management software, frequently referenced as middleware, accepts jobs submitted by users and schedules them for execution on appropriate systems in the Grid, based upon resource management policies. Users can submit thousands of jobs at a time without being concerned about where they run. The Grid may scale from single systems to supercomputer-class compute farms that utilize thousands of processors. Depending on the type of applications, the interconnection between the Grid parts can be performed using dedicated high-speed networks or the Internet. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, the Grid promises to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Several examples of new applications that benefit from using Grid technology constitute a coupling of advanced scientific instrumentation or desktop computers with remote supercomputers; collaborative design of complex systems via high-bandwidth access to shared resources; ultra-large virtual supercomputers constructed to solve problems too large to fit on any single computer; rapid, large-scale parametric studies. The Grid technology is currently under intensive development. Major Grid projects include NASAâ„¢s Information Power Grid, two NSF Grid projects (NCSA Allianceâ„¢s Virtual Machine Room and NPACI), the European DataGrid Project and the ASCI Distributed Resource Management project. Also first Grid tools are already available for developers. The Globus Toolkit [20] represents one such example and includes a set of services and software libraries to support Grids and Grid applications
ISSUES TO BE CONSIDERED
 If you are mixing hardware that has different networking technologies, there will be large differences in the speed with which data will be accessed and how individual nodes can communicate. If it is in your budget make sure that all of the machines you want to include in your cluster have similar networking capabilities, and if at all possible, have network adapters from the same manufacturer. Cluster Software You will have to build versions of clustering software for each kind of system you include in your cluster. Programming Our code will have to be written to support the lowest common denominator for data types supported by the least powerful node in our cluster. With mixed machines, the more powerful machines will have attributes that cannot be attained in the powerful machine. Timing This is the most problematic aspect of heterogeneous cluster. Since these machines have different performance profile our code will execute at different rates on the different kinds of nodes. This can cause serious bottlenecks if a process on one node is waiting for results of a calculation on a slower node. The second kind of heterogeneous clusters is made from different machines in the same architectural family: e.g. a collection of Intel boxes where the machines are different generations or machines of same generation from different manufacturers. Network Selection There are a number of different kinds of network topologies, including buses, cubes of various degrees, and grids/meshes. These network topologies will be implemented by use of one or more network interface cards, or NICs, installed into the head-node and compute nodes of our cluster. Speed Selection No matter what topology you choose for your cluster, you will want to get fastest network that your budget allows. Fortunately, the availability of high speed computers has also forced the development of high speed networking systems. Examples are 10Mbit Ethernet, 100Mbit Ethernet, gigabit networking, channel bonding etc.
CLUSTER NETWORK COMPUTING ARCHITECTURE

