2

C# & .net concepts level1

CONTENTS

· The .net framework.

1
· CTS

· CLS

· CLR

· MSIL

· JIT

· PRE-JIT

· Features of the Common Language Runtime

11

· .NET Framework Class Library

12
· Building a simple program using C#

16
· C# Variables and Primitive Types

18

· Flow Control and conditions

21

· Methods

26
· Passing Parameters to Methods

28

· Arrays

29

· Operators

32

· Boxing and Unboxing

35

· Enumerations

36
· Namespace

37

· Structs

40
· Classes and Inheritence

41
· Abstract Classes and Functions

46

· Sealed Classes and Methods

47

· Access Specifiers

47

· The XML type comment in C#.

48

· PARAMS

51
· Operator overloading in c#

55
· The properties and indexers

64
· Read-only and constant members

67

· TYPE

71
· The abstract and interface keywords

71

· The base and this keyword

78

· The is and as keywords

83
· Overriding virtual and non virtual functions

86
· Creating a multi module.

88

· Ngen utility.

89

· The ildasm utility.

89
· The dumpbin utility.

90
· Static constructor.

90

· Boxing and unboxing.

92
· Delegates, events and callbacks.

93

· Single cast delegate.

· Multicast delegates.

· Use of sizeof and typeof.

99
· Attributes.

104
· Creating custom attributes.

· Garbage collection allgorthm.

118
· The freachable and finalization quque.

· The GC class.

· The Idisposable interface and Dispose method.

125

· The using block.

130
· The unsafe block.

131
· The checked block.

133

· The fixed block.

· Exception handling.

135
· Serialization.

142
· Xml serialization

· Binary serialization

· Soap serialization.

· Assembly

146
· Private assembly v/s shared assemblies

· The SN utility.

· The gacutil utility.

· Versioning an assembly.

· Runtime migration of an assembly.

· The Application configuration file.

· The publisher policy file.

· The assembly linker utility(AL).

· Secrets with delay signing

· Consuming an API using DllImport attribute.

183
· Consuming a component in dotnet client.

187
· Tlbimp.exe utility.
· Exposing a dotnet component to COM client.

194
· Tlbexp.exe utility.

· Regasm.exe utility.

The Relationship of C# to .NET

C# is a new programming language, and is significant in two respects:

· It is specifically designed and targeted for use with Microsoft's .NET Framework (a feature-rich platform for the development, deployment, and execution of distributed applications)

· It is a language based upon the modern object-oriented design methodology,.

Although it is designed to generate code that targets the .NET environment, it is not itself part of .NET.

The Common Language Runtime

· Central to the .NET framework is its run-time execution environment, known as the Common Language Runtime (CLR) or the .NET runtime.

· Code running under the control of the CLR is often termed managed code.

However, before it can be executed by the CLR, any source code that we develop needs to be compiled. Compilation occurs in two steps in .NET:

1. Compilation of source code to Microsoft Intermediate Language (MS-IL)

2. Compilation of IL to platform-specific code by the CLR

Advantages of Managed Code

Platform Independence

Language Interoperability

COM and COM+ Interoperability

Intermediate Language

Here are the important features of the Intermediate Language:

· Object-orientation and use of interfaces

· Strong distinction between value and reference types

· Strong data typing

· Error handling through the use of exceptions

· Use of attributes

Common Type System (CTS)
· This data type problem is solved in .NET through the use of the Common Type System (CTS).

· The CTS defines the predefined data types that are available in IL, so that all languages that target the .NET framework will produce compiled code that is ultimately based on these types.

Common Language Specification (CLS)
· The Common Language Specification works with the Common Type System to ensure language interoperability.

· The CLS is a set of minimum standards that all compilers targeting .NET must support.

· Since IL is a very rich language, writers of most compilers will prefer to restrict the capabilities of a given compiler to only support a subset of the facilities offered by IL and the CTS.

· That is fine, as long as the compiler supports everything that is defined in the CLS

· It is perfectly acceptable to write non-CLS-compliant code. However, if you do, the compiled IL code isn't guaranteed to be fully language-interoperable.

Garbage Collection
The garbage collector is .NET's answer to memory management, and in particular to the question of what to do about reclaiming memory that running applications ask for.

Up until now there have been two techniques used on Windows platform for deallocating memory

· Make the application code do it all manually

· Make objects maintain reference counts

The .NET runtime relies on the garbage collector instead.

This is a program whose purpose is to clean up memory.

· The idea is that all dynamically requested memory is allocated on the heap (that is true for all languages, although in the case of .NET, the CLR maintains its own managed heap for .NET applications to use).

· Every so often, when .NET detects that the managed heap for a given process is becoming full and therefore needs tidying up, it calls the garbage collector.

· The garbage collector runs through variables currently in scope in your code, examining references to objects stored on the heap to identify which ones are accessible from your code - that is to say which objects have references that refer to them. Any objects that are not referred to are deemed to be no longer accessible from your code and can therefore be removed.

Application Domains
· Application domains are an important innovation in .NET and are designed to ease the overhead involved when running applications that need to be isolated from each other, but which also need to be able to communicate with each other.

· The classic example of this is a web server application, which may be simultaneously responding to a number of browser requests. It will, therefore, probably have a number of instances of the component responsible for servicing those requests running simultaneously.

· Application domains are designed as a way of separating components without resulting in the performance problems associated with passing data between processes.

· The idea is that any one process is divided into a number of application domains.

· Each application domain roughly corresponds to a single application, and each thread of execution will be running in a particular application domain:

· If different executables are running in the same process space, then they are clearly able to easily share data, because theoretically they can directly see each other's data. However, although this is possible in principle, the CLR makes sure that this does not happen in practice by inspecting the code for each running application, to ensure that the code cannot stray outside its own data areas. This sounds at first sight like an almost impossible trick to pull off - after all how can you tell what the program is going to do without actually running it?

· Code that has been verified to check that it cannot access data outside its application domain (other than through the explicit remoting mechanism) is said to be memory type-safe. Such code can safely be run alongside other type safe code in different application domains within the same process.

Distinct Value and Reference Types

· Value types are those for which a variable directly stores its data, while reference types are those for which a variable simply stores the address at which the corresponding data can be found.

· Instances of reference types are always stored in an area of memory known as the managed heap, while value types are normally stored on the stack

Assemblies
· An assembly is the logical unit that contains compiled code targeted at .NET.

· An assembly is completely self-describing, and is a logical rather than a physical unit, which means that it can be stored across more than one file (indeed dynamic assemblies are stored in memory, not on file at all).

· If an assembly is stored in more than one file, then there will be one main file that contains the entry point and describes the other files in the assembly.

· An important characteristic of assemblies is that they contain metadata that describes the types and methods defined in the corresponding code.

· An assembly, however, also contains assembly metadata that describes the assembly itself.

· This assembly metadata, contained in an area known as the manifest, allows checks to be made on the version of the assembly, and on its integrity.

· ildasm, a Windows-based utility, can be used to inspect the contents of an assembly, including the manifest and metadata.

Assemblies come in two types: shared and private assemblies.
Private Assemblies
· Private assemblies are the simplest type.

· They normally ship with software, and are intended to be used only with that software.

· The usual scenario in which you will ship private assemblies is the case in which you are supplying an application in the form of an executable and a number of libraries, where the libraries contain code that should only be used with that application.

· The system guarantees that private assemblies will not be used by other software, because an application may only load private assemblies that are located in the same folder that the main executable is loaded in, or in a subfolder of it.

· Because a private assembly is entirely self-contained, the process of deploying it is simple. You simply place the appropriate file(s) in the appropriate folder in the file system (there are no registry entries that need to be made). This process is known as zero impact (xcopy) installation.

Shared Assemblies
· Shared assemblies are intended to be common libraries that any other application can use. Because any other software can access a shared assembly, more precautions need to be taken against the following risks:

· Name collisions, where another company's shared assembly implements types that have the same names as those in your shared assembly. Because client code can theoretically have access to both assemblies simultaneously, this could be a serious problem.

· The risk of an assembly being overwritten by a different version of the same assembly - the new version being incompatible with some existing client code.

· The solution to these problems involves placing shared assemblies in a special directory subtree in the file system, known as the global assembly cache.

· Unlike with private assemblies, this cannot be done by simply copying the assembly into the appropriate folder - it needs to be specifically installed into the cache. This process can be performed by a number of .NET utilities
· In order to avoid the risk of name collisions, shared assemblies are given a name that is based on private key cryptography (private assemblies are simply given the same name as their main file name). This name is known as a strong name, is guaranteed to be unique, and must be quoted by applications that wish to reference a shared assembly.

.NET Framework Classes
· The .NET base classes are a massive collection of managed code classes that have been written by Microsoft, and which allow you to do almost any of the tasks that were previously available through the Windows API.

· These classes follow the same object model as used by IL, based on single inheritance.

· This means that you can either instantiate objects of whichever .NET base class is appropriate, or you can derive your own classes from them.

· The great thing about the .NET base classes is that they have been designed to be very intuitive and easy to use.
Namespaces
· Namespaces are the way that .NET avoids name clashes between classes.

· Namespace is no more than a grouping of data types, but it has the effect that the names of all data types within a namespace automatically get prefixed with the name of the namespace.

· It is also possible to nest namespaces within each other.
· .NET requires all types to be defined in a namespace

 If a namespace is not explicitly supplied, then the type will be added to a nameless global namespace.

The .net framework.

The .NET Framework is a new computing platform that simplifies application development in the highly distributed environment of the Internet. The .NET Framework is designed to fulfill the following objectives:

· To provide a consistent object-oriented programming environment whether object code is stored and executed locally, executed locally but Internet-distributed, or executed remotely.

· To provide a code-execution environment that minimizes software deployment and versioning conflicts.

· To provide a code-execution environment that guarantees safe execution of code, including code created by an unknown or semi-trusted third party.

· To provide a code-execution environment that eliminates the performance problems of scripted or interpreted environments.

· To make the developer experience consistent across widely varying types of applications, such as Windows-based applications and Web-based applications.

· To build all communication on industry standards to ensure that code based on the .NET Framework can integrate with any other code.

The .NET Framework has two main components: the common language runtime and the .NET Framework class library. The common language runtime is the foundation of the .NET Framework. You can think of the runtime as an agent that manages code at execution time, providing core services such as memory management, thread management, and remoting, while also enforcing strict type safety and other forms of code accuracy that ensure security and robustness. In fact, the concept of code management is a fundamental principle of the runtime. Code that targets the runtime is known as managed code, while code that does not target the runtime is known as unmanaged code. The class library, the other main component of the .NET Framework, is a comprehensive, object-oriented collection of reusable types that you can use to develop applications ranging from traditional command-line or graphical user interface (GUI) applications to applications based on the latest innovations provided by ASP.NET, such as Web Forms and XML Web services.

The .NET Framework can be hosted by unmanaged components that load the common language runtime into their processes and initiate the execution of managed code, thereby creating a software environment that can exploit both managed and unmanaged features. The .NET Framework not only provides several runtime hosts, but also supports the development of third-party runtime hosts.

For example, ASP.NET hosts the runtime to provide a scalable, server-side environment for managed code. ASP.NET works directly with the runtime to enable ASP.NET applications and XML Web services, both of which are discussed later in this topic.

Internet Explorer is an example of an unmanaged application that hosts the runtime (in the form of a MIME type extension). Using Internet Explorer to host the runtime enables you to embed managed components or Windows Forms controls in HTML documents. Hosting the runtime in this way makes managed mobile code (similar to Microsoft® ActiveX® controls) possible, but with significant improvements that only managed code can offer, such as semi-trusted execution and secure isolated file storage.

The following illustration shows the relationship of the common language runtime and the class library to your applications and to the overall system. The illustration also shows how managed code operates within a larger architecture.

.NET Framework in context

The following sections describe the main components and features of the .NET Framework in greater detail.

Features of the Common Language Runtime

The common language runtime manages memory, thread execution, code execution, code safety verification, compilation, and other system services. These features are intrinsic to the managed code that runs on the common language runtime.

With regards to security, managed components are awarded varying degrees of trust, depending on a number of factors that include their origin (such as the Internet, enterprise network, or local computer). This means that a managed component might or might not be able to perform file-access operations, registry-access operations, or other sensitive functions, even if it is being used in the same active application.

The runtime enforces code access security. For example, users can trust that an executable embedded in a Web page can play an animation on screen or sing a song, but cannot access their personal data, file system, or network. The security features of the runtime thus enable legitimate Internet-deployed software to be exceptionally feature rich.

The runtime also enforces code robustness by implementing a strict type-and-code-verification infrastructure called the common type system (CTS). The CTS ensures that all managed code is self-describing. The various Microsoft and third-party language compilers generate managed code that conforms to the CTS. This means that managed code can consume other managed types and instances, while strictly enforcing type fidelity and type safety.

In addition, the managed environment of the runtime eliminates many common software issues. For example, the runtime automatically handles object layout and manages references to objects, releasing them when they are no longer being used. This automatic memory management resolves the two most common application errors, memory leaks and invalid memory references.

The runtime also accelerates developer productivity. For example, programmers can write applications in their development language of choice, yet take full advantage of the runtime, the class library, and components written in other languages by other developers. Any compiler vendor who chooses to target the runtime can do so. Language compilers that target the .NET Framework make the features of the .NET Framework available to existing code written in that language, greatly easing the migration process for existing applications.

While the runtime is designed for the software of the future, it also supports software of today and yesterday. Interoperability between managed and unmanaged code enables developers to continue to use necessary COM components and DLLs.

The runtime is designed to enhance performance. Although the common language runtime provides many standard runtime services, managed code is never interpreted. A feature called just-in-time (JIT) compiling enables all managed code to run in the native machine language of the system on which it is executing. Meanwhile, the memory manager removes the possibilities of fragmented memory and increases memory locality-of-reference to further increase performance.

Finally, the runtime can be hosted by high-performance, server-side applications, such as Microsoft® SQL Server™ and Internet Information Services (IIS). This infrastructure enables you to use managed code to write your business logic, while still enjoying the superior performance of the industry's best enterprise servers that support runtime hosting.

.NET Framework Class Library

The .NET Framework class library is a collection of reusable types that tightly integrate with the common language runtime. The class library is object oriented, providing types from which your own managed code can derive functionality. This not only makes the .NET Framework types easy to use, but also reduces the time associated with learning new features of the .NET Framework. In addition, third-party components can integrate seamlessly with classes in the .NET Framework.

For example, the .NET Framework collection classes implement a set of interfaces that you can use to develop your own collection classes. Your collection classes will blend seamlessly with the classes in the .NET Framework.

As you would expect from an object-oriented class library, the .NET Framework types enable you to accomplish a range of common programming tasks, including tasks such as string management, data collection, database connectivity, and file access. In addition to these common tasks, the class library includes types that support a variety of specialized development scenarios. For example, you can use the .NET Framework to develop the following types of applications and services:

· Console applications.

· Windows GUI applications (Windows Forms).

· ASP.NET applications.

· XML Web services.

· Windows services.

For example, the Windows Forms classes are a comprehensive set of reusable types that vastly simplify Windows GUI development. If you write an ASP.NET Web Form application, you can use the Web Forms classes.

Client Application Development

· Client applications are the closest to a traditional style of application in Windows-based programming. These are the types of applications that display windows or forms on the desktop, enabling a user to perform a task. Client applications include applications such as word processors and spreadsheets, as well as custom business applications such as data-entry tools, reporting tools, and so on. Client applications usually employ windows, menus, buttons, and other GUI elements, and they likely access local resources such as the file system and peripherals such as printers.

· Another kind of client application is the traditional ActiveX control (now replaced by the managed Windows Forms control) deployed over the Internet as a Web page. This application is much like other client applications: it is executed natively, has access to local resources, and includes graphical elements.

· In the past, developers created such applications using C/C++ in conjunction with the Microsoft Foundation Classes (MFC) or with a rapid application development (RAD) environment such as Microsoft® Visual Basic®. The .NET Framework incorporates aspects of these existing products into a single, consistent development environment that drastically simplifies the development of client applications.

· The Windows Forms classes contained in the .NET Framework are designed to be used for GUI development. You can easily create command windows, buttons, menus, toolbars, and other screen elements with the flexibility necessary to accommodate shifting business needs.

· For example, the .NET Framework provides simple properties to adjust visual attributes associated with forms. In some cases the underlying operating system does not support changing these attributes directly, and in these cases the .NET Framework automatically recreates the forms. This is one of many ways in which the .NET Framework integrates the developer interface, making coding simpler and more consistent.

· Unlike ActiveX controls, Windows Forms controls have semi-trusted access to a user's computer. This means that binary or natively executing code can access some of the resources on the user's system (such as GUI elements and limited file access) without being able to access or compromise other resources. Because of code access security, many applications that once needed to be installed on a user's system can now be safely deployed through the Web. Your applications can implement the features of a local application while being deployed like a Web page.

Server Application Development

· Server-side applications in the managed world are implemented through runtime hosts. Unmanaged applications host the common language runtime, which allows your custom managed code to control the behavior of the server. This model provides you with all the features of the common language runtime and class library while gaining the performance and scalability of the host server.

· The following illustration shows a basic network schema with managed code running in different server environments. Servers such as IIS and SQL Server can perform standard operations while your application logic executes through the managed code.

Server-side managed code
[image: image1.png]
· ASP.NET is the hosting environment that enables developers to use the .NET Framework to target Web-based applications. However, ASP.NET is more than just a runtime host; it is a complete architecture for developing Web sites and Internet-distributed objects using managed code. Both Web Forms and XML Web services use IIS and ASP.NET as the publishing mechanism for applications, and both have a collection of supporting classes in the .NET Framework.

· XML Web services, an important evolution in Web-based technology, are distributed, server-side application components similar to common Web sites. However, unlike Web-based applications, XML Web services components have no UI and are not targeted for browsers such as Internet Explorer and Netscape Navigator. Instead, XML Web services consist of reusable software components designed to be consumed by other applications, such as traditional client applications, Web-based applications, or even other XML Web services. As a result, XML Web services technology is rapidly moving application development and deployment into the highly distributed environment of the Internet.

· If you have used earlier versions of ASP technology, you will immediately notice the improvements that ASP.NET and Web Forms offer. For example, you can develop Web Forms pages in any language that supports the .NET Framework. In addition, your code no longer needs to share the same file with your HTTP text (although it can continue to do so if you prefer). Web Forms pages execute in native machine language because, like any other managed application, they take full advantage of the runtime. In contrast, unmanaged ASP pages are always scripted and interpreted. ASP.NET pages are faster, more functional, and easier to develop than unmanaged ASP pages because they interact with the runtime like any managed application.

· The .NET Framework also provides a collection of classes and tools to aid in development and consumption of XML Web services applications. XML Web services are built on standards such as SOAP (a remote procedure-call protocol), XML (an extensible data format), and WSDL (the Web Services Description Language). The .NET Framework is built on these standards to promote interoperability with non-Microsoft solutions.

· For example, the Web Services Description Language tool included with the .NET Framework SDK can query an XML Web service published on the Web, parse its WSDL description, and produce C# or Visual Basic source code that your application can use to become a client of the XML Web service. The source code can create classes derived from classes in the class library that handle all the underlying communication using SOAP and XML parsing. Although you can use the class library to consume XML Web services directly, the Web Services Description Language tool and the other tools contained in the SDK facilitate your development efforts with the .NET Framework.

· If you develop and publish your own XML Web service, the .NET Framework provides a set of classes that conform to all the underlying communication standards, such as SOAP, WSDL, and XML. Using those classes enables you to focus on the logic of your service, without concerning yourself with the communications infrastructure required by distributed software development.

C# Basics

Our First C# Program

· Let's start in the traditional way by compiling and running the simplest possible C# program - a simple class consisting of a console application that writes a message to the screen. Type the following into a text editor (such as Notepad), and save it with a .cs extension (for example, First.cs).
using System;
namespace MyNamespace
{
 class MyFirstCSharpClass
 {
 static void Main()
 {
 Console.WriteLine("This isn't at all like Java!");
 Console.ReadLine();
 return;
 }
 }
}
You can compile this program simply running the C# command-line compiler (csc.exe) against the source file, like this:

csc First.cs
Output

Hello, World!

Code Discussion

Every Main method must be contained inside a class (Hello1 in this case).

The System.Console class contains a WriteLine method that can be used to display a string to the console.

Example 2

To avoid fully qualifying classes throughout a program, you can use the using directive as shown below:

// Hello2.cs

using System;

public class Hello2

{

 public static void Main()

 {

 Console.WriteLine("Hello, World!");

 }

}

Output

Hello, World!

Example 3

If you need access to the command line parameters passed in to your application, simply change the signature of the Main method to include them as shown below. This example counts and displays the command line arguments.

// Hello3.cs

// arguments: A B C D

using System;

public class Hello3

{

 public static void Main(string[] args)

 {

 Console.WriteLine("Hello, World!");

 Console.WriteLine("You entered the following {0} command line arguments:",

 args.Length);

 for (int i=0; i < args.Length; i++)

 {

 Console.WriteLine("{0}", args[i]);

 }

 }

}

Output

Hello, World!

You entered the following 4 command line arguments:

A

B

C

D

Example 4

To return a return code, change the signature of the Main method as shown below:

// Hello4.cs

using System;

public class Hello4

{

 public static int Main(string[] args)

 {

 Console.WriteLine("Hello, World!");

 return 0;

 }

}

Output

Hello, World!
Variables
· We declare variables in C# using the following syntax:

datatype identifier;
for example:

int i;
· We can also declare the variable and initialize its value at the same time:

int i = 10;
· To declare variables of different types, you need to use separate statements – don't assign different data types within a multiple variable declaration:

int x = 10;
bool y = true; // Creates a variable that stores true or false
int x = 10, bool y = true; // This won't compile!
Initialization of Variables
C# has two methods for ensuring that variables are initialized before use:

· Variables that are fields in a class or struct, if not initialized explicitly, are by default zeroed out when they are created.

