
Context Based Storage: System for Managing Data
in Ubiquitous Computing Environment

Sharat Khungar and Jukka Riekki

Department of Electrical and Information Engineering and Infotech Oulu
P.O.BOX 4500, 90014 University of Oulu, Finland
sharat.khungar@ee.oulu.fi,jukka.riekki@ee.oulu.fi

 Abstract - Ubiquitous computing aims to introduce a
new concept in computing technology in which the
computing infrastructure moves into the background and
adapts to the user environment. Context such as location,
time and situation allows a system to adapt to the current
surroundings in order to facilitate the use of computational
environment. In this paper, we describe a novel context
based storage system for context-aware ubiquitous
computing applications that use context to manage user data
and based on the situation make it available to the user.
First, we examine several existing systems that use context
with documents. Subsequently, a new storage system is
presented that uses context to aid in the capture and access
of documents in ubiquitous environment. We describe two
applications from a set of applications that we have
developed with our ubiquitous computing infrastructure and
show how they leverage some of the novel features of our
storage system to simplify their operations.

Keywords
Context, Context-aware, Data Management, Ubiquitous
Computing

1. INTRODUCTION

 Context is one of the main factors that differentiate
ubiquitous computing from traditional distributed
computing. The role of context has recently gained great
importance in the field of ubiquitous computing. By
context we mean any information about the
circumstances, objects, or conditions by which a user is
surrounded that is considered relevant to the interaction
between the user and the ubiquitous computing
environment [1]. The task of making this context
information available to components in computer systems
has become a prerequisite to advancing human-computer
interaction processes in Ubiquitous Computing [2].
 Context awareness, or more specifically how to create
applications that are context-aware, is a central issue to
Ubiquitous Computing research. Context-aware systems
are computing systems that provide relevant services and
information to user based on his situational conditions
[1]. Improved hardware and networking are clearly
central in the development of context-aware computing,
but an equally important and difficult set of challenges

revolves around data management. In order for computing
to be invisible to the user while supporting more and
more applications, the data required for these applications
must be reliably and efficiently stored, queried and
delivered.
 To address the above issues we have created a
Context Based Storage (CBS) system as part of Capnet
[3], a middleware architecture that supports building
context-aware applications for mobile users. CBS
facilitates applications to tag contextual information such
as user’s activity, location, and time to the documents.
The application can use automatic tagging of context or
explicitly provide context linked to the specific
documents. By using the context, the system provides
greater flexibility in storing documents. It then allows
applications to retrieve documents by using the context
related directly to the document or context related to the
user that is then linked to the document with time.
 The design and implementation of the storage system
presented in this paper contributes to the research of
ubiquitous computing by integrating contextual
information into the data storage and distributing this
information so that it can be accessed on a mobile device,
wherever and whenever needed. Novel features of our
system include the access rights mechanism for data and
support for group activity. The rest of the paper is
organized as follows. In section 2 we list related work. In
section 3 we describe the context based storage system
and its implementation. Section 4 describes the
applications we have implemented on top of our storage
system. Section 5 ends the paper with some concluding
remarks.

2. RELATED WORK

 The Forget-me-not [4] was designed for use with a
wearable system. It logs the context of the user over time
so that it can later be used to find information. The
context saved includes information about the user both in
the physical and virtual worlds. This system is not
directly tied to document storage, but it does allow the
context to be used to find accessed files that are stored
elsewhere.