ARCHITECTURE
 A cluster is a type of parallel or distributed processing system, which consists of a collection of interconnected standalone computers cooperatively working together as a single, integrated computing resource A node:
a single or multiprocessor system with memory, I/O facilities, & OS
generally 2 or more computers (nodes) connected together in a single cabinet, or physically separated & connected via a LAN Â¢ appear as a single system to users and applications Â¢ provide a cost-effective way to gain features and benefits.
 Three principle features usually provided by cluster computing are availability, scalability and simplification. Availability is provided by the cluster of computers operating as a single system by continuing to provide services even when one of the individual computers is lost due to a hardware failure or other reason. Scalability is provided by the inherent ability of the overall system to allow new components, such as computers, to be assed as the overall system's load is increased. The simplification comes from the ability of the cluster to allow administrators to manage the entire group as a single system. This greatly simplifies the management of groups of systems and their applications. The goal of cluster computing is to facilitate sharing a computer load over several systems without either the users of system or the administrators needing to know that more than one system is involved. The Windows NT Server Edition of the Windows operating system is an example of a base operating system that has been modified to include architecture that facilitates a cluster computing environment to be established. Cluster computing has been employed for over fifteen years but it is the recent demand for higher availability in small businesses that has caused an explosion in this field. Electronic databases and electronic malls have become essential to the daily operation of small businesses. Access to this critical information by these entities has created a large demand for cluster computing principle features.
There are some key concepts that must be understood when forming a cluster computing resource. Nodes or systems are the individual members of a cluster. They can be computers, servers, and other such hardware although each node generally has memory and processing capabilities. If one node becomes unavailable the other nodes can carry the demand load so that applications or services are always available. There must be at least two nodes to compose a cluster structure otherwise they are just called servers. The collection of software on each node that manages all cluster specific activity is called the cluster service. The cluster service manages all of the resources, the canonical items in the system, and sees then as identical opaque objects. Resources can be such things as physical hardware devices, like disk drives and network cards, logical items, like logical disk volumes, TCP/IP addresses, applications, and databases.
When a resource is providing its service on a specific node it is said to be on-line. A collection of resources to be managed as a single unit is called a group. Groups contain all of the resources necessary to run a specific application, and if need be, to connect to the service provided by the application in the case of client systems. These groups allow administrators to combine resources into larger logical units so that they can be managed as a unit. This, of course, means that all operations performed on a group affect all resources contained within that group.
 Normally the development of a cluster computing system occurs in phases. The first phase involves establishing the underpinnings into the base operating system and building the foundation of the cluster components. These things should focus on providing enhanced availability to key applications using storage that is accessible to two nodes. The following stages occur as the demand increases and should allow for much larger clusters to be formed. These larger clusters should have a true distribution of applications, higher performance interconnects, widely distributed storage for easy accessibility and load balancing. Cluster computing will become even more prevalent in the future because of the growing needs and demands of businesses as well as the spread of the Internet.
Clustering hardware comes in three basic flavors: so-called "shared disk," "mirrored disk” and "shared nothing" configurations.
Shared Disk Clusters

One approach to clustering utilizes central I/O devices accessible to all computers ("nodes") within the cluster. We call these systems shared-disk clusters as the I/O involved is typically disk storage for normal files and/or databases. Shared-disk cluster technologies include Oracle Parallel Server (OPS)and IBM's HACMP.

Shared-disk clusters rely on a common I/O bus for disk access but do not require shared memory. Because all nodes may concurrently write to or cache data from the central disks, a synchronization mechanism must be used to preserve coherence of the system. An independent piece of cluster software called the "distributed lock manager" assumes this role.

Shared-disk clusters support higher levels of system availability: if one node fails, other nodes need not be affected. However, higher availability comes at a cost of somewhat reduced performance in these systems because of overhead in using a lock manager and the potential bottlenecks of shared hardware generally. Shared-disk clusters make up for this shortcoming with relatively good scaling properties: OPS and HACMP support eight-node systems, for example.
Shared Nothing Clusters

A second approach to clustering is dubbed shared-nothing because it does not involve concurrent disk accesses from multiple nodes. (In other words, these clusters do not require a distributed lock manager.) Shared-nothing cluster solutions include Microsoft Cluster Server (MSCS).MSCS is an atypical example of a shared nothing cluster in several ways. MSCS clusters use a shared SCSI connection between the nodes, that naturally leads some people to believe this is a shared-disk solution. But only one server (the one that owns the quorum resource) needs the disks at any given time, so no concurrent data access occurs. MSCS clusters also typically include only two nodes, whereas shared nothing clusters in general can scale to hundreds of nodes.
Mirrored Disk Clusters