· Variables that are local to a method must be explicitly initialized in your code prior to any statements in which their values are used.

Constants
Prefixing a variable with the const keyword when it is declared and initialized designates that variable as a constant. As the name implies, a constant is a variable whose value cannot be changed throughout its lifetime:

const int a = 100; // This value cannot be changed
Constants have the following characteristics:

· They must be initialized when they are declared, and once a value has been assigned, it can never be overwritten.

· The value of a constant must be computable at compiletime. Therefore, we can't initialize a constant with a value taken from a variable. If you need to do this, you will need to use a read-only field.

· Constants are always implicitly static. However, notice that we don't have to (and, in fact, aren't permitted to) include the static modifier in the constant declaration.

Predefined Data Types
Before examining the data types in C#, it is important to understand that C# distinguishes between two categories of data type:

· Value types

· Reference types

We will look in detail at the syntax for value and reference types over the next few sections. Conceptually, the difference is that a value type stores its value directly, while a reference type stores a reference to the value.

These types are stored in different places in memory; value types in an area known as the stack, while reference types are stored in an area known as the managed heap.

Predefined Value Types

Integer Types

	Name
	CTS Type
	Description
	Range (min:max)

	sbyte
	System.SByte
	8-bit signed integer
	-128:127 (-27:27-1)

	short
	System.Int16
	16-bit signed integer
	-32,768:32,767 (-215:215-1)

	int
	System.Int32
	32-bit signed integer
	-2,147,483,648:2,147,483,647 (-231:231-1)

	long
	System.Int64
	64-bit signed integer
	-9,223,372,036,854,775,808: 9,223,372,036,854,775,807 (-263:263-1)

	byte
	System.Byte
	8-bit unsigned integer
	0:255 (0:28-1)

	ushort
	System.UInt16
	16-bit unsigned integer
	0:65,535 (0:216-1)

	uint
	System.UInt32
	32-bit unsigned integer
	0:4,294,967,295 (0:232-1)

	ulong
	System.UInt64
	64-bit unsigned integer
	0:18,446,744,073,709,551,615(0:264-1)

Floating Point Types
	Name
	CTS Type
	Description
	Significant Figures
	Range (approximate)

	float
	System.Single
	32-bit single-precision floating- point
	7
	±1.5 × 10-45 to ±3.4 × 1038

	double
	System.Double
	64-bit double-precision floating- point
	15/16
	±5.0 × 10-324 to ±1.7 × 10308

Decimal Type
	Name
	CTS Type
	Description
	Significant Figures
	Range (approximate)

	decimal
	System.Decimal
	128-bit high precision decimal notation
	28
	±1.0 × 10-28 to ±7.9 × 1028

Boolean Type
	Name
	CTS Type
	Values

	bool
	System.Boolean
	true or false

Character Type
	Name
	CTS Type
	Values

	char
	System.Char
	Represents a single 16-bit (Unicode) character

Predefined Reference Types
	Name
	CTS Type
	Description

	object
	System.Object
	The root type, from which all other types in the CTS derive (including value types)

	string
	System.String
	Unicode character string

Flow Control
Conditional Statements
Conditional statements allow us to branch our code depending on whether certain conditions are met or on the value of an expression.

The if Statement

For conditional branching, C# inherits C and C++'s if...else construct. The syntax should be fairly intuitive for anyone who has done any programming with a procedural language:

if (condition)

 statement(s)
else

 statement(s)
We can also combine else if clauses to test for multiple conditions.

using System;

namespace MyNamespace

{

 class MainEntryPoint

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Type in a string");
 string input;
 input = Console.ReadLine();
 if (input == "")
 {
 Console.WriteLine("You typed in an empty string");
 }
 else if (input.Length < 5)
 {
 Console.WriteLine("The string had less than 5 characters");
 }
 else if (input.Length < 10)
 {
 Console.WriteLine("The string had at least 5 but less than 10
 characters");
 }
 Console.WriteLine("The string was " + input);
 }

 }

}

The switch Statement
The switch...case statement is good for selecting one branch of execution from a set of mutually exclusive ones.

The following switch statement tests the value of the integerA variable:

switch (integerA)
{
 case 1:
 Console.WriteLine("integerA =1");
 break;
 case 2:
 Console.WriteLine("integerA =2");
 break;
 case 3:
 Console.WriteLine("integerA =3");
 break;
 default:
 Console.WriteLine("integerA is not 1,2, or 3");
 break;
}
Note that the case values must be constant expressions – variables are not permitted.

Control cannot fall through from one case label ('case 2:') to another

There is one exception to the no-fall-through rule however, in that we can fall through from one case to the next if that case is empty.

switch(country)
{
 case "au":
 case "uk":
 case "us":
 language = "English";
 break;
 case "at":
 case "de":
 language = "German";
 break;
}
Loops
C# provides four different loops (for, while, do...while, and foreach) that allow us to execute a block of code repeatedly until a certain condition is met.

The for Loop
C# for loops provide a mechanism for iterating through a loop where we test whether a particular condition holds before we perform another iteration. The syntax is:

for (initializer; condition; iterator)

 statement(s)
where:

· The initializer is the expression evaluated before the first loop is executed (usually initializing a local variable as a loop 'counter').

· The condition is the expression that is checked before each new iteration of the loop (this must evaluate to true for another iteration to be performed).

· The iterator is an expression that will be evaluated after each iteration (usually incrementing the loop counter). The iterations end when the condition evaluates to false.

for (int i = 0; i < 100; i = i+1) // this is equivalent to
 // For i = 0 To 99 in VB.
{
 Console.WriteLine(i);
}
The while Loop
Unlike the for loop, the while loop is most often used to repeat a statement or a block of a statements for a number of times that is not known before the loop begins.

bool condition = false;
while (!condition)
{
 // This loop spins until the condition is true
 DoSomeWork();
 condition = CheckCondition(); // assume CheckCondition() returns a bool
}
The do…while Loop

The do...while loop is the post-test version of the while loop. This means that the loop's test condition is evaluated after the body of the loop has been executed.

bool condition;
do
{
 // this loop will at least execute once, even if Condition is false
 MustBeCalledAtLeastOnce();
 condition = CheckCondition();
} while (condition);
The foreach Loop
The foreach loop is the final C# looping mechanism that we will discuss.

The foreach loop allows us to iterate through each item in a collection.

foreach (int temp in arrayOfInts)
{
 Console.WriteLine(temp);
}
An important point to note with foreach is that we can't change the value of the item in the collection so code such as the following will not compile.

Jump Statements
C# provides a number of statements that allow us to jump immediately to another line in the program.

The goto Statement

The goto statement allows us to jump directly to another specified line in the program, indicated by a label (this is just an identifier followed by a colon):

goto Label1;
 Console.WriteLine("This won't be executed");
Label1:
 Console.WriteLine("Continuing execution from here");
There are a couple of restrictions involved with goto. We can't jump into a block of code such as a for loop, we can't jump out of a class, and we can't exit a finally block after try...catch blocks

The break Statement
We have already met the break statement briefly – when we used it to exit from a case in a switch statement. In fact, break can also be used to exit from for, foreach, while, or do...while loops too. Control will switch to the statement immediately after the end of the loop.

The continue Statement
The continue statement is similar to break, and must also be used within a for, foreach, while, or do...while loop. However, it exits only from the current iteration of the loop, meaning execution will restart at the beginning of the next iteration of the loop, rather than outside the loop altogether.

The return Statement

The return statement is used to exit a method of a class, returning control to the caller of the method. If the method has a return type, return must return a value of this type; otherwise if the method returns void, then you should use return without an expression.

Methods
Declaring Methods
In C#, the definition of a method consists of any method modifiers (such as the method's accessibility), the type of the return value, followed by the name of the method, followed by a list of input arguments enclosed in parentheses, followed by the body of the method enclosed in curly braces:

[modifiers] return_type MethodName([parameters])

{

 // Method body

}

For Example

public bool IsSquare(Rectangle rect)
{
 return (rect.Height == rect.Width);
}
Invoking Methods
The syntax for invoking a method is exactly the same in C#.

The following sample, MathTest, illustrates the syntax for definition of and instantiation of classes, and definition of and invocation of methods. Besides the class that contains the Main() method, it defines a class named MathTest, which contains a couple of methods and a field.

using System;
namespace MyNamespace
{
 class MainEntryPoint
 {
 static void Main()
 {
 // Try calling some static functions
 Console.WriteLine("Pi is " + MathTest.GetPi());
 int x = MathTest.GetSquareOf(5);
 Console.WriteLine("Square of 5 is " + x);
 // Instantiate at MathTest object
 MathTest math = new MathTest(); // this is C#'s way of
 // instantiating a reference type
 // Call non-static methods
 math.value = 30;
 Console.WriteLine(
 "Value field of math variable contains " + math.value);
 Console.WriteLine("Square of 30 is " + math.GetSquare());
 }
 }
 // Define a class named MathTest on which we will call a method
 class MathTest
 {
 public int value;
 public int GetSquare()
 {
 return value*value;
 }
 public static int GetSquareOf(int x)
 {
 return x*x;
 }
 public static double GetPi()
 {
 return 3.14159;
 }
 }
}
Running the MathTest sample produces these results:

csc MathTest.cs
Passing Parameters to Methods
Arguments can in general be passed into methods by reference, or by value.

In C#, all parameters are passed by value unless we specifically say otherwise.

using System;

namespace MyNamespace

{

 class ParameterTest
 {
 static void SomeFunction(int[] ints, int i)
 {
 ints[0] = 100;
 i = 100;
 }
 public static int Main()
 {
 int i = 0;
 int[] ints = { 0, 1, 2, 4, 8 };
 // Display the original values
 Console.WriteLine("i = " + i);
 Console.WriteLine("ints[0] = " + ints[0]);
 Console.WriteLine("Calling SomeFunction...");
 // After this method returns, ints will be changed,
 // but i will not
 SomeFunction(ints, i);
 Console.WriteLine("i = " + i);
 Console.WriteLine("ints[0] = " + ints[0]);
 return 0;
 }
 }
}

One point to remember is that strings are immutable (if we alter a string's value, we create an entirely new string), so strings don't display the typical reference-type behavior. Any changes made to a string within a method call won't affect the original string.
We can, however, force value parameters to be passed by reference. To do so, we use the ref keyword.

static void SomeFunction(int[] ints, ref int i)
{

 ints[0] = 100;

 i = 100;

}

We will also need to add the ref keyword when we invoke the method:

 SomeFunction(ints, ref i);
The out Keyword
It is common for functions to be able to output more than one value from a single routine. This is accomplished using output parameters.

we also need to use the out keyword when we call the method, as well as when we define it:

static void SomeFunction(out int i)
{
 i = 100;
}
public static int Main()
{
 int i; // note how i is declared but not initialized
 SomeFunction(out i);
 Console.WriteLine(i);
 return 0;
}
Arrays
When you declare an array in C#, what is actually going on behind the scenes is that an instance of the .NET base class System.Array is being instantiated.

C# array operations look to you like normal array code, but in fact the C# compiler translates your code into various method calls on System.Array.

Arrays in C# are declared by fixing a set of square brackets to the end of the variable type of the individual elements.

For example

string[] myArray = {"first element", "second element", "third element"};
Note that it is perfectly permissible to use a variable to set how many elements the array will contain, like this:

int len;
len = GetArraySize(); // assume this function works out how big we want
 // the array to be
string[] myArray = new string[len];

Working with Arrays

To find out the size of a one-dimensional array called integers.

int arrayLength = integers.Length;
If the array elements are of one of the predefined types, we can also sort the array into ascending order using the static Array.Sort() method:

Array.Sort(myArray);
we can reverse the existing order of the elements in an array using the static Reverse() method:

Array.Reverse(myArray);
The following short example stores a short list of famous artists' names in a string array, sorts the array into reverse alphabetical order, and then loops through the array to display each name in order in the console window:

string[] artists = {"Leonardo", "Monet", "Van Gogh", "Klee"};
Array.Sort(artists);
Array.Reverse(artists);
foreach (string name in artists)
{
 Console.WriteLine(name);
}
Multidimensional Arrays in C#
C# supports multidimensional arrays in two varieties. The first kind is the rectangular array. A two-dimensional rectangular array is one in which every row has the same number of columns. This is also known as a matrix. As demonstrated in the following example, rectangular arrays are relatively simple to declare and initialize. Here, we declare a two dimensional rectangular array of four rows, each of which has exactly two columns:

string[,] beatleName = { {"Lennon","John"},
 {"McCartney","Paul"},
 {"Harrison","George"},
 {"Starkey","Richard"} };
Note that we use a comma to separate the dimensions in the array declaration, even though we don't actual specify the size of the dimensions. In order to declare a three-dimensional string array, we would use:

string[,,] my3DArray;
An alternative way of initializing the array would be to use nested for loops, like this:

double [,] matrix = new double[10, 10];
for (int i = 0; i < 10; i++)
{
 for (int j=0; j < 10; j++)
 matrix[i, j] = 4;
}
If the array has more than one dimension, we can get the length of any specific dimension using the GetLength() method:

// Get the length of the first dimension
int arrayLength = Integers.GetLength(0);
The second kind of multidimensional array that C# supports is the orthogonal, or so-called jagged array. A jagged two-dimensional array is one in which every row can have a different number of columns. In creating a jagged array, we're basically creating an array of arrays:

int[][] a = new int[3][];
a[0] = new int[4];
a[1] = new int[3];
a[2] = new int[1];
Here, instead of using commas to indicate the number of dimensions in the array, we use an extra set of square brackets for each dimension. Therefore, to declare a three-dimensional jagged array of ints, we would use:

int[][][] ints;
As you loop through each row, you have to use the array's GetLength() method to dynamically ascertain the number of columns that you should loop through. The following example, AuthorNames, illustrates this point.

using System;

namespace MyNamespace

{

 class MainEntryPoint

 {

 static void Main()

 {

 // Declare a two-dimension jagged array of authors' names
 string[][] novelists = new string[3][];
 novelists[0] = new string[] {
 "Fyodor", "Mikhailovich", "Dostoyevsky"};
 novelists[1] = new string[] {
 "James", "Augustine", "Aloysius", "Joyce"};
 novelists[2] = new string[] {
 "Miguel", "de Cervantes", "Saavedra"};
 // Loop through each novelist in the array
 int i;
 for (i = 0; i < novelists.GetLength(0); i++)
 {
 // Loop through each name for the novelist
 int j;
 for (j = 0; j < novelists[i].GetLength(0); j++)
 {
 // Display current part of name
 Console.Write(novelists[i][j] + " ");
 }
 // Start a new line for the next novelist
 Console.Write("\n");
 }

 }

 }

}

Operators
C# supports the following operators, although four (sizeof, *, ->, and &) are only available in unsafe code.

	Category
	Operator

	Arithmetic
	+ - * / %

	Logical
	& | ^ ~ && || !

	String concatenation
	+

	Increment and decrement
	++ --

	Bit shifting
	<< >>

	Comparison
	== != < > <= >=

	Assignment
	= += -= *= /= %= &= |= ^= <<= >>=

	Member access (for objects and structs)
	.

	Indexing (for arrays and indexers)
	[]

	Cast
	()

	Conditional (the Ternary Operator)
	?:

	Object Creation
	new

	Type information
	sizeof (unsafe code only) is typeof as

	Overflow exception control
	checked unchecked

	Indirection and Address
	* -> & (unsafe code only) []

Operator Shortcuts

	Shortcut Operator
	Equivalent To

	x++, ++x
	x = x + 1

	x--, --x
	x = x - 1

	x += y
	x = x + y

	x -= y
	x = x – y

	x *= y
	x = x * y

	x /= y
	x = x / y

	x %= y
	x = x % y

	x >>= y
	x = x >> y

	x <<= y
	x = x << y

	x &= y
	x = x & y

	x |= y
	x = x | y

	x ^= y
	x = x ^ y

The Ternary Operator
It allows us to evaluate a condition, returning one value if that condition is true, or another value if it is false. The syntax is:

condition ? true_value : false_value

for Example
int x = 1;
string s = x.ToString() + " ";
s += (x == 1 ? "man" : "men");
Console.WriteLine(s);
checked and unchecked
Consider the following code:

byte b = 255;
b++;
Console.WriteLine(b.ToString());
· The byte data type can only hold values in the range zero to 255, so incrementing the value of b causes an overflow.

· How the CLR handles this depends on a number of issues, including compiler options, so whenever there's a risk of an unintentional overflow, we really need some way of making sure that we get the result we want.

· To do this, C# provides the checked and unchecked operators. If we mark a block of code as checked, the CLR will enforce overflow checking, and throw an exception if an overflow occurs.

byte b = 255;

checked
{
 b++;
}
Console.WriteLine(b.ToString());

When we try to run this, we will get an error message.

If we want to suppress overflow checking, we can mark the code as unchecked:

byte b = 255;

unchecked
{
 b++;
}
Console.WriteLine(b.ToString());

In this case, no exception will be raised, but we will lose data – since the byte type can't hold a value of 256, the overflowing bits will be discarded, and our b variable will hold a value of zero.

is

The is operator allows us to check whether an object is compatible with a specific type. For example, to check whether a variable is compatible with the object type:

By the phrase is 'compatible', we mean that an object is either of that type or is derived from that type.

int i = 10;
if (i is object)
{
 Console.WriteLine("i is an object");
}
int, like all other C# data types, inherits from object, therefore the expression i is object will evaluate to true, and the message will be displayed.

The as operator is used to perform certain explicit type conversions.

Sizeof
We can determine the size (in bytes) required by a value type on the stack using the sizeof operator:

string s = "A string";
unsafe
{
 Console.WriteLine(sizeof(int));
}
This will display the number 4, as ints are four bytes long.

typeof
The typeof operator returns a Type object representing a specified type. For example, typeof(string) will return a Type object representing the System.String type. This is useful when we want to use reflection to find out information about an object dynamically.

Boxing and Unboxing
Boxing and unboxing allow us to convert value types to reference types and vice versa.

Boxing is the term used to describe the transformation of a value type to a reference type. Basically, the runtime creates a temporary reference-type 'box' for the object on the heap.

This conversion can occur implicitly, as in the example above, but we can also perform it manually:

int i = 20;
object o = i;
Unboxing is the term used to describe the reverse process, where the value of a reference type is cast to a value type. We use the term 'cast' here, as this has to be done explicitly. The syntax is similar to explicit type conversions already described:

int i = 20;
object o = i; // Box the int
int j = (int)o; // Unbox it back into an int
Enumerations

An enumeration is a user-defined integer type. When we declare an enumeration, we specify a set of acceptable values that instances of that enumeration can contain.

We can define an enumeration as follows:

public enum TimeOfDay
{
 Morning = 0,
 Afternoon = 1,
 Evening = 2
}
We will typically use this enumeration to pass an appropriate value into a method, and iterate through the possible values in a switch statement:

class EnumExample
{
 public static int Main()
 {
 WriteGreeting(TimeOfDay.Morning);
 return 0;
 }
 static void WriteGreeting(TimeOfDay timeOfDay)
 {
 switch(timeOfDay)
 {
 case TimeOfDay.Morning:
 Console.WriteLine("Good morning!");
 break;
 case TimeOfDay.Afternoon:
 Console.WriteLine("Good afternoon!");
 break;
 case TimeOfDay.Evening:
 Console.WriteLine("Good evening!");
 break;
 default:
 Console.WriteLine("Hello!");
 break;
 }
 }
}
Namespace
Namespaces provide a way of organizing related classes and other types. Unlike a file or a component, a namespace is a logical.

When we define a class in a C# file, we can include it within a namespace definition.

namespace CustomerPhoneBookApp
{
 using System;
 public struct Subscriber
 {
 // Code for struct here...
 }
}

We can also nest namespaces within other namespaces, creating a hierarchical structure for our types:

namespace MyNamespace
{
 namespace MyInnerNamespace
 {
 namespace Innermost namespace
 {
 class NamespaceExample
 {
 // Code for the class here...
 }
 }
 }
}
The using Statement
using MyNamespace.Inner;
class Test
{
 public static int Main()
 {
 Basics.NamespaceExample NSEx = new Basics.NamespaceExample();
 return 0;
 }
}

Namespace Aliases
Another use of the using keyword is to assign aliases to classes and namespaces.

The syntax for this is:

using alias = NamespaceName;
for example

using System;
using Introduction = Wrox.ProCSharp.Basics;
class Test

{

 public static int Main()

 {

 Introduction.NamespaceExample NSEx =

 new Introduction.NamespaceExample();

 Console.WriteLine(NSEx.GetNamespace());
 return 0;

 }

}

namespace Wrox.ProCSharp.Basics
{
 class NamespaceExample
 {
 public string GetNamespace()
 {
 return this.GetType().Namespace;
 }
 }
}
The Main() Method
· C# programs start execution at a method named Main().