 The ParcTab [5] allowed access to files that were
linked to a particular location. As users move between
different locations, the file browser changes to display
relevant data. While they only considered location context
in their file system, this work was important in
establishing the relevance of context in data access.
MemoClip [6] consists of a small hardware device, which
contains a small database that holds event-location pairs
and triggers notifications based on the user’s location.
CyberMinder [7] provides similar capabilities, but a wide
range of context is used, and it can be linked to reminder
information, such as time, location, weather, etc. These
works have investigated making certain data available in
a certain context, but were specific to particular
applications. Our aim was to build a generic infrastructure
to support a range of applications.
 The Stick-e document framework [8] describes
information in SGML format that includes data and
context information. When a specified context matches an
available stored document, a trigger makes data available.
However, our approach is different in that we do not use
proactive retrieval [9] based on contextual changes in our
system, but rather use interactive retrieval to allow the
user to choose what action to take. For example, we allow
the user to retrieve documents based on context instead of
just delivering documents to him when the context
matches with the one attached to the document. Gaia CFS
[10] bears close resemblance to our system but the focus
in Gaia is to simplify locating data important for
automatically launched applications in active space. They
have put more emphasis on the data adaptation on the
device and organising data in file system. In our system
special emphasis is given to organizing data with different
taxonomies and to support user groups with access rights
of data. In addition of supporting context-aware
applications for data management, our system also
provides data management for different multimedia
applications built on the Capnet architecture [15].
 The above systems use context about the user, context
linked to specific documents and time to provide different
ways to store and retrieve documents in the ubiquitous
environment. None of the above systems, however,
support all three forms of context together with user
groups and access rights for data. We have created a
Context Based Storage (CBS) that offers the same
functionality as the systems discussed above and provides
its own additional novel features of data organization with
group context and data access rights. We provide
attributes linked with documents, to create a storage space
along with a facility to log context history. Finally time is
integrated throughout the system.
 Time Machine Computing (TMC) [11] and Presto
[12] systems are designed for use on a desktop computer.
TMC helps document storage and retrieval by
incorporating time to allow more effective use of the

desktop space. Although the desktop representation may
not transfer well to mobile environment, this system
demonstrates how the context of time can be used
effectively with documents. Presto developed a document
management system that uses property tags to organize
data so that different users may have personalized views
of the data hierarchy. It replaces the location based
storage system’s use of hierarchies and file names with a
set of optional properties composed of name-value pairs
attached to a document. Any number of properties can be
added to data files. This gives the user the flexibility to
associate any context desired with the document.
Information is later retrieved by searching through the
properties. They developed a graphical desktop where
files could be grouped together and properties could be
dropped on the desktop to display the items that exactly
matched the active properties. Our system has some
similarities to this system in that our contexts act like their
properties. However, their properties act as filters, where
each added property restricts the list of data matching the
property list. Our work differs from theirs in several
aspects. First, the user’s context is included in our work to
display a relevant document. Second, our retrieval queries
are different from filtering. In our system, some
environment contexts may not be relevant to a given
application, and we therefore ignore such contexts.
Finally, we incorporate the mobility of the users, allowing
them to access their documents while moving.
 In our system, the application can provide context
attributes linked to specific documents. These attributes
are similar to Presto’s properties and relax the naming
requirements for documents. Our system also supports the
storage of context about the user, similar to Forget-me-
not, with context history. The collection of context over
time is stored as context history. Context history is used
for developing routine learning algorithms [13] in Capnet,
by learning the user’s behaviour pattern over a period of
time.

3. CONTEXT BASED STORAGE

 Context-aware computing aims to make the
interactions between users and computers easier and
supports new interaction styles that are found in
ubiquitous computing [2]. Our system uses context to
replace many of the tasks that are traditionally performed
manually or require additional programming effort.
Context is used to constrain the amount of information
presented to the user, organize data to simplify locating
the data important for users, and retrieve data based on
the context of user preference. Applications can provide
context attributes linked to specific documents and can
retrieve these documents from the storage using these
attributes.

 CBS consists of a logical context data model and a
physical data storage space. The logical context data
model is a way of representing entities such as people,
places, and things. The context information itself is
represented using four concepts: entities, attributes,
relationships, and groups. Entities are simply people,
places, and things. Entities represent the base level of
context, on top of which more sophisticated
representations can be built. Each entity also has access
control associated with it, limiting which applications and
which people can access its data. Attributes describe some
property of an entity. For example, people, places, and
things all have names. Relationships are special kinds of
attributes that point to other entities. For example, a
person could currently be in a specific place, and this
place could contain several things. Groups are a way of
grouping existing entities, and represent one way in
which more sophisticated representations of context can
be modelled. For example, an action can be modelled as
the person performing the action, the place in which the
action happens, and the things used. A work group can be
modelled as a collection of the people in that group. A
room can be modelled as a place and all of the things in
that place.
 The physical data storage manages how and where
the document attached to context data is actually stored.
The physical data storage distributes the data so that
copies of the context data can exist in multiple places. For
example, a person’s private context information might
reside in his Pocket PC and in his computer at home,
while his context information at work might reside in an
office computer. This approach makes it easier to scale
the system up for large numbers of entities and across
wide areas. It also increases robustness to failure by
improving the availability of context information.
Furthermore, it is more efficient to put the context data
close to where it is generated and where it is likely to be
used.
 The basic structure of the physical data storage is
shown in Figure 1.The structure of the data storage
comprises (in a logical view), parameters, files,
directories, types, entities and groups, and has the
following features:

(i) Two kinds of data: parameters (for
attributes) and files,

(ii) Parameters and files are owned by entities,
(iii) Entities can be grouped in Groups,
(iv) Groups can have parameters,
(v) The set of parameters and files owned by an

entity can be organized into directories and
on the basis of their types.