Mirrored-disk cluster solutions include Legato's Vinca. Mirroring involves replicating all application data from primary storage to a secondary backup (perhaps at a remote location) for availability purposes. Replication occurs while the primary system is active, although the mirrored backup system -- as in the case of Vinca -- typically does not perform any work outside of its role as a passive standby. If a failure occurs in the primary system, a failover process transfers control to the secondary system. Failover can take some time, and applications can lose state information when they are reset, but mirroring enables a fairly fast recovery scheme requiring little operator intervention. Mirrored-disk clusters typically include just two nodes.
COMPONENTS OF CLUSTER COMPUTER
1. Multiple High Performance Computers a. PCs b. Workstations c. SMPs (CLUMPS) 2. State of the art Operating Systems a. Linux (Beowulf) b. Microsoft NT (Illinois HPVM) c. SUN Solaris (Berkeley NOW) d. HP UX (Illinois - PANDA) e. OS gluing layers(Berkeley Glunix) 3. High Performance Networks/Switches a. Ethernet (10Mbps), b. Fast Ethernet (100Mbps), c. Gigabit Ethernet (1Gbps) d. Myrinet (1.2Gbps) e. Digital Memory Channel f. FDDI 4. Network Interface Card a. Myrinet has NIC b. User-level access support 5. Fast Communication Protocols and Services a. Active Messages (Berkeley) b. Fast Messages (Illinois) c. U-net (Cornell) d. XTP (Virginia)
6. Cluster Middleware a. Single System Image (SSI) b. System Availability (SA) Infrastructure 7. Hardware a. DEC Memory Channel, DSM (Alewife, DASH), SMP Techniques 8. Operating System Kernel/Gluing Layers a. Solaris MC, Unixware, GLUnix 9. Applications and Subsystems a. Applications (system management and electronic forms) b. Runtime systems (software DSM, PFS etc.) c. Resource management and scheduling software (RMS) 10. Parallel Programming Environments and Tools a. Threads (PCs, SMPs, NOW..) b. MPI c. PVM d. Software DSMs (Shmem) e. Compilers f. RAD (rapid application development tools) g. Debuggers h. Performance Analysis Tools i. Visualization Tools 11. Applications a. Sequential b. Parallel / Distributed (Cluster-aware app.)
Designing a Cluster Computer

Choosing a processor

The first step in designing a cluster is to choose the building block. The processing power, memory, and disk space of each node as well as the communication bandwidth between the nodes are all factors that can be chosen. You will need to decide which are important based on the mixture of applications you intend to run on the cluster, and the amount of money you have to spend.

· Best performance for the price ==> PC (currently dual-Xeon systems)

· If maximizing memory and/or disk is important, choose faster workstations

· For maximum bandwidth, more expensive workstations may be needed

PCs running Linux are by far the most common choice. They provide the best performance for the price at the moment, providing good CPU speed with cheap memory and disk space. They have smaller L2 cache sizes than some more expensive workstations which can limit the SMP performance. They have less main memory bandwidth which can limit the performance for applications that do not reuse data cache well. The availability of 64-bit PCI-X slots and memory upto 16 GBytes removes several bottlenecks, but new 64-bit architectures will still perform better for large-memory applications.

For applications that require more networking than Gigabit Ethernet can provide, more expensive workstations may be the way to go. You will have fewer but faster nodes, requiring less overall communications, plus the memory subsystem can support communication rates upwards of 200-800 MB/sec.

When in doubt, it is always a good idea to benchmark your code on the machines that you are considering. If that is not possible, there are many generic benchmarks that you can look at to help you decide. The HINT benchmark developed at the SCL, or a similar benchmark based on the DAXPY kernel shown below, show the performance of each processor for a range of problem sizes.

If your application uses little memory, or heavily reuses data cache, it will operate mainly on the left side of the graph. Here the clock rate is important, and the compiler choice can make a big difference. If your application is large and does not reuse data much, the right side will be more representative and the memory speed will be the dominate factor. [image: image1]
Designing the network

Along with the basic building block, you will need to choose the fabric that connects the nodes. As explained above, this depends greatly on the applications you intend to run, the processors you choose, and how much money you have to spend.

Gigabit Ethernet is clearly the cheapest. If your application can function with a lower level of communication, this is cheap, reliable, but scales only to around 14 nodes using a flat switch (completely connected cluster, no topology).

There are many custom network options such as Myrinet and Giganet. These are costly, but provide the best performance at the moment. They do not scale well, and therefore will force you to have a multilayered network topology of some sort. Don't go this route unless you know what you're doing.

	Fast Ethernet
	11.25 MB/sec
	~free
	> 100 nodes

	Gigabit Ethernet
	~110 MB/sec
	~$100 / machine
	--> 24 nodes

	Myrinet
	~200 MB/sec
	> $1000 / machine
	stackable small switches

	SCI
	150? MB/sec
	$1100/4-port card
	2D mesh

	InfiniBand
	~800 MB/sec
	$900/card $1000/port
	limited to small swithes now

Netpipe graphs can be very useful in characterizing the different network interconnects, at least from a point-to-point view. These graphs show the maximum bandwidth, and the effects of the latency pulling the performance down for smaller message sizes. They can also be very useful for fine tuning a system, from the hardware to the drivers to the message-passing layer.