· This must be a static method of a class (or struct), and must have a return type of either int or void.
Multiple Main() Methods
When a C# console or Windows application is compiled, by default the compiler looks for exactly one Main() method in any class matching the signature listed above, and makes that class method the entry point for the program. If there is more than one Main() method, the compiler will return an error message. For example, consider the following code called MainExample.cs:

using System;
namespace MyNamespace
{
 class Client
 {
 public static int Main()
 {
 MathExample.Main();
 return 0;
 }
 }
 class MathExample
 {
 static int Add(int x, int y)
 {
 return x + y;
 }
 public static int Main()
 {
 int i = Add(5,10);
 Console.WriteLine(i);
 return 0;
 }
 }
}
csc MainExample.cs /main: MyNamespace.MathExample

More on Compiling C# Files

	Option
	Output

	/t:exe
	A console application (the default)

	/t:library
	A class library with a manifest

	/t:module
	A component without a manifest

	/t:winexe
	A Windows application (without a console window)

For example

namespace MyNamespace
{
 public class MathLib
 {
 public int Add(int x, int y)
 {
 return x + y;
 }
 }
}
csc /t:library MathLibrary.cs
The console application, MathClient.cs, will simply instantiate this object, and call its Add() method, displaying the result in the console window:

using System;
namespace MyNamespace
{
 class Client
 {
 public static void Main()
 {
 MathLib mathObj = new MathLib();
 Console.WriteLine(mathObj.Add(7,8));
 }
 }
}
We can compile this using the /r switch to point at or reference our newly compiled DLL:

csc MathClient.cs /r:MathLibrary.dll
Structs

A class provides more functionality than you need, and for performance reasons you probably don't want the performance overhead of using the managed heap. Look at this example:

class Dimensions
{
 public double Length;
 public double Width;
}
We've defined a class called Dimensions, which simply stores the length and width of some item. It looks like we're breaking the rules of good program design by making the fields public, but the point is that we don't really need all the facilities of a class for this at all. All we have is two numbers, which we find convenient to treat as a pair rather than individually. There is no need for lots of methods, or for us to be able to inherit from the class, and we certainly don't want to have the .NET runtime go to the trouble of bringing in the heap with all the performance implications, just to store two doubles.

Instead, we're better off defining Dimensions as something called a struct. To do this, the only thing we need to change in the code is to replace the keyword class with struct:

 struct Dimensions
 {

 public double Length;

 public double Width;

 }

You can think of structs in C# as being like scaled down classes. They are basically the same as classes, but designed more for cases where you simply want to group some data together. They differ from classes in the following ways:

· Structs are value types, not reference types. This means they are stored either in the stack or inline (if they are part of another object that is stored on the heap), and have the same lifetime restrictions as the simple data types.

· Structs do not support inheritance.

· There are some differences in the way constructors work for structs. In particular, the compiler always supplies a default no-parameter constructor, which you are not permitted to replace.

· With a struct, you can (if you wish) specify how the fields are to be laid out in memory.

Also, because structs are really intended to group data items together, you'll sometimes find that most or all of their fields are declared as public. This is strictly speaking contrary to the guidelines for writing .NET code - according to Microsoft, fields (other than const fields) should always be private and wrapped by public properties. However, for simple structs, many developers would nevertheless consider public fields to be acceptable programming practice.

Over the following pages, we'll go through the differences between classes and structs in more detail. We won't, however, look at the facility to specify how the fields in a struct are laid out in memory. In C# this feature can be regarded as fairly esoteric; it is only rarely needed (usually for calling native API functions), so we are treating it as beyond the scope of this book. If you do need to do this, you should look up the StructLayout attribute in the MSDN documentation.

Structs Are Value Types

Although structs are value types, you can often treat them syntactically in the same way as classes. For example, with our definition of Dimensions above, we could write:

 Dimensions point = new Dimensions();
 point.Length = 3;
 point.Width = 6;
Note that because structs are value types, the new operator does not work in the same way as it does for classes and other reference types. Instead of allocating memory on the heap, the new operator simply calls the appropriate constructor, according to the parameters passed to it, initializing all fields. Indeed, for structs it is perfectly legal to write:

 Dimensions point;
 point.Length = 3;
 point.Width = 6;
If Dimensions was a class, this would produce a compilation error, because point would contain an uninitialized reference - an address that points nowhere, so we could not start setting values to its fields. For a struct however, the variable declaration actually allocates space on the stack for the entire struct, so it's ready to assign values to. Note, however, that the following code would cause a compilation error, with the compiler complaining that you are using an uninitialized variable:

 Dimensions point;
 Double D = point.Length;
Structs follow the same rules as any other data type: everything must be initialized before use. A struct is considered fully initialized either when the new operator has been called against it, or when values have been individually assigned to all its fields. And of course, a struct defined as a member field of a class is initialized by being zeroed-out automatically when the containing object is initialized.

The fact that structs are value types will affect performance, though depending on how you use your struct, this can be good or bad. On the positive side, allocating memory for structs is very fast because this takes place inline or on the stack. The same goes for removing structs when they go out of scope. On the other hand, whenever you pass a struct as a parameter or assign a struct to another struct (as in A=B, where A and B are structs), the full contents of the struct are copied, whereas for a class only the reference is copied. This will result in a performance loss that depends on the size of the struct - this should emphasize the fact that structs are really intended for small data structures. Note, however, that when passing a struct as a parameter to a method, you can avoid this performance loss by passing it as a ref parameter - in this case only the address in memory of the struct will be passed in, which is just as fast as passing in a class. On the other hand, if you do this, you'll have to be aware that it means the called method can in principle change the value of the struct.

Structs and Inheritance

Structs are not designed for inheritance. This means that it is not possible to inherit from a struct, and a struct cannot derive from any class. The only exception to this is that structs, in common with every other type in C#, derive ultimately from the class System.Object, and it is even possible to override them in structs - an obvious example would be overriding the ToString() method.

For structs, the derivation from System.Object. ValueType adds no new methods of its own, but provides overridden implementations of some of the Object methods that are more appropriate to value types.

Defining methods for structs is exactly the same as defining them for classes:

struct Dimensions

{

 public double Length;

 public double Width;

 Dimensions(double length, double width)

 { Length=length; Width=width; }

 public override string ToString()
 {
 return "(" + Length.ToString() + " , " + Width.ToString() + ")";
 }
We declare the method exactly as we would for a class. Note, however, that it is not possible to declare any member of a struct as virtual, abstract, or sealed. To do so would imply that we were intending other classes to inherit from struct, but structs will not allow you to do that.

Constructors for Structs

You can define constructors for structs in exactly the same way that you can for classes, except that you are not permitted to define a constructor that takes no parameters. This may seem nonsensical, and the reason is buried in the implementation of the .NET runtime. There are some rare circumstances in which the .NET runtime would not be able to call a custom zero-parameter constructor that you have supplied. Microsoft has therefore taken the easy way out and banned zero-parameter constructors for structs in C#. This feature seems to be one of the few poor aspects of the design of .NET, and has caused some controversy in .NET- related newsgroups.

Having said that, the default constructor, which initializes all fields to zero values, is always present implicitly, even if you supply other constructors that take parameters. It's also not possible to sneakily work round the default constructor by explicitly supplying initial values for fields. The following code will cause a compile-time error:

 struct Dimensions
 {
 public double Length = 1; // error. Initial values not allowed
 public double Width = 2; // error. Initial values not allowed
Of course, if Dimensions had been declared as a class, this code would have compiled without any problems.

Incidentally, you can supply a Close() or Dispose() method for a struct in the same way you might choose to do so for a class, but it is not permitted to define a destructor.

Classes and Inheritance
Classes are defined in C# using the following syntax:

class MyClass
{
 private int someField;
 public string SomeMethod(bool parameter)
 {
 }
}
Classes contain members – a member is the term used to refer to any data or function that is defined in the class. We use the term function to refer to any member that contains code – this includes methods, properties, constructors, and operator overloads.

All C# classes are reference types. This means that when you declare a variable of a class type, all you are getting is a variable (memory location) that can in principle store a reference to an instance of that class. You also need to instantiate an object myObject using the new operator:

MyClass myObject;
myObject = new MyClass();
You can, in fact, declare and initialize an instance at the same time:

MyClass myObject = new MyClass();
Single Implementation Inheritance
C# supports single inheritance of classes. In other words, a class may derive directly from one other class. The syntax for this is as follows.

class MyDerivedClass : MyBaseClass
{
 // functions and data members here
}
Method Overloading
C# supports method overloading – several versions of the method that have different signatures (name, number of parameters, and parameter types), but does not support default parameters in the way.

class ResultDisplayer
{
 void DisplayResult(string result)
 {
 // implementation
 }
 void DisplayResult(int result)
 {
 // implementation
 }
}
Method Overriding and Hiding
By declaring a base class function as virtual, we allow the function to be overridden in any derived classes:

class MyBaseClass
{
 public virtual string VirtualMethod()
 {
 return "This method is virtual and defined in MyBaseClass";
 }
}
This means that we can create a different implementation of VirtualMethod() (with the same method signature) in a class derived from MyBaseClass, and when we call this method on an instance of the derived class, the derived class's method is called, not the base class's method.

A derived class's function overrides another function, using the override keyword:

class MyDerivedClass : MyBaseClass
{
 public override string VirtualMethod()
 {
 return "This method is an override defined in MyDerivedClass";
 }
}
Imagine that someone has written a class. Let's call it HisBaseClass:

class HisBaseClass
{
 // various members
}
At some point in the future you write a derived class of your own, which adds some functionality to HisBaseClass. In particular, you add a method called MyGroovyMethod(), which is not present in the base class:

class MyDerivedClass: HisBaseClass
{
 public int MyGroovyMethod()
 {
 // some groovy implementation
 }
}
Now one year later, the author of the base class decides to extend its functionality. By coincidence, he adds a method that is also called MyGroovyMethod(), which has the same name and signature as yours, but probably doesn't do the same thing. When you next compile your code using the new intended to be related in any way to the base class MyGroovyMethod() the result of running this code probably won't be what you wanted. This sort of thing doesn't happen very often, but it does happen. Fortunately version of the base class, you have a potential clash about which method should be called.
C# has been designed in such a way that it copes very well with the situation.

In the first place, you get warned about the problem. In C#, we should use the new keyword to declare that we intend to hide a method, like this:

class MyDerivedClass : HisBaseClass

{

 public new int MyGroovyMethod()
 {

 // some groovy implementation

 }

}

Calling Base Versions of Functions

C# has a special syntax for calling base versions of a method from a derived class. To do this, you write base.<MethodName>().

class CustomerAccount

{

 public virtual decimal CalculatePrice()

 {

 // implementation

 }

}

class GoldAccount : CustomerAccount
{
 public override decimal CalculatePrice()
 {
 return base.CalculatePrice() * 0.9M;
 }
}
Abstract Classes and Functions
C# allows both classes and functions to be declared as abstract. An abstract class cannot be instantiated, while an abstract function does not have an implementation, and must be overridden in any non-abstract derived class. Obviously, an abstract function is automatically virtual (though you don't need to supply the virtual keyword as well – in fact it's regarded as a syntax error if you do). If any class contains any abstract functions, then that class is also abstract and must be declared as such.

abstract class Building
{
 public abstract decimal CalculateHeatingCost(); // abstract method
}
Sealed Classes and Methods
allows classes and methods to be declared as sealed. For the case of a class, this means that you can't inherit from that class. For the case of a method, it means that you can't override that method further.

sealed class FinalClass
{
 // etc
}
class DerivedClass : FinalClass // wrong. Will give compilation error
{
 // etc
}
Access Modifiers

In common with other object-oriented languages, C# has a number of accessibility modifiers, which determine which other code is allowed to be aware of the existence of a given member of a class. C# actually has five such modifiers. The complete list is as follows.

	Accessibility
	Description

	public
	The variable or method can be accessed from anywhere as a field of the type to which it belongs

	internal
	The variable or method can only be accessed from the same assembly

	protected
	The variable or method can only be accessed from within the type to which it belongs, or from types derived from that type

	protected internal
	The variable or method can be accessed from the current assembly, or from types derived from the current type (that is, from anywhere that could access it if it were declared as protected or internal)

	private
	The variable or method can only be accessed from within the type to which it belongs

The XML type comment in C#.

C# provides a mechanism for developers to document their code using XML. In source code files, lines that begin with /// and that precede a user-defined type such as a class, delegate, or interface; a member such as a field, event, property, or method; or a namespace declaration can be processed as comments and placed in a file.

Example

The following sample provides a basic overview of a type that has been documented. To compile the example, type the following command line:

csc XMLsample.cs /doc:XMLsample.xml

This will create the XML file XMLsample.xml, which you can view in your browser or by using the TYPE command.

// XMLsample.cs

// compile with: /doc:XMLsample.xml

using System;

/// <summary>

/// Class level summary documentation goes here.</summary>

/// <remarks>

/// Longer comments can be associated with a type or member

/// through the remarks tag</remarks>

public class SomeClass

{

 /// <summary>

 /// Store for the name property</summary>

 private string myName = null;

 /// <summary>

 /// The class constructor. </summary>

 public SomeClass()

 {

 // TODO: Add Constructor Logic here

 }

 /// <summary>

 /// Name property </summary>

 /// <value>

 /// A value tag is used to describe the property value</value>

 public string Name

 {

 get

 {

 if (myName == null)

 {

 throw new Exception("Name is null");

 }

 return myName;

 }

 }

 /// <summary>

 /// Description for SomeMethod.</summary>

 /// <param name="s"> Parameter description for s goes here</param>

 /// <seealso cref="String">

 /// You can use the cref attribute on any tag to reference a type or member

 /// and the compiler will check that the reference exists. </seealso>

 public void SomeMethod(string s)

 {

 }

 /// <summary>

 /// Some other method. </summary>

 /// <returns>

 /// Return results are described through the returns tag.</returns>

 /// <seealso cref="SomeMethod(string)">

 /// Notice the use of the cref attribute to reference a specific method </seealso>

 public int SomeOtherMethod()

 {

 return 0;

 }

 /// <summary>

 /// The entry point for the application.

 /// </summary>

 /// <param name="args"> A list of command line arguments</param>

 public static int Main(String[] args)

 {

 // TODO: Add code to start application here

 return 0;

 }

}

Code Discussion

XML documentation starts with ///. When you create a new project, the wizards put some starter /// lines in for you. The processing of these comments has some restrictions:

The documentation must be well-formed XML. If the XML is not well-formed, a warning is generated and the documentation file will contain a comment saying that an error was encountered. For more information on well-formed XML, see XML Glossary.

Developers are free to create their own set of tags. There is a recommended set of tags (see the Further Reading section). Some of the recommended tags have special meanings:

The <param> tag is used to describe parameters. If used, the compiler will verify that the parameter exists and that all parameters are described in the documentation. If the verification failed, the compiler issues a warning.

The cref attribute can be attached to any tag to provide a reference to a code element. The compiler will verify that this code element exists. If the verification failed, the compiler issues a warning. The compiler also respects any using statements when looking for a type described in the cref attribute.

The <summary> tag is used by IntelliSense inside Visual Studio to display additional information about a type or member.

Sample Output

Here is the resulting XML file from the class above:

<?xml version="1.0"?>

<doc>

 <assembly>

 <name>xmlsample</name>

 </assembly>

 <members>

 <member name="T:SomeClass">

 <summary>

 Class level summary documentation goes here.</summary>

 <remarks>

 Longer comments can be associated with a type or member

 through the remarks tag</remarks>

 </member>

 <member name="F:SomeClass.myName">

 <summary>

 Store for the name property</summary>

 </member>

 <member name="M:SomeClass.#ctor">

 <summary>The class constructor.</summary>

 </member>

 <member name="M:SomeClass.SomeMethod(System.String)">

 <summary>

 Description for SomeMethod.</summary>

 <param name="s"> Parameter description for s goes here</param>

 <seealso cref="T:System.String">

 You can use the cref attribute on any tag to reference a type or member

 and the compiler will check that the reference exists. </seealso>

 </member>

 <member name="M:SomeClass.SomeOtherMethod">

 <summary>

 Some other method. </summary>

 <returns>

 Return results are described through the returns tag.</returns>

 <seealso cref="M:SomeClass.SomeMethod(System.String)">

 Notice the use of the cref attribute to reference a specific method </seealso>

 </member>

 <member name="M:SomeClass.Main(System.String[])">

 <summary>

 The entry point for the application.

 </summary>

 <param name="args"> A list of command line arguments</param>

 </member>

 <member name="P:SomeClass.Name">

 <summary>

 Name property </summary>

 <value>

 A value tag is used to describe the property value</value>

 </member>

 </members>

</doc>

· If a parameter is declared for a method without ref or out, the parameter can have a value associated with it. That value can be changed in the method, but the changed value will not be retained when control passes back to the calling procedure. By using a method parameter keyword, you can change this behavior.

This section describes the keywords you can use when declaring method parameters:

params

ref

out

PARAMS
The params keyword lets you specify a method parameter that takes an argument where the number of arguments is variable.

No additional parameters are permitted after the params keyword in a method declaration, and only one params keyword is permitted in a method declaration.

Example

// cs_params.cs

using System;

public class MyClass

{

 public static void UseParams(params int[] list)

 {

 for (int i = 0 ; i < list.Length ; i++)

 Console.WriteLine(list[i]);

 Console.WriteLine();

 }

 public static void UseParams2(params object[] list)

 {

 for (int i = 0 ; i < list.Length ; i++)

 Console.WriteLine(list[i]);

 Console.WriteLine();

 }

 public static void Main()

 {

 UseParams(1, 2, 3);

 UseParams2(1, 'a', "test");

 int[] myarray = new int[3] {10,11,12};

 UseParams(myarray);

 }

}

Output

1

2

3

1

a

test

10

11

REF

· The ref method parameter keyword on a method parameter causes a method to refer to the same variable that was passed into the method. Any changes made to the parameter in the method will be reflected in that variable when control passes back to the calling method.

· To use a ref parameter, the argument must explicitly be passed to the method as a ref argument. The value of a ref argument will be passed to the ref parameter.

· An argument passed to a ref parameter must first be initialized. Compare this to an out parameter, whose argument does not have to be explicitly initialized before being passed to an out parameter.

· A property is not a variable and cannot be passed as a ref parameter.

· An overload will occur if declarations of two methods differ only in their use of ref. However, it is not possible to define an overload that only differs by ref and out. For example, the following overload declarations are valid:

class MyClass

{

 public void MyMethod(int i) {i = 10;}

 public void MyMethod(ref int i) {i = 10;}

}

but the following overload declarations are invalid:

class MyClass

{

 public void MyMethod(out int i) {i = 10;}

 public void MyMethod(ref int i) {i = 10;}

}

For information on passing an array, see Passing Arrays Using ref and out.

Example

// cs_ref.cs

using System;

public class MyClass

{

 public static void TestRef(ref char i)

 {

 // The value of i will be changed in the calling method

 i = 'b';

 }

 public static void TestNoRef(char i)

 {

 // The value of i will be unchanged in the calling method

 i = 'c';

 }

 // This method passes a variable as a ref parameter; the value of the

 // variable is changed after control passes back to this method.

 // The same variable is passed as a value parameter; the value of the

 // variable is unchanged after control is passed back to this method.

 public static void Main()

 {

 char i = 'a'; // variable must be initialized

 TestRef(ref i); // the arg must be passed as ref

 Console.WriteLine(i);

 TestNoRef(i);

 Console.WriteLine(i);

 }

}

Output

b

b
out
· The out method parameter keyword on a method parameter causes a method to refer to the same variable that was passed into the method. Any changes made to the parameter in the method will be reflected in that variable when control passes back to the calling method.

· Declaring an out method is useful when you want a method to return multiple values. A method that uses an out parameter can still return a value. A method can have more than one out parameter.

· To use an out parameter, the argument must explicitly be passed to the method as an out argument. The value of an out argument will not be passed to the out parameter.

· A variable passed as an out argument need not be initialized. However, the out parameter must be assigned a value before the method returns.

· A property is not a variable and cannot be passed as an out parameter.

· An overload will occur if declarations of two methods differ only in their use of out. However, it is not possible to define an overload that only differs by ref and out. For example, the following overload declarations are valid:

class MyClass

{

 public void MyMethod(int i) {i = 10;}

 public void MyMethod(out int i) {i = 10;}

}

while the following overload declarations are invalid:

class MyClass

{

 public void MyMethod(out int i) {i = 10;}

 public void MyMethod(ref int i) {i = 10;}

}

For information on passing an array, see Passing Arrays Using ref and out.

Example

// cs_out.cs

using System;

public class MyClass

{

 public static int TestOut(out char i)

 {

 i = 'b';

 return -1;

 }

 public static void Main()

 {

 char i; // variable need not be initialized

 Console.WriteLine(TestOut(out i));

 Console.WriteLine(i);

 }

}

Output

-1

b
Creating Library Assemblies

· The previously described methods create a single-file assembly from a code module that must contain a single entry point, such as a Main or WinMain method. The compiler notifies you if the code module does not contain an entry point. If you do not want the assembly to have an entry point, create a library assembly.

· A library assembly is similar to a class library. It contains types that will be referenced by other assemblies, but it has no entry point to begin execution.

· To create a library assembly

· At the command prompt, type the following command:

<compiler command> /t:library <module name>

· In this command, compiler command is the compiler command for the language used in your code module, and module name is the name of the code module to compile into the assembly. You can also use other compiler options, such as the /out: option.

· The following example creates a library assembly named myCodeAssembly.dll from a code module called myCode.

[C#]

csc /out:myCodeLibrary.dll /t:library myCode.cs
Operator overloading in c#

· Operator overloading permits user-defined operator implementations to be specified for operations where one or both of the operands are of a user-defined class or struct type. The tutorial contains two examples. The first example shows how to use operator overloading to create a complex number class that defines complex addition. The second example shows how to use operator overloading to implement a three-valued logical type.