 Parameter is a single piece of information related to
the user, which is used to store context information with a
timestamp. The timestamps are stored with documents,

attributes and context history. This allows the system to
record when items are created and modified (transaction
time) and allows the user to set time according to his
needs (valid time). The files and parameters have
attributes that specify the owner and rights of access.

Parameter

Entity

Group

Directory

Files

Figure 1 – Entity Relationship diagram for CBS

 Files have other attributes that specify the current
state (e.g. online, deleted), time of creation and time of
last modification. The same user or group of users can
have a parameter with multiple timestamps. The files and
parameters owned by entities are organized in two basic
models: directory and type. Directory represents a logical
path to the data. The system creates a directory /user for
each user under which its tagged data is stored. Type is
defined as the data attribute that represents a
categorization based on the information of that data. This
attribute is automatic: file extension in case of files and
context type in case of parameters.

 Our system offers access to the data in two modes:
Normal and Context-aware mode. Normal mode makes
all the data available in the user’s root directory
accessible to him. The other mode of data that is context-
aware mode is used to organize data by limiting the
amount of relevant data according to the context. The
system allows files to be tagged with attributes, which
may be metadata properties of the media object [15] or
with the contextual information defined by the
environment. Metadata properties of multimedia
documents are also used by multimedia applications in
Capnet to retrieve the data they are interested in; context
is used to determine in what situation that data is relevant
to the user. For example, an application can retrieve data
by specifying the format type (e.g. mpeg) of the files it is
interested in. Contextual attributes are used by the CBS to

limit the visibility of data according to the context
provided by the applications, such as location, activity,
time, etc. For example, a file may be tagged with activity
context, making it available in a certain situation only.
 Attributes are selected based on the requirements of
the applications as to which types of attributes are
important for tagging with data. Metadata attributes
stored with the data are used to specify what type of data
is useful for the applications and context is used to
specify in which situation that data is made available to
the application. Therefore, applications using CBS access
data by specifying the metadata properties they are
interested in, or by using the context they determine what
data is relevant to them and when this data is to be made
available. In our system, we have found the following
different context information to be most useful for
tagging with data: location, identity of the person, activity
and time.
 The attributes are composed of type and value pair.
Files are tagged with specific attributes and moved to
context mode from normal mode by inserting a new tuple
in the parameter table for the corresponding directory
where the file is stored. This way the data stored in the
file is tagged with certain context. As files can be inserted
from different locations in the same directory, there is a
possibility of name clashes. To avoid this clash, all files
(also parameters and directories) have a unique identifier
index. This identifier is used to distinguish files with the
same name in the storage. Parameter identifiers can be
used to differentiate user data that is tagged with the same
attributes. The reasons for choosing this type of model
are: first it is very efficient and flexible for tagging data to
different attributes, secondly it allows the applications
built on CBS to use the same API for reading the file both
in normal and context-aware mode, and thirdly, it allows
the different files to be linked to each other without
storing them at the same place in one directory.
 Data storage of each user is organized in the directory
hierarchy structure; different sub-directories are created in
the root directory /user for context mode and normal
mode. Data tagged with the contextual information is
stored in context mode as in /user/context/ directory and
data linked to the metadata properties is stored in as
/user/type where type specifies different metadata
properties. Although this directory structure is viewed as
a hierarchy, context directories impose no fixed ordering,
resulting in a forest-like structure. As data can be related
to more than one context, our system allows creating
different taxonomies of data and using a data thesaurus to
find similar structures in the storage.
 In the Figure 2, it is possible to see how data can be
related using different classification systems. Most of
these taxonomies are created automatically and available
to the users. This allows the retrieval of data in different
and efficient ways. The rectangular nodes define different

types of directories and the oval nodes specify data stored
in them. For example data node F2 shown above is an
mp3 file which is related to Project1, Project2, music and
work where Project1 and Project2 are 2 different project
sub-directories of the user to whom this file belongs,
music defines the type of the file and work defines the
context to which this file is tagged. The F2 data can be
retrieved from the storage by using one or more of the
attributes to which it is tagged. For efficient retrieval of
documents, data stored in CBS can be linked to other data
stored in different directories as well, which helps to
interlink relevant data together, e.g. in Figure 2, where the
F2 node is linked to other data nodes i.e. F1 and F3.