[image: image2.png]
Which OS?

The choice of an OS is largely dictated by the machine that you choose. Linux is always an option on any machine, and is the most common choice. Many of the cluster computing tools were developed under Linux. Linux, and many compilers that run on it, are also available free.

With all that being said, there are PC clusters running Windows NT, IBM clusters running AIX, and we have even built a G4 cluster running Linux.
Loading up the software

· Message-passing libraries: MPICH, LAM MPI, MPI/Pro, MP_Lite, PVM

· Compilers: GNU gcc and g77, Intel, Portland Group, Compaq compilers

· Libraries: Intel MKL (BLAS), ScaLAPACK, ASCI Red BLAS for Linux PCs

· Queues: PBS, DQS

· Status monitors: statmon

I would recommend choosing one MPI implementation and going with that. PVM is still around, [image: image3.png]but MPI the way to go (IMHO). LAM/MPI is distributed as an RPM so it is easiest to install. It also performs reasonably well on clusters.

There are many free compilers available, and the availability will of course depend on the OS you choose. For PCs running Linux, the GNU compilers are acceptible. The Intel compilers provide better performance in most cases for the Intel processors, and pricing is reasonable. The Intel or PGI compilers may help on the AMD processors. However, the cluster licenses for the PGI compilers are prohibitively expensive at this point. For Linux on the Alpha processors, Compaq freely distributes the same compilers that are available under Tru64 Unix.

There are also many parallel libraries such as ScaLAPACK available. For Linux PCs, you may also want to install a BLAS library like the Intel MKL or one Sandia developed.

If you have many users on a cluster, it may be worthwhile to put on a queueing system. PBS (portable batch system) is currently the most advanced, and is under heavy development. DQS can also handle multiprocessor jobs, but is not quite as efficient.

You will also want users to have a quick view of the status of the cluster as a whole. There are several status monitors freely available, such as statmon developed locally. None are up to where I'd like them to be yet, although commercial versions give a more active and interactive view.

Assembling the cluster

A freestanding rack costs around $100, and can hold 16 PCs. If you want to get fancier and reduce the footprint of your system, most machines can be ordered with rackmount attachments.

You will also need a way to connect a keyboard and monitor to each machine for when things go wrong. You can do this manually, or spend a little money on a KVM (keyboard, video, mouse) switch that makes it easy to access any computer.

Pre-built clusters

If you have no desire to assemble a system yourself, there are many vendors who sell complete clusters to your design. These are 1U or 2U rackmounted nodes pre-configured to your specifications. They are compact, easy to setup and maintain, and usually have good custom tools like web based status monitors. The price really isn't too much more than building your own systems now. Below is a partial list of vendors, others can be listed through http://www.beowulf.org/beowulf/vendors/ . [image: image4.png]
	Atipa
	Xeon, Athlon
Opteron, Itanium2
	Gigabit Ethernet
Myrinet
SCI

	Microway
	Xeon, Athlon
Opteron, Itanium2
Alpha
	Gigabit Ethernet
Myrinet

	RackSaver
	Xeon, Athlon
Opteron, Itanium2
	Gigabit Ethernet
Myrinet
SCI
InfiniBand

	Aspen Systems
	Xeon, Athlon
Opteron, Itanium2
	Gigabit Ethernet
Myrinet

	Einux
	Xeon
Opteron
	Gigabit Ethernet
Myrinet
SCI
Quadrix
InfiniBand

	eRacks
	P4/Xeon, Athlon
Opteron
	Gigabit Ethernet
???

	Linux Networx
	Xeon, Athlon
???
	Dual Fast Ethernet
Gigabit Ethernet
Myrinet
Quadrix

Cluster administration

With large clusters, it is common to have a dedicated master node that is the only machine connected to the outside world. This machine then acts as the file server, and the compile node. This provides a single-system image to the user, who launches the jobs from the master node without ever logging into any nodes.