Example 1

· This example shows how you can use operator overloading to create a complex number class Complex that defines complex addition. The program displays the imaginary and the real parts of the numbers and the addition result using an override of the ToString method.

// complex.cs

using System;

public struct Complex

{

 public int real;

 public int imaginary;

 public Complex(int real, int imaginary)

 {

 this.real = real;

 this.imaginary = imaginary;

 }

 // Declare which operator to overload (+), the types

 // that can be added (two Complex objects), and the

 // return type (Complex):

 public static Complex operator +(Complex c1, Complex c2)

 {

 return new Complex(c1.real + c2.real, c1.imaginary + c2.imaginary);

 }

 // Override the ToString method to display an complex number in the suitable format:

 public override string ToString()

 {

 return(String.Format("{0} + {1}i", real, imaginary));

 }

 public static void Main()

 {

 Complex num1 = new Complex(2,3);

 Complex num2 = new Complex(3,4);

 // Add two Complex objects (num1 and num2) through the

 // overloaded plus operator:

 Complex sum = num1 + num2;

 // Print the numbers and the sum using the overriden ToString method:

 Console.WriteLine("First complex number: {0}",num1);

 Console.WriteLine("Second complex number: {0}",num2);

 Console.WriteLine("The sum of the two numbers: {0}",sum);

 }

}

Output

First complex number: 2 + 3i

Second complex number: 3 + 4i

The sum of the two numbers: 5 + 7i

Example 2

This example shows how operator overloading can be used to implement a three-valued logical type. The possible values of this type are DBBool.dbTrue, DBBool.dbFalse, and DBBool.dbNull, where the dbNull member indicates an unknown value.

Note Defining the True and False operators is only useful for types that represent True, False, and Null (neither True nor False), as used in databases.

// dbbool.cs

using System;

public struct DBBool

{

 // The three possible DBBool values:

 public static readonly DBBool dbNull = new DBBool(0);

 public static readonly DBBool dbFalse = new DBBool(-1);

 public static readonly DBBool dbTrue = new DBBool(1);

 // Private field that stores -1, 0, 1 for dbFalse, dbNull, dbTrue:

 int value;

 // Private constructor. The value parameter must be -1, 0, or 1:

 DBBool(int value)

 {

 this.value = value;

 }

 // Implicit conversion from bool to DBBool. Maps true to

 // DBBool.dbTrue and false to DBBool.dbFalse:

 public static implicit operator DBBool(bool x)

 {

 return x? dbTrue: dbFalse;

 }

 // Explicit conversion from DBBool to bool. Throws an

 // exception if the given DBBool is dbNull, otherwise returns

 // true or false:

 public static explicit operator bool(DBBool x)

 {

 if (x.value == 0) throw new InvalidOperationException();

 return x.value > 0;

 }

 // Equality operator. Returns dbNull if either operand is dbNull,

 // otherwise returns dbTrue or dbFalse:

 public static DBBool operator ==(DBBool x, DBBool y)

 {

 if (x.value == 0 || y.value == 0) return dbNull;

 return x.value == y.value? dbTrue: dbFalse;

 }

 // Inequality operator. Returns dbNull if either operand is

 // dbNull, otherwise returns dbTrue or dbFalse:

 public static DBBool operator !=(DBBool x, DBBool y)

 {

 if (x.value == 0 || y.value == 0) return dbNull;

 return x.value != y.value? dbTrue: dbFalse;

 }

 // Logical negation operator. Returns dbTrue if the operand is

 // dbFalse, dbNull if the operand is dbNull, or dbFalse if the

 // operand is dbTrue:

 public static DBBool operator !(DBBool x)

 {

 return new DBBool(-x.value);

 }

 // Logical AND operator. Returns dbFalse if either operand is

 // dbFalse, dbNull if either operand is dbNull, otherwise dbTrue:

 public static DBBool operator &(DBBool x, DBBool y)

 {

 return new DBBool(x.value < y.value? x.value: y.value);

 }

 // Logical OR operator. Returns dbTrue if either operand is

 // dbTrue, dbNull if either operand is dbNull, otherwise dbFalse:

 public static DBBool operator |(DBBool x, DBBool y)

 {

 return new DBBool(x.value > y.value? x.value: y.value);

 }

 // Definitely true operator. Returns true if the operand is

 // dbTrue, false otherwise:

 public static bool operator true(DBBool x)

 {

 return x.value > 0;

 }

 // Definitely false operator. Returns true if the operand is

 // dbFalse, false otherwise:

 public static bool operator false(DBBool x)

 {

 return x.value < 0;

 }

 // Overload the conversion from DBBool to string:

 public static implicit operator string(DBBool x)

 {

 return x.value > 0 ? "dbTrue"

 : x.value < 0 ? "dbFalse"

 : "dbNull";

 }

 // Override the Object.Equals(object o) method:

 public override bool Equals(object o)

 {

 try

 {

 return (bool) (this == (DBBool) o);

 }

 catch

 {

 return false;

 }

 }

 // Override the Object.GetHashCode() method:

 public override int GetHashCode()

 {

 return value;

 }

 // Override the ToString method to convert DBBool to a string:

 public override string ToString()

 {

 switch (value)

 {

 case -1:

 return "DBBool.False";

 case 0:

 return "DBBool.Null";

 case 1:

 return "DBBool.True";

 default:

 throw new InvalidOperationException();

 }

 }

}

class Test

{

 static void Main()

 {

 DBBool a, b;

 a = DBBool.dbTrue;

 b = DBBool.dbNull;

 Console.WriteLine("!{0} = {1}", a, !a);

 Console.WriteLine("!{0} = {1}", b, !b);

 Console.WriteLine("{0} & {1} = {2}", a, b, a & b);

 Console.WriteLine("{0} | {1} = {2}", a, b, a | b);

 // Invoke the true operator to determine the Boolean

 // value of the DBBool variable:

 if (b)

 Console.WriteLine("b is definitely true");

 else

 Console.WriteLine("b is not definitely true");

 }

}

Output

!DBBool.True = DBBool.False

!DBBool.Null = DBBool.Null

DBBool.True & DBBool.Null = DBBool.Null

DBBool.True | DBBool.Null = DBBool.True

b is not definitely true
Implicit and explicit type conversions

C# allows programmers to declare conversions on classes or structs so that classes or structs can be converted to and/or from other classes or structs, or basic types. Conversions are defined like operators and are named for the type to which they convert.

In C#, conversions can be declared either as implicit, which occur automatically when required, or explicit, which require a cast to be called. All conversions must be static, and must either take the type the conversion is defined on, or return that type.

This tutorial introduces two examples. The first example shows how to declare and use conversions, and the second example demonstrates conversions between structs.

Example 1

In this example, a RomanNumeral type is declared, and several conversions to and from it are defined.

// conversion.cs

using System;

struct RomanNumeral

{

 public RomanNumeral(int value)

 {

 this.value = value;

 }

 // Declare a conversion from an int to a RomanNumeral. Note the

 // the use of the operator keyword. This is a conversion

 // operator named RomanNumeral:

 static public implicit operator RomanNumeral(int value)

 {

 // Note that because RomanNumeral is declared as a struct,

 // calling new on the struct merely calls the constructor

 // rather than allocating an object on the heap:

 return new RomanNumeral(value);

 }

 // Declare an explicit conversion from a RomanNumeral to an int:

 static public explicit operator int(RomanNumeral roman)

 {

 return roman.value;

 }

 // Declare an implicit conversion from a RomanNumeral to

 // a string:

 static public implicit operator string(RomanNumeral roman)

 {

 return("Conversion not yet implemented");

 }

 private int value;

}

class Test

{

 static public void Main()

 {

 RomanNumeral numeral;

 numeral = 10;

// Call the explicit conversion from numeral to int. Because it is

// an explicit conversion, a cast must be used:

 Console.WriteLine((int)numeral);

// Call the implicit conversion to string. Because there is no

// cast, the implicit conversion to string is the only

// conversion that is considered:

 Console.WriteLine(numeral);

// Call the explicit conversion from numeral to int and

// then the explicit conversion from int to short:

 short s = (short)numeral;

 Console.WriteLine(s);

 }

}

Output

10

Conversion not yet implemented

10

Example 2

This example defines two structs, RomanNumeral and BinaryNumeral, and demonstrates conversions between them.

// structconversion.cs

using System;

struct RomanNumeral

{

 public RomanNumeral(int value)

 {

 this.value = value;

 }

 static public implicit operator RomanNumeral(int value)

 {

 return new RomanNumeral(value);

 }

 static public implicit operator RomanNumeral(BinaryNumeral binary)

 {

 return new RomanNumeral((int)binary);

 }

 static public explicit operator int(RomanNumeral roman)

 {

 return roman.value;

 }

 static public implicit operator string(RomanNumeral roman)

 {

 return("Conversion not yet implemented");

 }

 private int value;

}

struct BinaryNumeral

{

 public BinaryNumeral(int value)

 {

 this.value = value;

 }

 static public implicit operator BinaryNumeral(int value)

 {

 return new BinaryNumeral(value);

 }

 static public implicit operator string(BinaryNumeral binary)

 {

 return("Conversion not yet implemented");

 }

 static public explicit operator int(BinaryNumeral binary)

 {

 return(binary.value);

 }

 private int value;

}

class Test

{

 static public void Main()

 {

 RomanNumeral roman;

 roman = 10;

 BinaryNumeral binary;

 // Perform a conversion from a RomanNumeral to a

 // BinaryNumeral:

 binary = (BinaryNumeral)(int)roman;

 // Performs a conversion from a BinaryNumeral to a RomanNumeral.

 // No cast is required:

 roman = binary;

 Console.WriteLine((int)binary);

 Console.WriteLine(binary);

 }

}

Output

10

Conversion not yet implemented

Code Discussion

· In the preceding example, the statement:

binary = (BinaryNumeral)(int)roman;

performs a conversion from a RomanNumeral to a BinaryNumeral. Because there is no direct conversion from RomanNumeral to BinaryNumeral, a cast is used to convert from a RomanNumeral to an int, and another cast to convert from an int to a BinaryNumeral.

· Also the statement:

roman = binary;

performs a conversion from a BinaryNumeral to a RomanNumeral. Because RomanNumeral defines an implicit conversion from BinaryNumeral, no cast is required.
The properties and indexers.

Defining an indexer allows you to create classes that act like "virtual arrays." Instances of that class can be accessed using the [] array access operator. Defining an indexer in C# is similar to defining operator [] in C++, but is considerably more flexible. For classes that encapsulate array- or collection-like functionality, using an indexer allows the users of that class to use the array syntax to access the class.

For example, suppose you want to define a class that makes a file appear as an array of bytes. If the file were very large, it would be impractical to read the entire file into memory, especially if you only wanted to read or change a few bytes. By defining a FileByteArray class, you could make the file appear similar to an array of bytes, but actually do file input and output when a byte was read or written.

In addition to the example below, an advanced topic on Creating an Indexed Property is discussed in this tutorial.

Example

In this example, the class FileByteArray makes it possible to access a file as if it were a byte array. The Reverse class reverses the bytes of the file. You can run this program to reverse the bytes of any text file including the program source file itself. To change the reversed file back to normal, run the program on the same file again.

// indexer.cs

// arguments: indexer.txt

using System;

using System.IO;

// Class to provide access to a large file

// as if it were a byte array.

public class FileByteArray

{

 Stream stream; // Holds the underlying stream

 // used to access the file.

// Create a new FileByteArray encapsulating a particular file.

 public FileByteArray(string fileName)

 {

 stream = new FileStream(fileName, FileMode.Open);

 }

 // Close the stream. This should be the last thing done

 // when you are finished.

 public void Close()

 {

 stream.Close();

 stream = null;

 }

 // Indexer to provide read/write access to the file.

 public byte this[long index] // long is a 64-bit integer

 {

 // Read one byte at offset index and return it.

 get

 {

 byte[] buffer = new byte[1];

 stream.Seek(index, SeekOrigin.Begin);

 stream.Read(buffer, 0, 1);

 return buffer[0];

 }

 // Write one byte at offset index and return it.

 set

 {

 byte[] buffer = new byte[1] {value};

 stream.Seek(index, SeekOrigin.Begin);

 stream.Write(buffer, 0, 1);

 }

 }

 // Get the total length of the file.

 public long Length

 {

 get

 {

 return stream.Seek(0, SeekOrigin.End);

 }

 }

}

// Demonstrate the FileByteArray class.

// Reverses the bytes in a file.

public class Reverse

{

 public static void Main(String[] args)

 {

 // Check for arguments.

 if (args.Length == 0)

 {

 Console.WriteLine("indexer <filename>");

 return;

 }

 FileByteArray file = new FileByteArray(args[0]);

 long len = file.Length;

 // Swap bytes in the file to reverse it.

 for (long i = 0; i < len / 2; ++i)

 {

 byte t;

 // Note that indexing the "file" variable invokes the

 // indexer on the FileByteStream class, which reads

 // and writes the bytes in the file.

 t = file[i];

 file[i] = file[len - i - 1];

 file[len - i - 1] = t;

 }

 file.Close();

 }

}

Input: indexer.txt

To test the program you can use a text file with the following contents (this file is called Test.txt in the Indexers Sample).

public class Hello1

{

 public static void Main()

 {

 System.Console.WriteLine("Hello, World!");

 }

}

To reverse the bytes of this file, compile the program and then use the command line:

indexer indexer.txt

To display the reversed file, enter the command:

Type indexer.txt

Sample Output

}

}

;)"!dlroW ,olleH"(eniLetirW.elosnoC.metsyS

{

)(niaM diov citats cilbup

{

1olleH ssalc cilbup

Code Discussion

· Since an indexer is accessed using the [] operator, it does not have a name. For indexer declaration syntax, see Indexers.

· In the example above, the indexer is of type byte and takes a single index of type long (64-bit integer). The Get accessor defines the code to read a byte from the file, while the Set accessor defines the code to write a byte to the file. Inside the Set accessor, the predefined parameter value has the value that is being assigned to the virtual array element.

· An indexer must have at least one parameter. Although it is comparatively rare, an indexer can have more than one parameter in order to simulate a multidimensional "virtual array." Although integral parameters are the most common, the indexer parameter can be of any type. For example, the standard Dictionary class provides an indexer with a parameter of type Object.

· Although indexers are a powerful feature, it is important to use them only when the array-like abstraction makes sense. Always carefully consider whether using regular method(s) would be just as clear. For example, the following is a bad use of an indexer:

· class Employee

· {

· // VERY BAD STYLE: using an indexer to access

· // the salary of an employee.

· public double this[int year]

· {

· get

· {

· // return employee's salary for a given year.

· }

· }

}

Although legal, an indexer with only a Get accessor is rarely good style. Strongly consider using a method in this case.

Read-only and constant members.

The readonly keyword is a modifier that you can use on fields. When a field declaration includes a readonly modifier, assignments to the fields introduced by the declaration can only occur as part of the declaration or in a constructor in the same class.

You can assign a value to a readonly field only in the following contexts:

· When the variable is initialized in the declaration, for example:

public readonly int y = 5;

· For an instance field, in the instance constructors of the class that contains the field declaration, or for a static field, in the static constructor of the class that contains the field declaration. These are also the only contexts in which it is valid to pass a readonly field as an out or ref parameter.

Example

// cs_readonly_keyword.cs

// Readonly fields

using System;

public class ReadOnlyTest

{

 class MyClass

 {

 public int x;

 public readonly int y = 25; // Initialize a readonly field

 public readonly int z;

 public MyClass()

 {

 z = 24; // Initialize a readonly instance field

 }

 public MyClass(int p1, int p2, int p3)

 {

 x = p1;

 y = p2;

 z = p3;

 }

 }

 public static void Main()

 {

 MyClass p1= new MyClass(11, 21, 32); // OK

 Console.WriteLine("p1: x={0}, y={1}, z={2}" , p1.x, p1.y, p1.z);

 MyClass p2 = new MyClass();

 p2.x = 55; // OK

 Console.WriteLine("p2: x={0}, y={1}, z={2}" , p2.x, p2.y, p2.z);

 }

}

Output

p1: x=11, y=21, z=32

p2: x=55, y=25, z=24

In the preceding example, if you use a statement like this:

p2.y = 66; // Error

you will get the compiler error message:

The left-hand side of an assignment must be an l-value
which is the same error you get when you attempt to assign a value to a constant.

Note The readonly keyword is different from the const keyword. A const field can only be initialized at the declaration of the field. A readonly field can be initialized either at the declaration or in a constructor. Therefore, readonly fields can have different values depending on the constructor used. Also, while a const field is a compile-time constant, the readonly field can be used for runtime constants as in the following example:

public static readonly uint l1 = (uint) DateTime.Now.Ticks;
The const keyword is used to modify a declaration of a field or local variable. It specifies that the value of the field or the local variable cannot be modified. A constant declaration introduces one or more constants of a given type. The declaration takes the form:

[attributes] [modifiers] const type declarators;
where:

attributes (optional)

Optional declarative information. For more information on attributes and attribute classes, see C# Attributes.

modifiers (optional)

Optional modifiers that include the new modifier and one of the four access modifiers.

type

One of the types: byte, char, short, int, long, float, double, decimal, bool, string, an enum type, or a reference type.

declarators

A comma-separated list of declarators. A declarator takes the form:

identifier = constant-expression

The attributes and modifiers apply to all of the members declared by the constant declaration.

The type of a constant declaration specifies the type of the members introduced by the declaration. A constant expression must yield a value of the target type, or of a type that can be implicitly converted to the target type.

A constant expression is an expression that can be fully evaluated at compile time. Therefore, the only possible values for constants of reference types are string and null.

Remarks

The constant declaration can declare multiple constants, for example:

public const double x = 1.0, y = 2.0, z = 3.0;

The static modifier is not allowed in a constant declaration.

A constant can participate in a constant expression, for example:

public const int c1 = 5.0;

public const int c2 = c1 + 100;

Example

// const_keyword.cs

// Constants

using System;

public class ConstTest

{

 class MyClass

 {

 public int x;

 public int y;

 public const int c1 = 5;

 public const int c2 = c1 + 5;

 public MyClass(int p1, int p2)

 {

 x = p1;

 y = p2;

 }

 }

 public static void Main()

 {

 MyClass mC = new MyClass(11, 22);

 Console.WriteLine("x = {0}, y = {1}", mC.x, mC.y);

 Console.WriteLine("c1 = {0}, c2 = {1}", MyClass.c1, MyClass.c2);

 }

}

Output

x = 11, y = 22

c1 = 5, c2 = 10

Example

This example demonstrates using constants as local variables.

// const_keyword2.cs

using System;

public class TestClass

{

 public static void Main()

 {

 const int c = 707;

 Console.WriteLine("My local constant = {0}", c);

 }

}

Output

My local constant = 707

Note The readonly keyword is different from the const keyword. A const field can only be initialized at the declaration of the field. A readonly field can be initialized either at the declaration or in a constructor. Therefore, readonly fields can have different values depending on the constructor used. Also, while a const field is a compile-time constant, the readonly field can be used for runtime constants, as in the following example:

public static readonly uint l1 = (uint) DateTime.Now.Ticks;
TYPE
A Type object that represents a type is unique; that is, two Type object references refer to the same object if and only if they represent the same type. This allows for the synchronization of multiple static method invocations and for comparison of Type objects using reference equality.

This class is thread safe; multiple threads can concurrently read from or write to an instance of this type. An instance of Type can represent any of the following types:

· Classes

· Value types

· Arrays

· Interfaces

· Pointers

· Enumerations

The abstract and interface keywords.

The abstract modifier is used to indicate that a class is incomplete and that it is intended to be used only as a base class. An abstract class differs from a non-abstract class in the following ways:

· An abstract class cannot be instantiated directly, and it is a compile-time error to use the new operator on an abstract class. While it is possible to have variables and values whose compile-time types are abstract, such variables and values will necessarily either be null or contain references to instances of non-abstract classes derived from the abstract types.

· An abstract class is permitted (but not required) to contain abstract members.

· An abstract class cannot be sealed.

When a non-abstract class is derived from an abstract class, the non-abstract class must include actual implementations of all inherited abstract members, thereby overriding those abstract members. In the example

abstract class A

{

 public abstract void F();

}

abstract class B: A

{

 public void G() {}

}

class C: B

{

 public override void F() {

 // actual implementation of F

 }

}

the abstract class A introduces an abstract method F. Class B introduces an additional method G, but since it doesn't provide an implementation of F, B must also be declared abstract. Class C overrides F and provides an actual implementation. Since there are no abstract members in C, C is permitted (but not required) to be non-abstract.

An interface defines a contract. A class or struct that implements an interface must adhere to its contract. The declaration takes the following form::

[attributes] [modifiers] interface identifier [:base-list] {interface-body}[;]

where:

attributes (Optional)

Additional declarative information. For more information on attributes and attribute classes, see 17. Attributes.

modifiers (Optional)

The allowed modifiers are new and the four access modifiers.

identifier

The interface name.

base-list (Optional)

A list that contains one or more explicit base interfaces separated by commas.

interface-body

Declarations of the interface members.

Remarks

An interface can be a member of a namespace or a class and can contain signatures of the following members:

Methods

Properties

Indexers

Events

An interface can inherit from one or more base interfaces. In the following example, the interface IMyInterface inherits from two base interfaces, IBase1 and IBase2:

interface IMyInterface: IBase1, IBase2

{

 void MethodA();

 void MethodB();

}

Interfaces can be implemented by classes and structs. The identifier of the implemented interface appears in the class base list. For example:

class Class1: Iface1, Iface2

{

 // class members

}

When a class base list contains a base class and interfaces, the base class comes first in the list. For example:

class ClassA: BaseClass, Iface1, Iface2

{

 // class members

}

For more information on interfaces, see Interfaces.