Figure 2 – Data organized using different taxonomies

 The activity context in our system is set using the
calendar application, while other context used in the
system is obtained from physical sensors (e.g. location) or
they are implicit (e.g. time) After the data has been
correctly tagged, the application accesses the relevant
data using CBS based on the contextual information. We
separate the attributes from the actual data so that the
attributes can be easily searched from the storage with
minimal efforts. Documents are retrieved with a query
that can contain the document attributes, information
about time and context history. For example, retrieve all
files for location == TS387 && activity == meeting &&
time == 9:30-10:30. While the above examples illustrates
that queries support AND Boolean operations, OR queries
are supported by attaching different contexts to the same
document.
 The access rights mechanism for the user’s data deals
with the rights to read or write to CBS user files or
parameters. It works similarly to UNIX, with three kinds
of access zones: owner, groups and others, see Figure 3.
Each piece of information is owned by a single user who
can belong to several groups (each one with independent
access rights). If a user gives access rights to “others”,
all users can access the data in question. And only the
owner can grant and revoke the access rights to his data.

User1 Satu

Group 1 - RW

Group 2 - R

Others - R

Owner - RW

Figure 3 – Access rights example for a particular data object

4. PROTOTYPE

4.1 Capnet System

 The Capnet (Context-Aware and Pervasive Networks)
program focuses on context-aware mobile technologies
for ubiquitous computing. At the highest level, the Capnet
architecture is decomposed into Capnet Engines, see
Figure 4. Each device that belongs to the Capnet universe
contains an engine. An engine may be in a powerful
server without any user interface or in a mobile device
with many application user interfaces (UIs). As Capnet is
a component-based software architecture, the basic
building blocks of the engines are component instances,
each specialized for producing the functionality of a
certain domain area, such as service discovery, user
interface, context recognition, media processing,
connectivity management, component management,
context based storage, or any service added to the system
by developers. The Capnet universe is a distributed
environment, which means that the engines can use
component instances running on the local device as well
as remote instances running in engines somewhere in the
Capnet universe to provide the required functionality for
the applications. An application is composed of
application logic and components producing the required
functionality. More details about the Capnet system can
be found in [3].

 CBS resides on one of the engines in the Capnet
universe with other components and the physical data
storage runs on the server; we assume a continuous
connection between the CBS and physical data storage.
Applications using the CBS are distributed on the
network and use the functionality provided by component
management to connect to the CBS. The context
component provides abstraction of context information
(e.g. location, weather) for its clients in the Capnet

universe. All the applications using the CBS obtain the
context information from the context component. The
context component acts as wrapper for context sensors; it
receives sensor data from a number of sensors. Using the
sensor data it derives higher-level context information
that is utilizable by the other Capnet components
including CBS.

Figure 4 – Capnet Universe

4.2 Applications

 We have implemented a set of applications on top of
CBS as part of the Capnet system; here we describe only
two applications in detail, i.e. file browser (FB) and
calendar, which illustrates how context is used to find
relevant user data. Data is accessed by an application
through an object-oriented interface of the CBS, designed
to simplify the retrieval of data types.
 FB is a graphical data explorer used to manipulate
documents with functions to open, read, write, close,
delete and rename. A query interface in FB supports the
ability to retrieve documents from the CBS using user’s
context. The FB operates in two modes: normal mode and
context-aware mode. In normal mode, all documents
accessible to the user are listed. Context-aware mode is
used for tagging context to documents and copying them
to the user’s context directory in CBS. In this mode (see
Figure 5), the user’s documents related to his context
provided by the FB are retrieved from storage, and if a
query is performed without the context-aware option then
all the documents accessible to the user are shown.
However, for both normal and context-aware mode, the
FB uses the same API provided by the CBS to retrieve
data from storage. This API searches for the documents
matching the attributes provided by the FB to find the
relevant documents from the storage. Unique email-like

identifiers identify users, and an identity is associated
with a user when he logs into the system.