There are boot disks available that can help in setting up the individual nodes of a cluster. Once the master is configured, these boot disks can be configured to perform a complete system installation for each node over the network. Most cluster administrators also develop other utilities, like scripts that operate on every node in the cluster. The rdist utility can also be very helpful.

If you purchase a cluster from a vendor, it should come with software installed to make it easy to use and maintain the system. If you build your own system, there are some software packages available to do the same. OSCAR is a fully integrated software bundle designed to make it easy to build a cluster. Scyld Beowulf is a commercial package that enhances the Linux kernel providing system tools that produce a cluster with a single system image.

If set up properly, a cluster can be relatively easy to maintain. The operations that you would normally do on a single machine simply need to be replicated across many machines. If you have a very large cluster, you should keep a few spare machines to make it easy to recover from hardware problems.
BUILDING A SIMPLE CLUSTER COMPUTER

Let's walk through the process of building a simple 4-node cluster out of some existing workstations, assuming that they are nearly identical and located in the same room.

The first step is to tightly couple them together. The typical workstation is probably connected to the network through an Ethernet connection to a hub or switch in the room. The minimum configuration that I would recommend is to use Gigabit Ethernet. This is fairly cheap, at around $100/machine, and provides enough bandwidth to run many applications.

If the computers are not connected this way, you will need to install a Gigabit Ethernet card in each (~$40/machine), connect them to a central Gigabit Ethernet switch ($1600 for a 24-port switch), and configure the interfaces properly. This second interface will be configured as a local network, so use IP addresses like 10.0.0.0 through 10.0.0.3. This requires root access, and differs greatly between operating systems. It is common to edit the /etc/hosts file so that these second interfaces have simple names like node0 through node3.

Now that the hardware is in place, the system may need to be adapted. If there is no common home directory across the nodes, you will need to set one up. This again will require root access, and may differ between operating systems. Basically, create a directory such as /cluster on each machine. Choose one machine to be the master node, and export this subdirectory to the others using the /etc/exports file. On the other nodes, mount the /cluster subdirectory using the /etc/fstab file.

All machines must trust each other enough to allow users to rsh/ssh between them without requiring a password. To test this, simply try 'rsh node1' for example, and you should log into node1 without being prompted for a password. If not, use man rsh or man ssh to determine the next course of action. You may just need to create a .rhosts file, or the appropriate ssh keys. If your machines are not set up to trust each other, you will need to convince the system administrator to change this.
Installing a message-passing library
The last step is to install the message-passing software such as LAM/MPI or MPICH. LAM/MPI comes as an RPM on the RedHat Linux CD's, making it easier to install than MPICH. It also provides better performance in most cases for cluster computers. Install the LAM/MPI RPM if necessary, then start the lamd daemons on the cluster.
CONCLUSION

Network clusters offer a high-performance computing alternative to SMP and massively parallel computing systems. Aggregate system performance aside, cluster architectures also can lead to more reliable computer systems through redundancy. Choosing a hardware architecture is just the beginning step in building a useful cluster: applications, performance optimization, and system management issues must also be handled.
REFERENCES

1. Bader, David; Robert Pennington (June 1996). "Cluster Computing: Applications". Georgia Tech College of Computing. http://www.cc.gatech.edu/~bader/papers/ijhpca.html. Retrieved 2007-07-13.

2. TOP500 List - June 2006 (1-100) | TOP500 Supercomputing Sites

3. Farah, Joseph (2000-12-19). "Why Iraq's buying up Sony PlayStation 2s". World Net Daily. http://www.worldnetdaily.com/news/article.asp?ARTICLE_ID=21118.

4. Pfister, Gregory (1998). In Search of Clusters (2nd ed.). Upper Saddle River, NJ: Prentice Hall PTR. p. 36. ISBN 0-13-899709-8.
5. Mark Baker, et al., Cluster Computing White Paper [1], 11 Jan 2001.

6. Karl Kopper: The Linux Enterprise Cluster: Build a Highly Available Cluster with Commodity Hardware and Free Software, No Starch Press, ISBN 1-59327-036-4

7. Robert W. Lucke: Building Clustered Linux Systems, Prentice Hall, 2005, ISBN 0-13-144853-6

Fig. simple 4 node PC/Workstation cluster