For more information on properties and indexers, see Property Declaration and Indexer Declaration.

Example

The following example demonstrates interface implementation. In this example, the interface IPoint contains the property declaration, which is responsible for setting and getting the values of the fields. The class MyPoint contains the property implementation.

// keyword_interface.cs

// Interface implementation

using System;

interface IPoint

{

 // Property signatures:

 int x

 {

 get;

 set;

 }

 int y

 {

 get;

 set;

 }

}

class MyPoint : IPoint

{

 // Fields:

 private int myX;

 private int myY;

 // Constructor:

 public MyPoint(int x, int y)

 {

 myX = x;

 myY = y;

 }

 // Property implementation:

 public int x

 {

 get

 {

 return myX;

 }

 set

 {

 myX = value;

 }

 }

 public int y

 {

 get

 {

 return myY;

 }

 set

 {

 myY = value;

 }

 }

}

class MainClass

{

 private static void PrintPoint(IPoint p)

 {

 Console.WriteLine("x={0}, y={1}", p.x, p.y);

 }

 public static void Main()

 {

 MyPoint p = new MyPoint(2,3);

 Console.Write("My Point: ");

 PrintPoint(p);

 }

}

Output

My Point: x=2, y=3
The base and this keyword.

The base keyword is used to access members of the base class from within a derived class:

Call a method on the base class that has been overridden by another method.

Specify which base-class constructor should be called when creating instances of the derived class.

A base class access is permitted only in a constructor, an instance method, or an instance property accessor.

It is an error to use the base keyword from within a static method.

Example

In this example, both the base class, Person, and the derived class, Employee, have a method named Getinfo. By using the base keyword, it is possible to call the Getinfo method on the base class, from within the derived class.

// keywords_base.cs

// Accessing base class members

using System;

 public class Person

 {

 protected string ssn = "444-55-6666";

 protected string name = "John L. Malgraine";

 public virtual void GetInfo()

 {

 Console.WriteLine("Name: {0}", name);

 Console.WriteLine("SSN: {0}", ssn);

 }

 }

 class Employee: Person

 {

 public string id = "ABC567EFG";

 public override void GetInfo()

 {

 // Calling the base class GetInfo method:

 base.GetInfo();

 Console.WriteLine("Employee ID: {0}", id);

 }

 }

class TestClass {

 public static void Main()

 {

 Employee E = new Employee();

 E.GetInfo();

 }

}

Output

Name: John L. Malgraine

SSN: 444-55-6666

Employee ID: ABC567EFG

For additional examples, see new, virtual, and override.

Example

This example shows how to specify the base-class constructor called when creating instances of a derived class.

// keywords_base2.cs

using System;

public class MyBase

{

 int num;

 public MyBase()

 {

 Console.WriteLine("in MyBase()");

 }

 public MyBase(int i)

 {

 num = i;

 Console.WriteLine("in MyBase(int i)");

 }

 public int GetNum()

 {

 return num;

 }

}

public class MyDerived: MyBase

{

 // This constructor will call MyBase.MyBase()

 public MyDerived() : base()

 {

 }

 // This constructor will call MyBase.MyBase(int i)

 public MyDerived(int i) : base(i)

 {

 }

 public static void Main()

 {

 MyDerived md = new MyDerived();

 MyDerived md1 = new MyDerived(1);

 }

}

Output

in MyBase()

in MyBase(int i)
Arguments

property

Required. The identifier of a property of the current object.

Remarks

The this keyword is typically used in object constructors to refer to the current object.

Example

In the following example, this refers to the newly created Car object, and assigns values to three properties:

function Car(color, make, model){

 this.color = color;

 this.make = make;

 this.model = model;

}

For client versions of JScript, this refers to the window object if used outside of the context of any other object.

The is and as keywords

The is operator is used to check whether the run-time type of an object is compatible with a given type. The is operator is used in an expression of the form:

expression is type
Where:

expression

An expression of a reference type.

type

A type.

Remarks

An is expression evaluates to true if both of the following conditions are met:

· expression is not null.

· expression can be cast to type. That is, a cast expression of the form (type)(expression) will complete without throwing an exception. For more information, see 7.6.6 Cast expressions.

A compile-time warning will be issued if the expression expression is type is known to always be true or always be false.

The is operator cannot be overloaded.

Note that the is operator only considers reference conversions, boxing conversions, and unboxing conversions. Other conversions, such as user-defined conversions, are not considered by the is operator.

Example

// cs_keyword_is.cs

// The is operator

using System;

class Class1

{

}

class Class2

{

}

public class IsTest

{

 public static void Test (object o)

 {

 Class1 a;

 Class2 b;

 if (o is Class1)

 {

 Console.WriteLine ("o is Class1");

 a = (Class1)o;

 // do something with a

 }

 else if (o is Class2)

 {

 Console.WriteLine ("o is Class2");

 b = (Class2)o;

 // do something with b

 }

 else

 {

 Console.WriteLine ("o is neither Class1 nor Class2.");

 }

 }

 public static void Main()

 {

 Class1 c1 = new Class1();

 Class2 c2 = new Class2();

 Test (c1);

 Test (c2);

 Test ("a string");

 }

}

Output

o is Class1

o is Class2

o is neither Class1 nor Class2.

The as operator is used to perform conversions between compatible types. The as operator is used in an expression of the form:

expression as type

where:

expression

An expression of a reference type.

type

A reference type.

Remarks

The as operator is like a cast except that it yields null on conversion failure instead of raising an exception. More formally, an expression of the form:

expression as type

is equivalent to:

expression is type ? (type)expression : (type)null

except that expression is evaluated only once.

Note that the as operator only performs reference conversions and boxing conversions. The as operator cannot perform other conversions, such as user-defined conversions, which should instead be performed using cast expressions.

Example

// cs_keyword_as.cs

// The as operator

using System;

class MyClass1

{

}

class MyClass2

{

}

public class IsTest

{

 public static void Main()

 {

 object [] myObjects = new object[6];

 myObjects[0] = new MyClass1();

 myObjects[1] = new MyClass2();

 myObjects[2] = "hello";

 myObjects[3] = 123;

 myObjects[4] = 123.4;

 myObjects[5] = null;

 for (int i=0; i<myObjects.Length; ++i)

 {

 string s = myObjects[i] as string;

 Console.Write ("{0}:", i);

 if (s != null)

 Console.WriteLine ("'" + s + "'");

 else

 Console.WriteLine ("not a string");

 }

 }

}

Output

0:not a string

1:not a string

2:'hello'

3:not a string

4:not a string

5:not a string
Overriding virtual and non virtual functions

When an instance method declaration includes a virtual modifier, that method is said to be a virtual method. When no virtual modifier is present, the method is said to be a non-virtual method.

The implementation of a non-virtual method is invariant: The implementation is the same whether the method is invoked on an instance of the class in which it is declared or an instance of a derived class. In contrast, the implementation of a virtual method can be superseded by derived classes. The process of superseding the implementation of an inherited virtual method is known as overriding that method (Section 10.5.4).

In a virtual method invocation, the run-time type of the instance for which that invocation takes place determines the actual method implementation to invoke. In a non-virtual method invocation, the compile-time type of the instance is the determining factor. In precise terms, when a method named N is invoked with an argument list A on an instance with a compile-time type C and a run-time type R (where R is either C or a class derived from C), the invocation is processed as follows:

· First, overload resolution is applied to C, N, and A, to select a specific method M from the set of methods declared in and inherited by C. This is described in Section 7.5.5.1.

· Then, if M is a non-virtual method, M is invoked.

· Otherwise, M is a virtual method, and the most derived implementation of M with respect to R is invoked.

For every virtual method declared in or inherited by a class, there exists a most derived implementation of the method with respect to that class. The most derived implementation of a virtual method M with respect to a class R is determined as follows:

· If R contains the introducing virtual declaration of M, then this is the most derived implementation of M.

· Otherwise, if R contains an override of M, then this is the most derived implementation of M.

· Otherwise, the most derived implementation of M with respect to R is the same as the most derived implementation of M with respect to the direct base class of R.

The following example illustrates the differences between virtual and non-virtual methods:

using System;

class A

{

 public void F() { Console.WriteLine("A.F"); }

 public virtual void G() { Console.WriteLine("A.G"); }

}

class B: A

{

 new public void F() { Console.WriteLine("B.F"); }

 public override void G() { Console.WriteLine("B.G"); }

}

class Test

{

 static void Main() {

 B b = new B();

 A a = b;

 a.F();

 b.F();

 a.G();

 b.G();

 }

}

In the example, A introduces a non-virtual method F and a virtual method G. The class B introduces a new non-virtual method F, thus hiding the inherited F, and also overrides the inherited method G. The example produces the output:

A.F

B.F

B.G

B.G

Notice that the statement a.G() invokes B.G, not A.G. This is because the run-time type of the instance (which is B), not the compile-time type of the instance (which is A), determines the actual method implementation to invoke.

Because methods are allowed to hide inherited methods, it is possible for a class to contain several virtual methods with the same signature. This does not present an ambiguity problem, since all but the most derived method are hidden. In the example

using System;

class A

{

 public virtual void F() { Console.WriteLine("A.F"); }

}

class B: A

{

 public override void F() { Console.WriteLine("B.F"); }

}

class C: B

{

 new public virtual void F() { Console.WriteLine("C.F"); }

}

class D: C

{

 public override void F() { Console.WriteLine("D.F"); }

}

class Test

{

 static void Main() {

 D d = new D();

 A a = d;

 B b = d;

 C c = d;

 a.F();

 b.F();

 c.F();

 d.F();

 }

}

the C and D classes contain two virtual methods with the same signature: The one introduced by A and the one introduced by C. The method introduced by C hides the method inherited from A. Thus, the override declaration in D overrides the method introduced by C, and it is not possible for D to override the method introduced by A. The example produces the output:

B.F

B.F

D.F

D.F

Note that it is possible to invoke the hidden virtual method by accessing an instance of D through a less derived type in which the method is not hidden.

Creating a multi module.

Remarks

To not generate an assembly manifest, use the /target:module option. By default, the output file will have an extension of .netmodule.

A file that does not have an assembly manifest cannot be loaded by the .NET Framework common language runtime. However, such a file can be incorporated into the assembly manifest of an assembly by means of /addmodule.

If more than one module is created in a single compilation, internal types in one module will be available to other modules in the compilation. When code in one module references internal types in another module, then both modules must be incorporated into an assembly manifest, by means of /addmodule.

To set this compiler option in the Visual Studio development environment

Creating a module is not supported in the Visual Studio development environment.

To set this compiler option programmatically

See OutputType Property.

Example

Compile in.cs, creating in.netmodule:

csc /target:module in.cs
Ngen utility.

The Native Image Generator creates a native image from a managed assembly and installs it into the native image cache on the local computer. The native image cache is a reserved area of the global assembly cache. Once you create a native image for an assembly, the runtime automatically uses that native image each time it runs the assembly. You do not have to perform any additional procedures to cause the runtime to use a native image. Running Ngen.exe on an assembly allows the assembly to load and execute faster, because it restores code and data structures from the native image cache rather than generating them dynamically.

The ildasm utility.

This tutorial offers an introduction to the MSIL Disassembler (Ildasm.exe) that is included with the .NET Framework SDK. The Ildasm.exe parses any .NET Framework .exe or .dll assembly, and shows the information in human-readable format. Ildasm.exe shows more than just the Microsoft intermediate language (MSIL) code — it also displays namespaces and types, including their interfaces. You can use Ildasm.exe to examine native .NET Framework assemblies, such as Mscorlib.dll, as well as .NET Framework assemblies provided by others or created yourself. Most .NET Framework developers will find Ildasm.exe indispensable.

For this tutorial, use the Visual C# version of the WordCount sample that is included with the SDK. You can also use the Visual Basic version, but the MSIL generated will be different for the two languages and the screen images will also not be identical. WordCount is located in the <FrameworkSDK>\Samples\Applications\WordCount\ directory. To build and run the sample, follow the instructions outlined in the Readme.htm file. This tutorial uses Ildasm.exe to examine the WordCount.exe assembly.

To get started, build the WordCount sample, and load it into Ildasm.exe using the following command line:

ildasm WordCount.exe
The dumpbin utility.

Standard Object File Format (COFF) binary files (which include DLLs, LIBs and EXEs) provide a lot of useful header information, including all of the functions that they export. Nicely enough, Microsoft provides a command-line tool with almost all of their development environments, including Visual Studio .NET 2003, that allows you to easily extract this information. This tool is called dumpbin.exe.

As I mentioned, dumpbin.exe is a command-line tool, so to use it you will need to open a command window by clicking Start | Run and typing 'cmd.exe'. Dumpbin.exe may not be in your system path, so to keep the amount of typing to a minimum it's easiest to run all dumpbin.exe commands from the directory in which it resides.

Tip If you are using Studio 2003, dumpbin.exe is installed by default in C:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\bin\. On my system, simply running it gave an error because it could not find mspdb71.dll. To remedy this and avoid having to change my system path, I simply copied dumpbin.exe to the C:\Program Files\Microsoft Visual Studio .NET 2003.0\Common7\IDE\ directory where mspdb71.dll resides, and ran it from there.

Dumpbin.exe has a lot of command-line switches available, but the one that we are primarily interested in is /EXPORTS, which will give the names of all of the functions the COFF exports. Let's look at an example of its use.

Static constructor.

A static constructor is used to initialize a class. It is called automatically to initialize the class before the first instance is created or any static members are referenced. It is declared using the following form:

[attributes] static identifier() { constructor-body }
where:

attributes (Optional)

Additional declarative information. For more information on attributes and attribute classes, see C# Attributes.

identifier

The identifier is the same as the class name.

constructor-body

The block that contains the statements that initialize the class.

Remarks

A static constructor does not take access modifiers or have parameters.

A static constructor is called automatically to initialize the class before the first instance is created or any static members are referenced.

A static constructor cannot be called directly.

The user has no control on when the static constructor is executed in the program.

A typical use of static constructors is when the class is using a log file and the constructor is used to write entries to this file.

Example

In this example, the class MyClass has a static constructor and one static member, MyMethod(). When MyMethod() is called, the static constructor is invoked to initialize the class.

// StaticCtor1.cs

using System;

class MyClass

{

 // Static constructor:

 static MyClass()

 {

 Console.WriteLine("The static constructor invoked.");

 }

 public static void MyMethod()

 {

 Console.WriteLine("MyMethod invoked.");

 }

}

class MainClass

{

 static void Main()

 {

 MyClass.MyMethod();

 }

}

Output

The static constructor invoked.

MyMethod invoked.

Boxing and unboxing.
Boxing is an implicit conversion of a value type to the type object or to any interface type implemented by this value type. Boxing a value of a value allocates an object instance and copies the value into the new object.

Consider the following declaration of a value-type variable:

int i = 123;

The following statement implicitly applies the boxing operation on the variable i:

object o = i;

The result of this statement is creating an object o, on the stack, that references a value of the type int, on the heap. This value is a copy of the value-type value assigned to the variable i. The difference between the two variables, i and o, is illustrated in the following figure.

Boxing Conversion

It also possible, but never needed, to perform the boxing explicitly as in the following example:

int i = 123;

object o = (object) i;

Example

This example converts an integer variable i to an object o via boxing. Then the value stored in the variable i is changed from 123 to 456. The example shows that the object keeps the original copy of the contents, 123.

// boxing.cs

// Boxing an integer variable

using System;

class TestBoxing

{

 public static void Main()

 {

 int i = 123;

 object o = i; // Implicit boxing

 i = 456; // Change the contents of i

 Console.WriteLine("The value-type value = {0}", i);

 Console.WriteLine("The object-type value = {0}", o);

 }

}

Output

The value-type value = 456

The object-type value = 123
Delegates, events and callbacks.

A delegate declaration defines a reference type that can be used to encapsulate a method with a specific signature. A delegate instance encapsulates a static or an instance method. Delegates are roughly similar to function pointers in C++; however, delegates are type-safe and secure.

This declaration takes the following form::

[attributes] [modifiers] delegate result-type identifier ([formal-parameters]);

where:

attributes (Optional)

Additional declarative information. For more information on attributes and attribute classes, see 17. Attributes.

modifiers (Optional)

The allowed modifiers are new and the four access modifiers.

result-type

The result type, which matches the return type of the method.

identifier

The delegate name.

formal-parameters (Optional)

Parameter list. If a parameter is a pointer, the delegate must be declared with the unsafe modifier.

Remarks

A delegate lets you pass a function as a parameter. The type safety of delegates requires the function you pass as a delegate to have the same signature as the delegate declaration. See the Delegates Tutorial for more information on using delegates.

The Delegates Tutorial shows how to compose delegates, that is, create delegates from other delegates. A delegate that contains an out parameter cannot be composed.

Delegates are the basis for events.

For more information on delegates, see 15. Delegates.

Example 1

The following is a simple example of declaring and using a delegate.

// keyword_delegate.cs

// delegate declaration

delegate void MyDelegate(int i);

class Program

{

 public static void Main()

 {

 TakesADelegate(new MyDelegate(DelegateFunction));

 }

 public static void TakesADelegate(MyDelegate SomeFunction)

 {

 SomeFunction(21);

 }

 public static void DelegateFunction(int i)

 {

 System.Console.WriteLine("Called by delegate with number: {0}.", i);

 }

}

Output

Called by delegate with number: 21.

Example 2

In the following example, one delegate is mapped to both static and instance methods and returns specific information from each.

// keyword_delegate2.cs

// Calling both static and instance methods from delegates

using System;

// delegate declaration

delegate void MyDelegate();

public class MyClass

{

 public void InstanceMethod()

 {

 Console.WriteLine("A message from the instance method.");

 }

 static public void StaticMethod()

 {

 Console.WriteLine("A message from the static method.");

 }

}

public class MainClass

{

 static public void Main()

 {

 MyClass p = new MyClass();

 // Map the delegate to the instance method:

 MyDelegate d = new MyDelegate(p.InstanceMethod);

 d();

 // Map to the static method:

 d = new MyDelegate(MyClass.StaticMethod);

 d();

 }

}

Output

A message from the instance method.

A message from the static method.
events

An event is a message sent by an object to signal the occurrence of an action. The action could be caused by user interaction, such as a mouse click, or it could be triggered by some other program logic. The object that raises (triggers) the event is called the event sender. The object that captures the event and responds to it is called the event receiver.

In event communication, the event sender class does not know which object or method will receive (handle) the events it raises. What is needed is an intermediary (or pointer-like mechanism) between the source and the receiver. The .NET Framework defines a special type (Delegate) that provides the functionality of a function pointer.

A delegate is a class that can hold a reference to a method. Unlike other classes, a delegate class has a signature, and it can hold references only to methods that match its signature. A delegate is thus equivalent to a type-safe function pointer or a callback. While delegates have other uses, the discussion here focuses on the event handling functionality of delegates. The following example shows an event delegate declaration.

[C#]

// AlarmEventHandler is the delegate for the Alarm event.

// AlarmEventArgs is the class that holds event data for the alarm event.

// It derives from the base class for event data, EventArgs.

public delegate void AlarmEventHandler(object sender, AlarmEventArgs e);

[Visual Basic]

' AlarmEventHandler is the delegate for the Alarm event.

' AlarmEventArgs is the class that holds event data for the alarm event.

' It derives from the base class for event data, EventArgs.

Public Delegate Sub AlarmEventHandler(sender As Object, e As AlarmEventArgs)

The syntax is similar to that of a method declaration; however, the delegate keyword informs the compiler that AlarmEventHandler is a delegate type.

By convention, event delegates in the .NET Framework have two parameters, the source that raised the event and the data for the event.

Note A delegate declaration is sufficient to define a delegate class. The declaration supplies the signature of the delegate, and the common language runtime provides the implementation.

An instance of the AlarmEventHandler delegate can bind to any method that matches its signature, such as the AlarmRang method of the WakeMeUp class shown in the following example.

[C#]

public class WakeMeUp

{

// AlarmRang has the same signature as AlarmEventHandler.

public void AlarmRang(object sender, AlarmEventArgs e){...};

...

}

[Visual Basic]

Public Class WakeMeUp

 ' AlarmRang has the same signature as AlarmEventHandler.

 Public Sub AlarmRang(sender As Object, e As AlarmEventArgs)

 ...

 End Sub

 ...

End Class

To connect (wire) AlarmRang to an Alarm event:

1. Create an instance of the AlarmEventHandler delegate that takes a reference to the AlarmRang method of the WakeMeUp instance in its constructor, as shown in the following example.

2. [C#]

3. // Create an instance of WakeMeUp.

4. //

5. WakeMeUp w = new WakeMeUp();

6. // Instantiate the event delegate.

7. // The C# compiler provides a constructor for event handlers that takes

8. // one parameter, the reference to the method that performs the

9. // event handling logic. The two-parameter constructor for EventHandler

10. // provided in the class library is intended for developers of

11. // compilers and other tools.

12. //

AlarmEventHandler alhandler = new AlarmEventHandler(w.AlarmRang);

[Visual Basic]

' Create an instance of WakeMeUp.

'

Dim w As New WakeMeUp()

' Instantiate the event delegate.

Dim alhandler As AlarmEventHandler = AddressOf w.AlarmRang

Now, whenever alhandler is called, it in turn calls the AlarmRang method of the WakeMeUp instance.