Figure 5 – View from the File Browser application

 In context-aware mode, the FB retrieves the user’s
document from the CBS by using the current context or
context attributes tagged with the documents. The FB
uses the API provided by the context component [3] to
find the current context of the user. The FB uses the
location, activity and time information to find the correct
files from the CBS. The user can retrieve documents from
storage using metadata attributes linked to documents and
context history also. Using the API provided by the CBS
for retrieval, the FB retrieves the data whose parameter
attributes match the context provided by the user. It opens
the root directory of the user in the storage and then
traverses through the subdirectories to find the matching
directory with the attribute used for the retrieval
operation.
 The user can also change the access rights of his data
using the FB; he can either grant or revoke the access
rights of his documents to other users of the same group.
Using the FB, users can share a document among the
other users in a group and tag contextual information also
to this document. All the users of the same group can
retrieve this document using the FB by performing the
search in context-aware mode and this document is listed
on the FB if the context of the user matches with the
context tagged to this document. This way a document
stored at one place can be shared between different users
for the same context. The access rights mechanism of the
CBS is used for sharing files with different users for same
context in a group by granting and revoking access rights
for the documents to be shared among the different users
of the group. For example, during a meeting the leader of
the group creates an “introduction” file for each member
of the group attending the meeting. It grants all the
members of the group the right to read this file for
meeting context and certain time duration. Every time that

a new member enters the meeting room and performs the
retrieval in context-aware mode to list the files related to
the current meeting, this “introduction” file is also listed
with the other files for the current context.
 The activity of the user for a certain duration of time
(e.g. meeting) is set via the calendar application, see
Figure 6. A document can be attached to this activity and
stored in the CBS, which can later be retrieved by the
application when the same activity occurs. The user can
also access all his documents stored in the CBS by
selecting the activities to which they are attached. The
CBS opens the sub-directory of the user for that activity
and retrieves all the documents stored there. Our system
supports tagging different contexts to the same document
and organising them according to this contextual
information in different directories to associate these
documents with different activities. A novel feature of our
calendar application is the association of data generated
during a special activity (e.g. notes, figures etc) with the
activity in the calendar using the context information.
Users are then able to review this data by selecting a past
entry in the calendar, which would show only the data
relevant to the activity.
 The user context is based on location, calendar and
device profile information. Calendar activity, context
information associated with the documents and routine
learning algorithms [13] are stored in the CBS. In both
applications, the user can also choose where he wants to
store a document: in the device memory or in the CBS.
This way the user can still access some of his documents
from the device memory, when there is no connection
between the application and the CBS.

Figure 6 – View from the Calendar application

 The CBS also supports the data management of
context-aware multimedia applications [15]. An
application can capture multimedia content with media
components and tag contextual information to it obtained
from the context component [3]. The media can then be
stored in the CBS and later retrieved by using contextual

information as keywords. Context information is not
restricted to location information, as in [16], or a pre-
defined set of sources, as in [17], since the context
component supports the handling of other types of
context, such as meetings. The context-aware instant
messaging system [14] developed on the existing Capnet
architecture utilises mainly the group activity and access
rights mechanism of the CBS.

 This prototype supporting different applications has
been tested by researchers, and a mobile device was used
(Compaq iPAQ PDA) during the experiments. All mobile
device components are implemented according to the
Personal Java 1.2a specification. Devices are located with
the Ekahau positioning engine that utilises WLAN signal
strengths measured in the devices. CBS utilises the
MySQL database, which is running on a Sun Solaris
server. The university’s premises covered by WLAN are
used as the test environment. The graphical user
interfaces are described as extended XUL scripts that are
rendered as AWT components in the PDA. All inter-
device communications utilise XML-RPC; the open-
source Marquee XML-RPC library is used.