13. Register the alhandler delegate with the Alarm event. For details and a complete sample, see Event Sample.

Custom event delegates are needed only when an event generates event data. Many events, including some user-interface events such as mouse clicks, do not generate event data. In such situations, the event delegate provided in the class library for the no-data event, System.EventHandler, is adequate. Its declaration follows.

[C#]

// The base class for event data, EventArgs, does not have

// any data and hence can be used as the event data type for events

// that do not generate data.

//

delegate void EventHandler(object sender, EventArgs e);

[Visual Basic]

' The base class for event data, EventArgs, does not have

' any data and hence can be used as the event data type for events

' that do not generate data.

'

Public Delegate Sub AlarmEventHandler(sender As Object, e As AlarmEventArgs)

Event delegates are multicast, which means that they can hold references to more than one event handling method. For details, see Delegate. Delegates allow for flexibility and fine-grain control in event handling. A delegate acts as an event dispatcher for the class that raises the event by maintaining a list of registered event handlers for the event.

For details on using delegates to provide event functionality in your component or control, see Raising an Event.

For an overview of consuming events in your applications, see Consuming Events.

Use of sizeof and typeof.

The sizeof operator is used to obtain the size in bytes for a value type. A sizeof expression takes the form:

sizeof(type)

where:

type

The value type for which the size is obtained.

Remarks

The sizeof operator can be applied only to value types, not reference types.

The sizeof operator can only be used in the unsafe mode.

The sizeof operator cannot be overloaded.

Example

// cs_operator_sizeof.cs

// compile with: /unsafe

// Using the sizeof operator

using System;

class SizeClass

{

 // Notice the unsafe declaration of the method:

 unsafe public static void SizesOf()

 {

 Console.WriteLine("The size of short is {0}.", sizeof(short));

 Console.WriteLine("The size of int is {0}.", sizeof(int));

 Console.WriteLine("The size of long is {0}.", sizeof(long));

 }

}

class MainClass

{

 public static void Main()

 {

 SizeClass.SizesOf();

 }

}

Output

The size of short is 2.

The size of int is 4.

The size of long is 8.
Typeof
The typeof operator is used to obtain the System.Type object for a type. A typeof expression takes the form:

typeof(type)

where:

type

The type for which the System.Type object is obtained.

Remarks

The typeof operator cannot be overloaded.

To obtain the run-time type of an expression, you can use the .NET Framework method GetType.

Example

// cs_operator_typeof.cs

// Using typeof operator

using System;

using System.Reflection;

public class MyClass

{

 public int intI;

 public void MyMeth()

 {

 }

 public static void Main()

 {

 Type t = typeof(MyClass);

 // alternatively, you could use

 // MyClass t1 = new MyClass();

 // Type t = t1.GetType();

 MethodInfo[] x = t.GetMethods();

 foreach (MethodInfo xtemp in x)

 {

 Console.WriteLine(xtemp.ToString());

 }

 Console.WriteLine();

 MemberInfo[] x2 = t.GetMembers();

 foreach (MemberInfo xtemp2 in x2)

 {

 Console.WriteLine(xtemp2.ToString());

 }

 }

}

Output

Int32 GetHashCode()

Boolean Equals(System.Object)

System.String ToString()

Void MyMeth()

Void Main()

System.Type GetType()

Int32 intI

Int32 GetHashCode()

Boolean Equals(System.Object)

System.String ToString()

Void MyMeth()

Void Main()

System.Type GetType()

Void .ctor()

Example

// cs_operator_typeof2.cs

// Using GetType method

using System;

class GetTypeTest

{

 public static void Main()

 {

 int radius = 3;

 Console.WriteLine("Area = {0}", radius*radius*Math.PI);

 Console.WriteLine("The type is {0}",

 (radius*radius*Math.PI).GetType());

 }

}

Output

Area = 28.2743338823081

The type is System.Double
Creating custom attributes.

To design your own custom attributes, you do not need to master many new concepts. If you are familiar with object-oriented programming and know how to design classes, you already have most of the knowledge needed. Custom attributes are essentially traditional classes that derive directly or indirectly from System.Attribute. Just like traditional classes, custom attributes contain methods that store and retrieve data.

The primary steps to properly design custom attribute classes are as follows:

Applying the AttributeUsageAttribute

Declaring the attribute class

Declaring constructors

Declaring properties

This section describes each of these steps and concludes with a custom attribute example.

Applying the AttributeUsageAttribute

A custom attribute declaration begins with the AttributeUsageAttribute, which defines some of the key characteristics of your attribute class. For example, you can specify whether your attribute can be inherited by other classes or specify which elements the attribute can be applied to. The following code fragment demonstrates how to use the AttributeUsageAttribute.

[C#]

[AttributeUsage(AttributeTargets.All, Inherited = false, AllowMultiple = true)]

[Visual Basic]

<AttributeUsage(AttributeTargets.All, Inherited := False, AllowMultiple := true)>

The System.AttributeUsageAttribute Class has three members that are important for the creation of custom attributes: AttributeTargets, Inherited, and AllowMultiple.

AttributeTargets Member

In the previous example, AttributeTargets.All is specified, indicating that this attribute can be applied to all program elements. Alternatively, you can specify AttributeTargets.Class, indicating that your attribute can be applied only to a class, or AttributeTargets.Method, indicating that your attribute can be applied only to a method. All program elements can be marked for description by a custom attribute in this manner.

You can also pass multiple instances of AttributeTargets. The following code fragment specifies that a custom attribute can be applied to any class or method.

[C#]

[AttributeUsage (AttributeTargets.Class | AttributeTargets.Method)]

[Visual Basic]

<AttributeUsage (AttributeTargets.Class Or AttributeTargets.Method)>

Inherited Property

The Inherited property indicates whether your attribute can be inherited by classes that are derived from the classes to which your attribute is applied. This property takes either a true (the default) or false flag. For example, in the following code example, MyAttribute has a default Inherited value of true, while YourAttribute has an Inherited value of false.

[C#]

//This defaults to Inherited = true.

public class MyAttribute :Attribute

{

}

[AttributeUsage(Inherited = false)]

public class YourAttribute : Attribute

{

}

[Visual Basic]

<AttributeUsage(AttributeTargets.All, Inherited := True)> Public Class _

MyAttribute

 Inherits Attribute

End Class

<AttributeUsage(AttributeTargets.All, Inherited := False)> Public Class _

YourAttribute

 Inherits Attribute

End Class

The two attributes are then applied to a method in the base class MyClass.

[C#]

public class MyClass

{

 [MyAttribute]

 [YourAttribute]

 public virtual void MyMethod()

 {

 //...

 }

}

[Visual Basic]

' In Microsoft Visual Basic .NET, you apply multiple attributes

' by separating them with commas.

Public Class [MyClass]

 <MyAttribute, YourAttribute> Public Overridable Sub MyMethod()

 '...

 End Sub

End Class

Finally, the class YourClass is inherited from the base class MyClass. The method MyMethod shows MyAttribute, but not YourAttribute.

[C#]

public class YourClass: MyClass

{

 //MyMethod will have MyAttribute but not YourAttribute.

 public override void MyMethod()

 {

 //...

 }

}

[Visual Basic]

Public Class YourClass

 Inherits [MyClass]

 'MyMethod will have MyAttribute but not YourAttribute.

 Public overrides Sub MyMethod()

 '...

 End Sub

End Class

AllowMultiple Property

The AllowMultiple property indicates whether multiple instances of your attribute can exist on an element. If set to true, multiple instances are allowed; if set to false (the default), only one instance is allowed.

In the following code example, MyAttribute has a default AllowMultiple value of false, while YourAttribute has a value of true.

[C#]

//This defaults to AllowMultiple = false.

public class MyAttribute :Attribute

{

}

[AttributeUsage(AllowMultiple = true)]

public class YourAttribute : Attribute

{

}

[Visual Basic]

'This defaults to AllowMultiple = false.

<AttributeUsage(AttributeTargets.Method)> Public Class _

MyAttribute

 Inherits Attribute

End Class

<AttributeUsage(AttributeTargets.Method, AllowMultiple := True)> Public Class _

YourAttribute

 Inherits Attribute

End Class

When multiple instances of these attributes are applied, MyAttribute produces a compiler error. The following code example shows the valid use of YourAttribute and the invalid use of MyAttribute.

[C#]

public class MyClass

{

 //This produces an error.

 //Duplicates are not allowed.

 [MyAttribute]

 [MyAttribute]

 public void MyMethod() {

 //...

 }

 //This is valid.

 [YourAttribute]

 [YourAttribute]

 public void YourMethod(){

 //...

 }

}

[Visual Basic]

' In Microsoft Visual Basic .NET you apply multiple attributes

' by separating them with commas.

Public Class [MyClass]

 'This produces an error.

 'Duplicates are not allowed.

 <MyAttribute, MyAttribute> Public Overridable Sub MyMethod()

 '...

 End Sub

 'This is valid.

 <YourAttribute, YourAttribute> Public Sub YourMethod()

 '...

 End Sub

End Class

If both the AllowMultiple property and the Inherited property are set to true, a class that is inherited from another class can inherit an attribute and have another instance of the same attribute applied in the same child class. If AllowMultiple is set to false, the values of any attributes in the parent class will be overwritten by new instances of the same attribute in the child class.

Declaring the Attribute Class

After you apply the AttributeUsageAttribute, you can begin to define the specifics of your attribute. The declaration of an attribute class looks similar to the declaration of a traditional class, as demonstrated by the following code.

[C#]

public class MyAttribute : System.Attribute

{

 // . . .

}

[Visual Basic]

' This attribute is only usable with methods

<AttributeUsage(AttributeTargets.Method)> Public Class MyAttribute

 Inherits System.Attribute

 ' . . .

End Class

This attribute definition demonstrates the following points:

Attribute classes must be declared as public classes.

By convention, the name of the attribute class ends with the word Attribute. While not required, this convention is recommended for readability. When the attribute is applied, the inclusion of the word Attribute is optional.

All attribute classes must inherit directly or indirectly from System.Attribute.

In Microsoft Visual Basic, all custom attribute classes must have the AttributeUsageAttribute attribute.

Declaring Constructors

Attributes are initialized with constructors in the same way as traditional classes. The following code fragment illustrates a typical attribute constructor. This public constructor takes a parameter and sets its value equal to a member variable.

[C#]

public MyAttribute(bool myvalue)

{

 this.myvalue = myvalue;

}

[Visual Basic]

Public Sub New(newvalue As Boolean)

 Me.myvalue = newvalue

End Sub

You can overload the constructor to accommodate different combinations of values. If you also define a property for your custom attribute class, you can use a combination of named and positional parameters when initializing the attribute. Typically, you define all required parameters as positional and all optional parameters as named. In this case, the attribute cannot be initialized without the required parameter. All other parameters are optional. Note that in Visual Basic, constructors for an attribute class should not use a ParamArray argument.

The following code example shows how an attribute that uses the previous constructor can be applied using optional and required parameters. It assumes that the attribute has one required Boolean value and one optional string property.

[C#]

//One required (positional) and one optional (named) parameter are applied.

[MyAttribute(false, OptionalParameter = "optional data")]

//One required (positional) parameter is applied.

[MyAttribute(false)]

[Visual Basic]

'One required (positional) and one optional (named) parameter are applied.

<MyAttribute(False, OptionalParameter := "optional data")>

' ...

'One required (positional) parameter is applied.

<MyAttribute(False)>

Declaring Properties

If you want to define a named parameter or provide an easy way to return the values stored by your attribute, declare a property. Attribute properties should be declared as public entities with a description of the data type that will be returned. Define the variable that will hold the value of your property and associate it with the get and set methods. The following code example demonstrates how to implement a simple property in your attribute.

[C#]

public bool MyProperty

{

 get {return this.myvalue;}

 set {this.myvalue = value;}

}

[Visual Basic]

Public Property MyProperty As Boolean

 Get

 Return Me.myvalue

 End Get

 Set

 Me.myvalue = value

 End Set

End Property

Custom Attribute Example

This section incorporates the previous information and shows how to design a simple attribute that documents information about the author of a section of code. The attribute in this example stores the name and level of the programmer, and whether the code has been reviewed. It uses three private variables to store the actual values to save. Each variable is represented by a public property that gets and sets the values. Finally, the constructor is defined with two required parameters.

[C#]

[AttributeUsage(AttributeTargets.All)]

public class DeveloperAttribute : System.Attribute

{

 //Private fields.

 private string name;

 private string level;

 private bool reviewed;

 //This constructor defines two required parameters: name and level.

 public DeveloperAttribute(string name,string level)

 {

 this.name = name;

 this.level = level;

 this.reviewed = false;

 }

 //Define Name property.

 //This is a read-only attribute.

 public virtual string Name

 {

 get {return name;}

 }

 //Define Level property.

 //This is a read-only attribute.

 public virtual string Level

 {

 get {return level;}

 }

 //Define Reviewed property.

 //This is a read/write attribute.

 public virtual bool Reviewed

 {

 get {return reviewed;}

 set {reviewed = value;}

 }

}

[Visual Basic]

<AttributeUsage(AttributeTargets.All)> Public Class DeveloperAttribute

 Inherits System.Attribute

 'Private fields.

 Private m_name As String

 Private m_level As String

 Private m_reviewed As Boolean

 'This constructor defines two required parameters: name and level.

 Public Sub New(name As String, level As String)

 Me.m_name = name

 Me.m_level = level

 Me.m_reviewed = False

 End Sub

 'Define Name property.

 'This is a read-only attribute.

 Public Overridable ReadOnly Property Name() As String

 Get

 Return m_name

 End Get

 End Property

 'Define Level property.

 'This is a read-only attribute.

 Public Overridable ReadOnly Property Level() As String

 Get

 Return m_level

 End Get

 End Property

 'Define Reviewed property.

 'This is a read/write attribute.

 Public Overridable Property Reviewed() As Boolean

 Get

 Return m_reviewed

 End Get

 Set

 m_reviewed = value

 End Set

 End Property

End Class

You can apply this attribute using the full name, DeveloperAttribute, or using the abbreviated name, Developer, in one of the following ways.

[C#]

[Developer("Joan Smith", "1")]

[Developer("Joan Smith", "1", Reviewed = true)]
Garbage collection allgorthm.

NET is the much hyped revolutionary technology gifted to the programmer's community by Microsoft. Many factors make it a must use for most developers. In this article we would like to discuss one of the primary advantages of .NET framework - the ease in memory and resource management.
About garbage collection

Every program uses resources of one sort or another-memory buffers, network connections, database resources, and so on. In fact, in an object-oriented environment, every type identifies some resource available for a program's use. To use any of these resources, memory must be allocated to represent the type.

The steps required to access a resource are as follows:

1. Allocate memory for the type that represents the resource.

2. Initialize the memory to set the initial state of the resource and to make the resource usable.

3. Use the resource by accessing the instance members of the type (repeat as necessary).

4. Tear down the state of the resource to clean up.

5. Free the memory.

The garbage collector (GC) of .NET completely absolves the developer from tracking memory usage and knowing when to free memory.
The Microsoft® .NET CLR (Common Language Runtime) requires that all resources be allocated from the managed heap. You never free objects from the managed heap-objects are automatically freed when they are no longer needed by the application.

Memory is not infinite. The garbage collector must perform a collection in order to free some memory. The garbage collector's optimizing engine determines the best time to perform a collection, (the exact criteria is guarded by Microsoft) based upon the allocations being made. When the garbage collector performs a collection, it checks for objects in the managed heap that are no longer being used by the application and performs the necessary operations to reclaim their memory.

However for automatic memory management, the garbage collector has to know the location of the roots i.e. it should know when an object is no longer in use by the application. This knowledge is made available to the GC in .NET by the inclusion of a concept know as metadata. Every data type used in .NET software includes metadata that describes it. With the help of metadata, the CLR knows the layout of each of the objects in memory, which helps the Garbage Collector in the compaction phase of Garbage collection. Without this knowledge the Garbage Collector wouldn't know where one object instance ends and the next begins.

Garbage Collection Algorithm

Application Roots

Every application has a set of roots. Roots identify storage locations, which refer to objects on the managed heap or to objects that are set to null.

For example:

· All the global and static object pointers in an application.

· Any local variable/parameter object pointers on a thread's stack.

· Any CPU registers containing pointers to objects in the managed heap.

· Pointers to the objects from Freachable queue

· The list of active roots is maintained by the just-in-time (JIT) compiler and common language runtime, and is made accessible to the garbage collector's algorithm.

Implementation
Garbage collection in .NET is done using tracing collection and specifically the CLR implements the Mark/Compact collector.

This method consists of two phases as described below.

Phase I: Mark

Find memory that can be reclaimed.

When the garbage collector starts running, it makes the assumption that all objects in the heap are garbage. In other words, it assumes that none of the application's roots refer to any objects in the heap.

The following steps are included in Phase I:

1. The GC identifies live object references or application roots.

2. It starts walking the roots and building a graph of all objects reachable from the roots.

3. If the GC attempts to add an object already present in the graph, then it stops walking down that path. This serves two purposes. First, it helps performance significantly since it doesn't walk through a set of objects more than once. Second, it prevents infinite loops should you have any circular linked lists of objects. Thus cycles are handles properly.

Once all the roots have been checked, the garbage collector's graph contains the set of all objects that are somehow reachable from the application's roots; any objects that are not in the graph are not accessible by the application, and are therefore considered garbage.
Phase II: Compact

Move all the live objects to the bottom of the heap, leaving free space at the top.

Phase II includes the following steps:

1. The garbage collector now walks through the heap linearly, looking for contiguous blocks of garbage objects (now considered free space).

2. The garbage collector then shifts the non-garbage objects down in memory, removing all of the gaps in the heap.

3. Moving the objects in memory invalidates all pointers to the objects. So the garbage collector modifies the application's roots so that the pointers point to the objects' new locations.

4. In addition, if any object contains a pointer to another object, the garbage collector is responsible for correcting these pointers as well.

After all the garbage has been identified, all the non-garbage has been compacted, and all the non-garbage pointers have been fixed-up, a pointer is positioned just after the last non-garbage object to indicate the position where the next object can be added.
Finalization

.NET Framework's garbage collection implicitly keeps track of the lifetime of the objects that an application creates, but fails when it comes to the unmanaged resources (i.e. a file, a window or a network connection) that objects encapsulate.

The unmanaged resources must be explicitly released once the application has finished using them. .NET Framework provides the Object.Finalize method: a method that the garbage collector must run on the object to clean up its unmanaged resources, prior to reclaiming the memory used up by the object. Since Finalize method does nothing, by default, this method must be overridden if explicit cleanup is required.

It would not be surprising if you will consider Finalize just another name for destructors in C++. Though, both have been assigned the responsibility of freeing the resources used by the objects, they have very different semantics. In C++, destructors are executed immediately when the object goes out of scope whereas a finalize method is called once when Garbage collection gets around to cleaning up an object.

The potential existence of finalizers complicates the job of garbage collection in .NET by adding some extra steps before freeing an object.

Whenever a new object, having a Finalize method, is allocated on the heap a pointer to the object is placed in an internal data structure called Finalization queue. When an object is not reachable, the garbage collector considers the object garbage. The garbage collector scans the finalization queue looking for pointers to these objects. When a pointer is found, the pointer is removed from the finalization queue and appended to another internal data structure called Freachable queue, making the object no longer a part of the garbage. At this point, the garbage collector has finished identifying garbage. The garbage collector compacts the reclaimable memory and the special runtime thread empties the freachable queue, executing each object's Finalize method.

The next time the garbage collector is invoked, it sees that the finalized objects are truly garbage and the memory for those objects is then, simply freed.

Thus when an object requires finalization, it dies, then lives (resurrects) and finally dies again. It is recommended to avoid using Finalize method, unless required. Finalize methods increase memory pressure by not letting the memory and the resources used by that object to be released, until two garbage collections. Since you do not have control on the order in which the finalize methods are executed, it may lead to unpredictable results.

Garbage Collection Performance Optimizations

· Weak references

· Generations

Weak References
Weak references are a means of performance enhancement, used to reduce the pressure placed on the managed heap by large objects.

When a root points to an abject it's called a strong reference to the object and the object cannot be collected because the application's code can reach the object.

When an object has a weak reference to it, it basically means that if there is a memory requirement & the garbage collector runs, the object can be collected and when the application later attempts to access the object, the access will fail. On the other hand, to access a weakly referenced object, the application must obtain a strong reference to the object. If the application obtains this strong reference before the garbage collector collects the object, then the GC cannot collect the object because a strong reference to the object exists.

The managed heap contains two internal data structures whose sole purpose is to manage weak references: the short weak reference table and the long weak reference table.

Weak references are of two types:

· A short weak reference doesn't track resurrection.
i.e. the object which has a short weak reference to itself is collected immediately without running its finalization method.

· A long weak reference tracks resurrection.
i.e. the garbage collector collects object pointed to by the long weak reference table only after determining that the object's storage is reclaimable. If the object has a Finalize method, the Finalize method has been called and the object was not resurrected.

These two tables simply contain pointers to objects allocated within the managed heap. Initially, both tables are empty. When you create a WeakReference object, an object is not allocated from the managed heap. Instead, an empty slot in one of the weak reference tables is located; short weak references use the short weak reference table and long weak references use the long weak reference table.
Consider an example of what happens when the garbage collector runs. The diagrams (Figure 1 & 2) below show the state of all the internal data structures before and after the GC runs.

[image: image2.png]
Now, here's what happens when a garbage collection (GC) runs:

1. The garbage collector builds a graph of all the reachable objects. In the above example, the graph will include objects B, C, E, G.

2. The garbage collector scans the short weak reference table. If a pointer in the table refers to an object that is not part of the graph, then the pointer identifies an unreachable object and the slot in the short weak reference table is set to null. In the above example, slot of object D is set to null since it is not a part of the graph.

3. The garbage collector scans the finalization queue. If a pointer in the queue refers to an object that is not part of the graph, then the pointer identifies an unreachable object and the pointer is moved from the finalization queue to the freachable queue. At this point, the object is added to the graph since the object is now considered reachable. In the above example, though objects A, D, F are not included in the graph they are treated as reachable objects because they are part of the finalization queue. Finalization queue thus gets emptied.

4. The garbage collector scans the long weak reference table. If a pointer in the table refers to an object that is not part of the graph (which now contains the objects pointed to by entries in the freachable queue), then the pointer identifies an unreachable object and the slot is set to null. Since both the objects C and F are a part of the graph (of the previous step), none of them are set to null in the long reference table.

5. The garbage collector compacts the memory, squeezing out the holes left by the unreachable objects. In the above example, object H is the only object that gets removed from the heap and it's memory is reclaimed.

[image: image3.png]
Generations

Since garbage collection cannot complete without stopping the entire program, they can cause arbitrarily long pauses at arbitrary times during the execution of the program. Garbage collection pauses can also prevent programs from responding to events quickly enough to satisfy the requirements of real-time systems.

One feature of the garbage collector that exists purely to improve performance is called generations. A generational garbage collector takes into account two facts that have been empirically observed in most programs in a variety of languages:

1. Newly created objects tend to have short lives.

2. The older an object is, the longer it will survive.

Generational collectors group objects by age and collect younger objects more often than older objects. When initialized, the managed heap contains no objects. All new objects added to the heap can be said to be in generation 0, until the heap gets filled up which invokes garbage collection. As most objects are short-lived, only a small percentage of young objects are likely to survive their first collection. Once an object survives the first garbage collection, it gets promoted to generation 1.Newer objects after GC can then be said to be in generation 0.The garbage collector gets invoked next only when the sub-heap of generation 0 gets filled up. All objects in generation 1 that survive get compacted and promoted to generation 2. All survivors in generation 0 also get compacted and promoted to generation 1. Generation 0 then contains no objects, but all newer objects after GC go into generation 0.
Thus, as objects "mature" (survive multiple garbage collections) in their current generation, they are moved to the next older generation. Generation 2 is the maximum generation supported by the runtime's garbage collector. When future collections occur, any surviving objects currently in generation 2 simply stay in generation 2.

Thus, dividing the heap into generations of objects and collecting and compacting younger generation objects improves the efficiency of the basic underlying garbage collection algorithm by reclaiming a significant amount of space from the heap and also being faster than if the collector had examined the objects in all generations.

A garbage collector that can perform generational collections, each of which is guaranteed (or at least very likely) to require less than a certain maximum amount of time, can help make runtime suitable for real-time environment and also prevent pauses that are noticeable to the user.

DISPOSE
Performs application-defined tasks associated with freeing, releasing, or resetting unmanaged resources.

[Visual Basic]

Sub Dispose()

[C#]

void Dispose();
[C++]

void Dispose();

[JScript]

function Dispose();

Remarks

Use this method to close or release unmanaged resources such as files, streams, and handles held by an instance of the class that implements this interface. This method is, by convention, used for all tasks associated with freeing resources held by an object, or preparing an object for reuse.

When implementing this method, objects must seek to ensure that all held resources are freed by propagating the call through the containment hierarchy. For example, if an object A allocates an object B, and object B allocates an object C, then A's Dispose implementation must call Dispose on B, which must in turn call Dispose on C. Objects must also call the Dispose method of their base class if the base class implements IDisposable.

If an object's Dispose method is called more than once, the object must ignore all calls after the first one. The object must not throw an exception if its Dispose method is called multiple times. Dispose can throw an exception if an error occurs because a resource has already been freed and Dispose had not been called previously.

A resource type might use a particular convention to denote an allocated state versus a freed state. An example of this is stream classes, which are traditionally thought of as open or closed. Classes that have such conventions might choose to implement a public method with a customized name, such as Close, which calls the Dispose method.

Because the Dispose method must be called explicitly, objects that implement IDisposable must also implement a finalizer to handle freeing resources when Dispose is not called. By default, the garbage collector will automatically call an object's finalizer prior to reclaiming its memory. However, once the Dispose method has been called, it is typically unnecessary for the garbage collector to call the disposed object's finalizer. To prevent automatic finalization, Dispose implementations can call the GC.SuppressFinalize method.

For more information on implementing finalizers, see the GC class and the Object.Finalize method.

Example

[Visual Basic]

Imports System

Imports System.ComponentModel

' The following example demonstrates how to create

' a resource class that implements the IDisposable interface

' and the IDisposable.Dispose method.

Public Class DisposeExample

 ' A class that implements IDisposable.

 ' By implementing IDisposable, you are announcing that

 ' instances of this type allocate scarce resources.

 Public Class MyResource

 Implements IDisposable

 ' Pointer to an external unmanaged resource.

 Private handle As IntPtr

 ' Other managed resource this class uses.

 Private component As component

 ' Track whether Dispose has been called.

 Private disposed As Boolean = False

 ' The class constructor.

 Public Sub New(ByVal handle As IntPtr)

 Me.handle = handle

 End Sub

 ' Implement IDisposable.

 ' Do not make this method virtual.

 ' A derived class should not be able to override this method.

 Public Overloads Sub Dispose() Implements IDisposable.Dispose

 Dispose(True)

 ' This object will be cleaned up by the Dispose method.

 ' Therefore, you should call GC.SupressFinalize to

 ' take this object off the finalization queue

 ' and prevent finalization code for this object

 ' from executing a second time.

 GC.SuppressFinalize(Me)

 End Sub

 ' Dispose(bool disposing) executes in two distinct scenarios.

 ' If disposing equals true, the method has been called directly

 ' or indirectly by a user's code. Managed and unmanaged resources

 ' can be disposed.

 ' If disposing equals false, the method has been called by the

 ' runtime from inside the finalizer and you should not reference

 ' other objects. Only unmanaged resources can be disposed.

 Private Overloads Sub Dispose(ByVal disposing As Boolean)

 ' Check to see if Dispose has already been called.

 If Not Me.disposed Then

 ' If disposing equals true, dispose all managed

 ' and unmanaged resources.

 If disposing Then

 ' Dispose managed resources.

 component.Dispose()

 End If

 ' Call the appropriate methods to clean up

 ' unmanaged resources here.

 ' If disposing is false,

 ' only the following code is executed.

 CloseHandle(handle)

 handle = IntPtr.Zero

 End If

 disposed = True

 End Sub

 ' Use interop to call the method necessary

 ' to clean up the unmanaged resource.

 <System.Runtime.InteropServices.DllImport("Kernel32")> _

 Private Shared Function CloseHandle(ByVal handle As IntPtr) As [Boolean]

 End Function

 ' This finalizer will run only if the Dispose method

 ' does not get called.

 ' It gives your base class the opportunity to finalize.

 ' Do not provide finalize methods in types derived from this class.

 Protected Overrides Sub Finalize()

 ' Do not re-create Dispose clean-up code here.

 ' Calling Dispose(false) is optimal in terms of

 ' readability and maintainability.

 Dispose(False)

 MyBase.Finalize()

 End Sub

 End Class

 Public Shared Sub Main()

 ' Insert code here to create

 ' and use the MyResource object.

 End Sub

End Class

[C#]

using System;

using System.ComponentModel;

// The following example demonstrates how to create

// a resource class that implements the IDisposable interface

// and the IDisposable.Dispose method.

public class DisposeExample

{

 // A base class that implements IDisposable.

 // By implementing IDisposable, you are announcing that

 // instances of this type allocate scarce resources.

 public class MyResource: IDisposable

 {

 // Pointer to an external unmanaged resource.

 private IntPtr handle;

 // Other managed resource this class uses.

 private Component component = new Component();

 // Track whether Dispose has been called.

 private bool disposed = false;

 // The class constructor.

 public MyResource(IntPtr handle)

 {

 this.handle = handle;

 }

 // Implement IDisposable.

 // Do not make this method virtual.

 // A derived class should not be able to override this method.

 public void Dispose()

 {

 Dispose(true);

 // This object will be cleaned up by the Dispose method.

 // Therefore, you should call GC.SupressFinalize to

 // take this object off the finalization queue

 // and prevent finalization code for this object

 // from executing a second time.

 GC.SuppressFinalize(this);

 }

 // Dispose(bool disposing) executes in two distinct scenarios.

 // If disposing equals true, the method has been called directly

 // or indirectly by a user's code. Managed and unmanaged resources

 // can be disposed.

 // If disposing equals false, the method has been called by the

 // runtime from inside the finalizer and you should not reference

 // other objects. Only unmanaged resources can be disposed.

 private void Dispose(bool disposing)

 {

 // Check to see if Dispose has already been called.

 if(!this.disposed)

 {

 // If disposing equals true, dispose all managed

 // and unmanaged resources.

 if(disposing)

 {

 // Dispose managed resources.

 component.Dispose();

 }

 // Call the appropriate methods to clean up

 // unmanaged resources here.

 // If disposing is false,

 // only the following code is executed.

 CloseHandle(handle);

 handle = IntPtr.Zero;

 }

 disposed = true;

 }

 // Use interop to call the method necessary

 // to clean up the unmanaged resource.

 [System.Runtime.InteropServices.DllImport("Kernel32")]

 private extern static Boolean CloseHandle(IntPtr handle);

 // Use C# destructor syntax for finalization code.

 // This destructor will run only if the Dispose method

 // does not get called.

 // It gives your base class the opportunity to finalize.

 // Do not provide destructors in types derived from this class.

 ~MyResource()

 {

 // Do not re-create Dispose clean-up code here.

 // Calling Dispose(false) is optimal in terms of

 // readability and maintainability.

 Dispose(false);

 }

 }

 public static void Main()

 {

 // Insert code here to create

 // and use the MyResource object.

 }

}

The using block.

The using statement defines a scope at the end of which an object will be disposed.

using (expression | type identifier = initializer) statement

where:

expression

An expression you want to call Dispose on upon exiting the using statement.

type

The type of identifier.

identifier

The name, or identifier, of the type type. It is possible to define more than one identifier of type type. Precede each identifier = initializer with a comma.

initializer

An expression that creates an object.

statement

The embedded statement or statements to executed.

Remarks

You create an instance in a using statement to ensure that Dispose is called on the object when the using statement is exited. A using statement can be exited either when the end of the using statement is reached or if, for example, an exception is thrown and control leaves the statement block before the end of the statement.

The object you instantiate must implement the System.IDisposable interface.

Example

// cs_using_statement.cs

// compile with /reference:System.Drawing.dll

using System.Drawing;

class a

{

 public static void Main()

 {

 using (Font MyFont = new Font("Arial", 10.0f), MyFont2 = new Font("Arial", 10.0f))

 {

 // use MyFont and MyFont2

 } // compiler will call Dispose on MyFont and MyFont2

 Font MyFont3 = new Font("Arial", 10.0f);

 using (MyFont3)

 {

 // use MyFont3

 } // compiler will call Dispose on MyFont3

 }

}

The unsafe block.

The unsafe keyword denotes an unsafe context, which is required for any operation involving pointers.

You can use the unsafe modifier in the declaration of a type or a member. The entire textual extent of the type or member is therefore considered an unsafe context. For example, the following is a method declared with the unsafe modifier:

unsafe static void FastCopy (byte[] src, byte[] dst, int count)

{

 // unsafe context: can use pointers here

}

The scope of the unsafe context extends from the parameter list to the end of the method, so pointers can also be used in the parameter list:

unsafe static void FastCopy (byte* ps, byte* pd, int count) {...}

You can also use an unsafe block to enable the use of an unsafe code inside this block. For example:

unsafe

{

 // unsafe context: can use pointers here

}

To compile unsafe code, you must specify the /unsafe compiler option. Unsafe code is not verifiable by the common language runtime.

Example

// cs_unsafe_keyword.cs

// compile with: /unsafe

using System;

class UnsafeTest

{

 // unsafe method: takes pointer to int:

 unsafe static void SquarePtrParam (int* p)

 {

 *p *= *p;

 }

 unsafe public static void Main()

 {

 int i = 5;

 // unsafe method: uses address-of operator (&)

 SquarePtrParam (&i);

 Console.WriteLine (i);

 }

}

Output

25

The checked block.

The checked keyword is used to control the overflow-checking context for integral-type arithmetic operations and conversions. It can be used as an operator or a statement according to the following forms.

The checked statement:

checked block

The checked operator:

checked (expression)

where:

block

The statement block that contains the expressions to be evaluated in a checked context.

expression

The expression to be evaluated in a checked context. Notice that the expression must be in parentheses ().

Remarks

In a checked context, if an expression produces a value that is outside the range of the destination type, the result depends on whether the expression is constant or non-constant. Constant expressions cause compile time errors, while non-constant expressions are evaluated at run time and raise exceptions.

If neither checked nor unchecked is used, a constant expression uses the default overflow checking at compile time, which is checked. Otherwise, if the expression is non-constant, the run-time overflow checking depends on other factors such as compiler options and environment configuration.

The following three examples demonstrate the checked and unchecked operators on non-constant expressions. All use the same algorithm, but different checking contexts. The overflow checking is evaluated at run time.

Example 1: Using a checked expression.

Example 2: Using an unchecked expression.

Example 3: Using default overflow checking.

Only the first example throws an overflow exception at run time, in which case, you have the option to go to the debugging mode, or abort the program execution. The other two examples produce truncated values.

See also the unchecked examples on using the checked and unchecked statements.

Example 1

// statements_checked.cs

// The overflow of non-constant expressions is checked at run time

using System;

class OverFlowTest

{

 static short x = 32767; // Max short value

 static short y = 32767;

 // Using a checked expression

 public static int myMethodCh()

 {

 int z = 0;

 try

 {

 z = checked((short)(x + y));

 }

 catch (System.OverflowException e)

 {

 System.Console.WriteLine(e.ToString());

 }

 return z; // Throws the exception OverflowException

 }

 public static void Main()

 {

 Console.WriteLine("Checked output value is: {0}", myMethodCh());

 }

}

Sample Output

When you run the program, it throws the exception OverflowException. You can debug the program or abort execution.

System.OverflowException: An exception of type System.OverflowException was thrown.

 at OverFlowTest.myMethodCh()

Checked output value is: 0

Example 2

// statements_checked2.cs

// Using unchecked expressions

// The overflow of non-constant expressions is checked at run time

using System;

class OverFlowTest

{

 static short x = 32767; // Max short value

 static short y = 32767;

 public static int myMethodUnch()

 {

 int z = unchecked((short)(x + y));

 return z; // Returns -2

 }

 public static void Main()

 {

 Console.WriteLine("Unchecked value is: {0}", myMethodUnch());

 }

}

Output

Unchecked value is: -2

Example 3

// statements_checked3.cs

// Using default overflow checking

// The overflow of non-constant expressions is checked at run time

using System;

class OverFlowTest

{

 static short x = 32767; // Max short value

 static short y = 32767;

 public static int myMethodUnch()

 {

 int z = (short)(x + y);

 return z; // Returns -2

 }

 public static void Main()

 {

 Console.WriteLine("Default checking ouput value is: {0}", myMethodUnch());

 }

}

Output

Default checking ouput value is: -2
Exception handling.

Exception handling is an in built mechanism in .NET framework to detect and handle run time errors. The .NET framework contains lots of standard exceptions. The exceptions are anomalies that occur during the execution of a program. They can be because of user, logic or system errors. If a user (programmer) do not provide a mechanism to handle these anomalies, the .NET run time environment provide a default mechanism, which terminates the program execution.
C# provides three keywords try, catch and finally to do exception handling. The try encloses the statements that might throw an exception whereas catch handles an exception if one exists. The finally can be used for doing any clean up process.
The general form try-catch-finally in C# is shown below

try

{

// Statement which can cause an exception.

}

catch(Type x)

{

// Statements for handling the exception

}

finally

{

//Any cleanup code

}
If any exception occurs inside the try block, the control transfers to the appropriate catch block and later to the finally block.
But in C#, both catch and finally blocks are optional. The try block can exist either with one or more catch blocks or a finally block or with both catch and finally blocks.
If there is no exception occurred inside the try block, the control directly transfers to finally block. We can say that the statements inside the finally block is executed always. Note that it is an error to transfer control out of a finally block by using break, continue, return or goto.
In C#, exceptions are nothing but objects of the type Exception. The Exception is the ultimate base class for any exceptions in C#. The C# itself provides couple of standard exceptions. Or even the user can create their own exception classes, provided that this should inherit from either Exception class or one of the standard derived classes of Exception class like DivideByZeroExcpetion ot ArgumentException etc.
Uncaught Exceptions
The following program will compile but will show an error during execution. The division by zero is a runtime anomaly and program terminates with an error message. Any uncaught exceptions in the current context propagate to a higher context and looks for an appropriate catch block to handle it. If it can’t find any suitable catch blocks, the default mechanism of the .NET runtime will terminate the execution of the entire program.
	
//C#: Exception Handling

using System;
class MyClient
{

public static void Main()

{

int x = 0;

int div = 100/x;

Console.WriteLine(div);

}
}

The modified form of the above program with exception handling mechanism is as follows. Here we are using the object of the standard exception class DivideByZeroException to handle the exception caused by division by zero.
	
//C#: Exception Handling using System;
class MyClient
{

public static void Main()

{

int x = 0;

int div = 0;

try

{

div = 100/x;

Console.WriteLine(“This line in not executed”);

}

catch(DivideByZeroException de)

{

Console.WriteLine("Exception occured");

}

Console.WriteLine("Result is {0}",div);

}
}

In the above case the program do not terminate unexpectedly. Instead the program control passes from the point where exception occurred inside the try block to the catch blocks. If it finds any suitable catch block, executes the statements inside that catch and continues with the normal execution of the program statements.
If a finally block is present, the code inside the finally block will get also be executed.
	
//C#: Exception Handling using System;
class MyClient
{

public static void Main()

{

int x = 0;

int div = 0;

try

{

div = 100/x;

Console.WriteLine("Not executed line");

}

catch(DivideByZeroException de)

{

Console.WriteLine("Exception occured");

}

finally

{

Console.WriteLine("Finally Block");

}

Console.WriteLine("Result is {0}",div);

}
}

Remember that in C#, the catch block is optional. The following program is perfectly legal in C#.
	
//C#: Exception Handling using System;
class MyClient
{

public static void Main()

{

int x = 0;

int div = 0;

try

{

div = 100/x;

Console.WriteLine("Not executed line");

}

finally

{

Console.WriteLine("Finally Block");

}

Console.WriteLine("Result is {0}",div);

}
}

But in this case, since there is no exception handling catch block, the execution will get terminated. But before the termination of the program statements inside the finally block will get executed. In C#, a try block must be followed by either a catch or finally block
Multiple Catch Blocks
A try block can throw multiple exceptions, which can handle by using multiple catch blocks. Remember that more specialized catch block should come before a generalized one. Otherwise the compiler will show a compilation error.
	
//C#: Exception Handling: Multiple catch
using System;
class MyClient
{

public static void Main()

{

int x = 0;

int div = 0;

try

{

div = 100/x;

Console.WriteLine("Not executed line");

}

catch(DivideByZeroException de)

{

Console.WriteLine("DivideByZeroException");

}

catch(Exception ee)

{

Console.WriteLine("Exception");

}

finally

{

Console.WriteLine("Finally Block");

}

Console.WriteLine("Result is {0}",div);

}
}

Catching all Exceptions
By providing a catch block without a brackets or arguments, we can catch all exceptions occurred inside a try block. Even we can use a catch block with an Exception type parameter to catch all exceptions happened inside the try block since in C#, all exceptions are directly or indirectly inherited from the Exception class.
	
//C#: Exception Handling: Handling all exceptions using System;
class MyClient
{

public static void Main()

{

int x = 0;

int div = 0;

try

{

div = 100/x;

Console.WriteLine("Not executed line");

}

catch

{

Console.WriteLine("oException");

}

Console.WriteLine("Result is {0}",div);

}
}

The following program handles all exception with Exception object.
	
//C#: Exception Handling: Handling all exceptions
using System;
class MyClient
{

public static void Main()

{

int x = 0;

int div = 0;

try

{

div = 100/x;

Console.WriteLine("Not executed line");

}

catch(Exception e)

{

Console.WriteLine("oException");

}

Console.WriteLine("Result is {0}",div);

}
}

Throwing an Exception
In C#, it is possible to throw an exception programmatically. The ‘throw’ keyword is used for this purpose. The general form of throwing an exception is as follows.

throw exception_obj;
For example the following statement throw an ArgumentException explicitly.

throw new ArgumentException(“Exception”);

	
//C#: Exception Handling:
using System;
class MyClient
{

public static void Main()

{

try

{

throw new DivideByZeroException("Invalid Division");

}

catch(DivideByZeroException e)

{

Console.WriteLine("Exception");

}

Console.WriteLine("LAST STATEMENT");

}
}

Re-throwing an Exception
The exceptions, which we caught inside a catch block, can re-throw to a higher context by using the keyword throw inside the catch block. The following program shows how to do this.
	