5. CONCLUSION

 Context information is essential for building
applications that support a user’s everyday life without
causing obstruction in his daily work. Our main goals
while developing the CBS were to investigate how
context information could be integrated with a data
management system, what types of context information
would be most suitable to support useful functions in
context-aware applications and to provide an architecture
for organising data in a ubiquitous environment. The
implementation and further experience with the system
has helped us to understand better how data management
systems must be changed to accommodate the unique
characteristics of ubiquitous computing.
 We have presented a contextual storage system and
two applications built on it that use context to constrain
the amount of information presented to the user. Our
system supports group activity and provides the user
access control on his data. We have found the
performance of the system to easily satisfy the
requirements of the applications we have developed. For
data matching, our system supports AND and OR
operations. But instead of Boolean matching, approximate
matching using more complex algorithms would be
beneficial, most specifically in case of the user searching
for documents when the exact context match does not
exist.
 As we build more context-aware applications, we will
be able to determine what types of different applications
are best supported in ubiquitous environment. Finally, the

need to develop knowledge representations is a major
challenge that we are tackling by considering one
application scenario at a time.

6. ACKNOWLEDGMENTS

 This work was funded by the National Technology
Agency of Finland and the Academy of Finland. The
authors would like to thank all the personnel in the
Capnet program, and the participating companies.

7. REFERENCES

1. Salber, D., Dey, A., Abowd, G.: The Context Toolkit:

Aiding the development of context enabled applications.
Proc CHI 99 Conference on Human Factors in Computer
Systems, Pittsburgh, PA, 1999, pp. 434-441.

2. Weiser, M.: The Computer for the Twenty-First Century.
Scientific American, September 1991, pp. 94-104.

3. Sauvola, J.: Capnet Project.
http://www.mediateam.oulu.fi/projects/capnet/

4. Lamming, M., Flynn M.: Forget-me-not: Intimate
Computing in Support of Human Memory, Proc FRIEND21,
International Symposium on Next Generation Human
Interface, February 1994, pp. 125-128.

5. Schilit, BN., Adams, N., Want, R.: Context-aware
computing applications. Proc. IEEE Workshop on Mobile
Computing Systems and Applications, Santa Cruz, CA,
1994, pp. 85-90.

6. Beigl, M.: MemoClip: a location-based remembrance
appliance. Personal Technologies, Vol. 4, No. 4, 2000, pp.
230–23 4F.

7. Dey, AK., Abowd, GD.: CybreMinder: a context-aware
system for supporting reminders. Proc. 2nd International
Symposium on Handheld and Ubiquitous Computing,
Bristol, UK, September 2000, pp. 172-186.

8. Brown, PJ.: The Stick-e document: a framework for creating
context-aware applications. Proc Electronic Publishing
1996, pp. 259-272.

9. Jones, GJF., Brown, PJ.: Context-aware retrieval for
pervasive computing environments. Proc First International
Conference on Pervasive Computing, Zurich, Switzerland,
August 2002, pp. 10-27.

10. Hess, CK., Campbell, RH.: An application of a context-
aware file system. Pervasive Ubiquitous Computing, Vol. 7,
No.6, 2003, pp. 339-352.

11. Rekimoto, J.: Time-Machine Computing: A Time-centric
Approach for the Information Environment, Proceedings of
the 12th annual ACM symposium on User interface software
and technology (UIST’ 99), Asheville, NC, November 1999,
pp. 45-54.

12. Dourish, P. et al., Using Properties for Uniform Interaction
in the Presto Document System, Proceedings of the 12th
annual ACM symposium on User interface software and

technology (UIST’ 99), Asheville, NC, November 1999, pp.
55-64.

13. Pirttikangas, S., Riekki, J., Porspakka, S., Röning, J.: Know
Your Whereabouts. 2004 Communication Networks and
Distributed Systems Modeling and Simulation Conference
(CNDS'04), San Diego, CA, January 2004.

14. Perttunen, M., Riekki, J.: Inferring Presence in a Context-
Aware Instant Messaging System. 2004 IFIP International
Conference on Intelligence in Communication Systems
(INTELLCOMM 04), Bangkok, Thailand, November 2004.

15. Karunanidhi, A., Doermann, D., Parekh, N., Rautio, V.:
Video analysis applications for pervasive environments.
Proc. 1st International Conference on Mobile and Ubiquitous
Multimedia, Oulu, Finland, 2002, pp. 48-55.

16. Pan, P., Kastner, C., Crow, D., Davenport, G.: M-Studio: An
authoring application for context-aware multimedia. Proc
ACM Workshops on Multimedia, 2002, pp. 351-354.

17. Keränen, H., Rantakokko, T., Mäntyjärvi, J.: Sharing and
presenting multimedia and context information within
communities using mobile terminals. IEEE Conference on
Multimedia and Expo, Vol.2 2003 , pp. 641-644