//C#: Exception Handling: Handling all exceptions
using System;
class MyClass
{

public void Method()

{

try

{

int x = 0;

int sum = 100/x;

}

catch(DivideByZeroException e)

{

throw;

}

}
}
class MyClient
{

public static void Main()

{

MyClass mc = new MyClass();

try

{

mc.Method();

}

catch(Exception e)

{

Console.WriteLine("Exception caught here");

}

Console.WriteLine("LAST STATEMENT");

}
}

Standard Exceptions
There are two types of exceptions: exceptions generated by an executing program and exceptions generated by the common language runtime. System.Exception is the base class for all exceptions in C#. Several exception classes inherit from this class including ApplicationException and SystemException. These two classes form the basis for most other runtime exceptions. Other exceptions that derive directly from System.Exception include IOException, WebException etc.
The common language runtime throws SystemException. The ApplicationException is thrown by a user program rather than the runtime. The SystemException includes the ExecutionEngineException, StaclOverFlowException etc. It is not recommended that we catch SystemExceptions nor is it good programming practice to throw SystemExceptions in our applications.
System.OutOfMemoryException
System.NullReferenceException
Syste.InvalidCastException
Syste.ArrayTypeMismatchException
System.IndexOutOfRangeException

System.ArithmeticException
System.DevideByZeroException
System.OverFlowException

User-defined Exceptions
In C#, it is possible to create our own exception class. But Exception must be the ultimate base class for all exceptions in C#. So the user-defined exception classes must inherit from either Exception class or one of its standard derived classes.
	
//C#: Exception Handling: User defined exceptions
using System;
class MyException : Exception
{

public MyException(string str)

{

Console.WriteLine("User defined exception");

}
}
class MyClient
{

public static void Main()

{

try

{

throw new MyException("RAJESH");

}

catch(Exception e)

{

Console.WriteLine("Exception caught here" + e.ToString());

}

Console.WriteLine("LAST STATEMENT");

}
}

Design Guidelines
Exceptions should be used to communicate exceptional conditions. Don’t use them to communicate events that are expected, such as reaching the end of a file. If there’s a good predefined exception in the System namespace that describes the exception condition-one that will make sense to the users of the class-use that one rather than defining a new exception class, and put specific information in the message. Finally, if code catches an exception that it isn’t going to handle, consider whether it should wrap that exception with additional information before re-throwing it.
Serialization.

Serialization can be defined as the process of storing the state of an object to a storage medium. During this process, the public and private fields of the object and the name of the class, including the assembly containing the class, are converted to a stream of bytes, which is then written to a data stream. When the object is subsequently deserialized, an exact clone of the original object is created.

When implementing a serialization mechanism in an object-oriented environment, you have to make a number of tradeoffs between ease of use and flexibility. The process can be automated to a large extent, provided you are given sufficient control over the process. For example, situations may arise where simple binary serialization is not sufficient, or there might be a specific reason to decide which fields in a class need to be serialized. The following sections examine the robust serialization mechanism provided with the .NET Framework and highlight a number of important features that allow you to customize the process to meet your needs.

The easiest way to make a class serializable is to mark it with the Serializable attribute as follows.

[Serializable]

public class MyObject {

 public int n1 = 0;

 public int n2 = 0;

 public String str = null;

}

The code example below shows how an instance of this class can be serialized to a file.

MyObject obj = new MyObject();

obj.n1 = 1;

obj.n2 = 24;

obj.str = "Some String";

IFormatter formatter = new BinaryFormatter();

Stream stream = new FileStream("MyFile.bin", FileMode.Create, FileAccess.Write, FileShare.None);

formatter.Serialize(stream, obj);

stream.Close();

This example uses a binary formatter to do the serialization. All you need to do is create an instance of the stream and the formatter you intend to use, and then call the Serialize method on the formatter. The stream and the object to serialize are provided as parameters to this call. Although not explicitly demonstrated in this example, all member variables of a class will be serialized — even variables marked as private. In this aspect, binary serialization differs from the XMLSerializer Class, which only serializes public fields. For information on excluding member variables from binary serialization, see Selective Serialization.

Restoring the object back to its former state is just as easy. First, create a stream for reading and a formatter, and then instruct the formatter to deserialize the object. The code example below shows how this is done.

IFormatter formatter = new BinaryFormatter();

Stream stream = new FileStream("MyFile.bin", FileMode.Open, FileAccess.Read, FileShare.Read);

MyObject obj = (MyObject) formatter.Deserialize(stream);

stream.Close();

// Here's the proof.

Console.WriteLine("n1: {0}", obj.n1);

Console.WriteLine("n2: {0}", obj.n2);

Console.WriteLine("str: {0}", obj.str);

The BinaryFormatter used above is very efficient and produces a compact byte stream. All objects serialized with this formatter can also be deserialized with it, which makes it an ideal tool for serializing objects that will be deserialized on the .NET platform. It is important to note that constructors are not called when an object is deserialized. This constraint is placed on deserialization for performance reasons. However, this violates some of the usual contracts the runtime makes with the object writer, and developers should ensure they understand the ramifications when marking an object as serializable.

If portability is a requirement, use the SoapFormatter instead. Simply replace the BinaryFormatter in the code above with SoapFormatter, and call Serialize and Deserialize as before. This formatter produces the following output for the example used above.

<SOAP-ENV:Envelope

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:SOAP- ENC="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:SOAP- ENV="http://schemas.xmlsoap.org/soap/envelope/"

 SOAP-ENV:encodingStyle=

 "http://schemas.microsoft.com/soap/encoding/clr/1.0"

 "http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:a1="http://schemas.microsoft.com/clr/assem/ToFile">

 <SOAP-ENV:Body>

 <a1:MyObject id="ref-1">

 <n1>1</n1>

 <n2>24</n2>

 <str id="ref-3">Some String</str>

 </a1:MyObject>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

It is important to note that the Serializable attribute cannot be inherited. If you derive a new class from MyObject, the new class must be marked with the attribute as well, or it cannot be serialized. For example, when you attempt to serialize an instance of the class below, you will get a SerializationException informing you that the MyStuff type is not marked as serializable.

public class MyStuff : MyObject

{

 public int n3;

}

Using the Serializable attribute is convenient, but it has limitations as demonstrated above. Refer to the Serialization Guidelines for information about when you should mark a class for serialization; serialization cannot be added to a class after it has been compiled.

Xml serialization

XML serialization converts (serializes) the public fields and properties of an object, or the parameters and return values of methods, into an XML stream that conforms to a specific XML Schema definition language (XSD) document. XML serialization results in strongly typed classes with public properties and fields that are converted to a serial format (in this case, XML) for storage or transport.

Because XML is an open standard, the XML stream can be processed by any application, as needed, regardless of platform. For example, XML Web services created using ASP.NET use the XmlSerializer class to create XML streams that pass data between XML Web service applications throughout the Internet or on intranets. Conversely, deserialization takes such an XML stream and reconstructs the object.

XML serialization can also be used to serialize objects into XML streams that conform to the SOAP specification. SOAP is a protocol based on XML, designed specifically to transport procedure calls using XML.

To serialize or deserialize objects, use the XmlSerializer class. To create the classes to be serialized, use the XML Schema Definition tool.

Assembly

Assemblies are a fundamental part of programming with the .NET Framework. An assembly performs the following functions:

· It contains code that the common language runtime executes. Microsoft intermediate language (MSIL) code in a portable executable (PE) file will not be executed if it does not have an associated assembly manifest. Note that each assembly can have only one entry point (that is, DllMain, WinMain, or Main).

· It forms a security boundary. An assembly is the unit at which permissions are requested and granted. For more information about security boundaries as they apply to assemblies, see Assembly Security Considerations.

· It forms a type boundary. Every type's identity includes the name of the assembly in which it resides. A type called MyType loaded in the scope of one assembly is not the same as a type called MyType loaded in the scope of another assembly.

· It forms a reference scope boundary. The assembly's manifest contains assembly metadata that is used for resolving types and satisfying resource requests. It specifies the types and resources that are exposed outside the assembly. The manifest also enumerates other assemblies on which it depends.

· It forms a version boundary. The assembly is the smallest versionable unit in the common language runtime; all types and resources in the same assembly are versioned as a unit. The assembly's manifest describes the version dependencies you specify for any dependent assemblies. For more information about versioning, see Assembly Versioning.

· It forms a deployment unit. When an application starts, only the assemblies that the application initially calls must be present. Other assemblies, such as localization resources or assemblies containing utility classes, can be retrieved on demand. This allows applications to be kept simple and thin when first downloaded. For more information about deploying assemblies, see Deploying Applications.

· It is the unit at which side-by-side execution is supported. For more information about running multiple versions of an assembly, see Assemblies and Side-by-Side Execution.

Assemblies can be static or dynamic. Static assemblies can include .NET Framework types (interfaces and classes), as well as resources for the assembly (bitmaps, JPEG files, resource files, and so on). Static assemblies are stored on disk in portable executable (PE) files. You can also use the .NET Framework to create dynamic assemblies, which are run directly from memory and are not saved to disk before execution. You can save dynamic assemblies to disk after they have executed.

There are several ways to create assemblies. You can use development tools, such as Visual Studio .NET, that you have used in the past to create .dll or .exe files. You can use tools provided in the .NET Framework SDK to create assemblies with modules created in other development environments. You can also use common language runtime APIs, such as Reflection.Emit, to create dynamic assemblies.

ASSEMBLY

What is an assembly?

· An Assembly is a logical unit of code

· Assembly physically exist as DLLs or EXEs

· One assembly can contain one or more files

· The constituent files can include any file types like image files, text files etc. along with DLLs or EXEs

· When you compile your source code by default the exe/dll generated is actually an assembly

· Unless your code is bundled as assembly it can not be used in any other application

· When you talk about version of a component you are actually talking about version of the assembly to which the component belongs.

· Every assembly file contains information about itself. This information is called as Assembly Manifest.

What is assembly manifest?
· Assembly manifest is a data structure which stores information about an assembly

· This information is stored within the assembly file(DLL/EXE) itself

· The information includes version information, list of constituent files etc.

What is private and shared assembly?
The assembly which is used only by a single application is called as private assembly. Suppose you created a DLL which encapsulates your business logic. This DLL will be used by your client application only and not by any other application. In order to run the application properly your DLL must reside in the same folder in which the client application is installed. Thus the assembly is private to your application.

Suppose that you are creating a general purpose DLL which provides functionality which will be used by variety of applications. Now, instead of each client application having its own copy of DLL you can place the DLL in 'global assembly cache'. Such assemblies are called as shared assemblies.

What is Global Assembly Cache?
Global assembly cache is nothing but a special disk folder where all the shared assemblies will be kept. It is located under <drive>:\WinNT\Assembly folder.

How assemblies avoid DLL Hell?
As stated earlier most of the assemblies are private. Hence each client application refers assemblies from its own installation folder. So, even though there are multiple versions of same assembly they will not conflict with each other. Consider following example :

· You created assembly Assembly1

· You also created a client application which uses Assembly1 say Client1

· You installed the client in C:\MyApp1 and also placed Assembly1 in this folder

· After some days you changed Assembly1

· You now created another application Client2 which uses this changed Assembly1

· You installed Client2 in C:\MyApp2 and also placed changed Assembly1 in this folder

· Since both the clients are referring to their own versions of Assembly1 everything goes on smoothly

Now consider the case when you develop assembly that is shared one. In this case it is important to know how assemblies are versioned. All assemblies has a version number in the form:

major.minor.build.revision
If you change the original assembly the changed version will be considered compatible with existing one if the major and minor versions of both the assemblies match.

When the client application requests assembly the requested version number is matched against available versions and the version matching major and minor version numbers and having most latest build and revision number are supplied.

How do I create shared assemblies?
Following steps are involved in creating shared assemblies :

· Create your DLL/EXE source code

· Generate unique assembly name using SN utility

· Sign your DLL/EXE with the private key by modifying AssemblyInfo file

· Compile your DLL/EXE

· Place the resultant DLL/EXE in global assembly cache using AL utility
How do I create unique assembly name?
Microsoft now uses a public-private key pair to uniquely identify an assembly. These keys are generated using a utility called SN.exe (SN stands for shared name). The most common syntax of is :

sn -k mykeyfile.key
Where k represents that we want to generate a key and the file name followed is the file in which the keys will be stored.

How do I sign my DLL/EXE?
Before placing the assembly into shared cache you need to sign it using the keys we just generated. You mention the signing information in a special file called AssemblyInfo. Open the file from VS.NET solution explorer and change it to include following lines :

[assembly:AssemblyKeyFile("file_path")]
Now recompile the project and the assembly will be signed for you.

Note : You can also supply the key file information during command line compilation via /a.keyfile switch.

How do I place the assembly in shared cache?
Microsoft has provided a utility called AL.exe to actually place your assembly in shared cache.

AL /i:my_dll.dll
Now your dll will be placed at proper location by the utility.

Hands On...
Now, that we have understood the basics of assemblies let us apply our knowledge by developing a simple shared assembly.

In this example we will create a VB.NET component called SampleGAC (GAC stands for Global Assembly Cache). We will also create a key file named sample.key. We will sign our component with this key file and place it in Global Assembly Cache.
Module MyModule

public sub Main(args() as string)

System.Console.WriteLine("Hello Vb")

end sub

end Module

Using the command-line compiler provided with Visual Studio, such a program can be compiled with the command line directive

c:\> vbc Hello.vb

class CA

{

public static void Main(string[] args)

{

System.Console.WriteLine("Hello World");

}

}

Using the command-line compiler provided with Visual Studio, such a program can be compiled with the command line directive

c:\> csc Hello.cs

c:\> ildasm Hello.exe

Creating an assembly

namespace MathLibrary

{

public class CMath

{

public long AddFun(long x,long y)

{

Console.WriteLine("Addfun");

return x + y;

}

public long SubFun(long x,long y)

{

Console.WriteLine("AubFun");

return x - y;

}

}

}

c:\> csc /t:libary Math.cs

public class CMath

public function AddFun(x as long,y as long) as long

return x + y

end function

end class

How Do I...Change the search path for private assemblies?

Private assemblies are assemblies that are visible to only one application. The .NET Framework enables developers to build applications that are isolated from changes made to the system by other applications. Private assemblies must be deployed in the directory structure of the containing application and are found during runtime through a process called probing, which is simply a mapping from an assembly's identity to a file on disk that contains the manifest.

By default, probing for private assemblies is done in the application base (the root directory of the application) and the subdirectories that follow naming conventions based on assembly name and culture. You can customize this behavior by specifying a privatePath in your application's configuration file. The privatePath is a semi-colon delimited list of directories in which the common language runtime will search for private assemblies. These directory names are relative to the application base - they cannot point outside the application base. The directories on privatePath will be searched after the application base itself. The following configuration file adds a bin directory to the assembly search path:

<configuration>

 <runtime>

 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

 <probing privatePath="bin"/>

 </assemblyBinding>

 </runtime>

</configuration>

How Do I...Create an assembly with a strong name?

Assemblies can be assigned a cryptographic signature, called a strong name, which provides name uniqueness for the assembly and prevents someone from taking over the name of your assembly (name spoofing). If you are deploying an assembly that will be shared among many applications on the same machine, it must have a strong name. Even if you only use the assembly within your application, using a strong name ensures that the correct version of the assembly gets loaded

The first step in building an assembly with a strong name is to obtain a cryptographic key pair. The .NET Framework SDK includes a Strong Name tool (Sn.exe) that can be used to generate a key pair. The key pair that is generated by the Strong Name tool can be kept in a file or you can store it in your local machine's Crytographic Service Provider (CSP). The following command uses the Strong Name tool to generate a new key pair and store it in a file called TestKey.snk:

c:\> SN -k TestKey.snk
c:\> SN -tp TestKey.snk
Once you have obtained the key pair, you need to add the proper custom attribute to your source in order for the compiler to emit the assembly with a strong name. Choosing the correct attribute depends on whether the key pair used for the signing is contained in a file or in a key container within the CSP. For keys stored in a file, use System.Reflection.AssemblyKeyFileAttribute. For keys stored in the CSP use System.Reflection.AssemblyKeyNameAttribute

The following example uses AssemblyKeyFileAttribute to specify the name of the file containing the key pair.

using System;

using System.Reflection;

[assembly : AssemblyKeyFile("TestKey.snk ")]

namespace MathLibrary

{

public class CMath

{

public long AddFun(long x,long y)

{

Console.WriteLine("Addfun");

return x + y;

}

public long SubFun(long x,long y)

{

Console.WriteLine("AubFun");

return x - y;

}

}

}

How to add assembly into the global assembly cache ?

The global assembly cache is a machine-wide store used to hold assemblies that are intended to be shared by several applications on the machine. The .NET Framework provides two tools for working with the cache. One is a Windows shell extension that allows you to work with the cache using a Graphical User Interface (GUI). The other is a command line tool, called the Global Assembly tool (Gacutil.exe), that is typically used in build and test scripts. The command line tool is called the Global Assembly Cache tool (Gacutil.exe).

All assemblies in the global cache must have strong names.

Viewing the Contents of the Assembly Cache

Navigate to %winnt%\assembly using the Windows Explorer to activate the shell extension. The default view shows the contents of the assembly cache. You can also view the contents of the cache with the /l option of the Global Assembly Cache tool:

gacutil /l

Installing Assemblies

To install an assembly using the shell extension simply drag and drop the file containing the assembly's manifest into the global assembly cache directory. To install an assembly using the Global Assembly Cache tool, use the /i option:

gacutil /i math.dll

Uninstalling Assemblies

To delete an assembly with the shell extension, right click on it and select Delete. The /u option of the Global Assembly Cache tool can also be used:

gacutil /u math,ver=1.0.0.0

The version of Windows Installer (1.5) that will ship in the Visual Studio .NET timeframe has native support for the assembly cache. When creating an Installer package with the Visual Studio Deployment tool or another setup tool, you can specify which assemblies you'd like installed in the cache. Using the Windows Installer to work with the assembly cache gives you the standard Installer benefits like install-on-demand, advertisement, publishing, and so on.

using System;

using MathLibrary;

class CMain

{

public static void Main(string[] args)

{

long x = long.Parse(args[0]);

long y = long.Parse(args[1]);

CMath obj = new CMath();

long ans = obj.AddFun(x,y);

Console.WriteLine(" {0} + {1} = {2} ", x,y,ans);

}

}

How to create a Delay signed shared assembly ?

Giving an assembly a strong name requires two cryptographic keys: a public key and a private key. This key pair is passed to the compiler at build time. However, the person building the assembly does not always have access to the private key required for strong naming. This is most common in corporations that have a central signing entity closely guards private keys. Only a few select people have access to these keys. Also, the process of assigning a strong name cannot be done after building because the public key is part of the assembly's identity and must be supplied at build time so that clients of the assembly can compile against the full assembly identity.

· 1. Creates a key-pair using sn -K.

· 2. Separates the public key from the private key and stores the public key in its own file.

· 3. Creates a delay signed assembly in either Visual Basic or C#.

· 4. Uses the Strong Name tool to request that signature verification be skipped for the assembly just generated.

· 5. Generates a valid signature using the Strong Name tool. This typically happens just before you ship the assembly.

The .NET Framework offers delay signing, which effectively splits the process of assigning the strong name into two steps:

· 1. At build time, the public key is given to the compiler so it can be recorded in the PublicKey field in the assembly manifest. Also, space is reserved in the file for the signature, although the actual signature is not generated at this time.

· 2. At a later time, the the actual signature is generated and stored in the file. Signature generation is done with the -R switch to the Strong Named tool (Sn.exe).

When you include the System.Reflection.AssemblyDelaySignAttribute in your source code, it indicates to the compiler that the assembly needs to be created with delay signing. You also need to include the public key, using AssemblyKeyFileAttribute. Typically, the signing entity will use the SN -k to generate a key pair and store it in a file. Next, it pulls the public key out of the file using SN -p. The public key can then be given out, with the private key still secret.

sn -k Testkey.snk

sn -p Testkey.snk TestPublicKey.snk

The following example uses AssemblyKeyFileAttribute and AssemblyDelaySignAttribute to create a delay signed assembly.

using System;

using System.Reflection;

[assembly:AssemblyKeyFileAttribute("TestPublicKey.snk")]

[assembly:AssemblyDelaySignAttribute(true)]

Since the assembly in the example does not have a valid signature, the signature validation performed by the common language runtime will fail when you try to install the assembly into the global assembly cache or load it from an application directory. However, the Strong Name tool can be used to disable signature verification of a particular assembly by using the -Vr option:

sn -Vr DelaySign.dll

A valid signature must be generated before the assembly is shipped to customers using sn -R. This is typically done by the company signing entity. You must supply the full key pair to create a valid signature.

sn -R DelaySign.dll Testkey.snk

To create and sign an assembly with a strong name using the Assembly Linker

At the command prompt, type the following command:

al /out:<assembly name> <module name> /keyfile:<file name>

In this command, assembly name is the name of the assembly to sign with a strong name, module name is the name of the code module used to create the assembly, and file name is the name of the container or file that contains the key pair.

The following example signs the assembly MyAssembly.dll with a strong name using the key file sgKey.snk.

al /out:MyAssembly.dll MyModule.netmodule /keyfile:sgKey.snk

How to Use Assembly Version Policy?

A primary goal of the deployment system in the .NET Framework is to eliminate conflicts between applications caused by shared components and shared states (or DLL conflicts). A key solution to this problem is a robust versioning system. The .NET Framework records information about an application's dependencies in the assembly manifest. This dependency information includes a version number that is used at runtime to load the proper version of a dependency.

By default, the common language runtime will load the version of a dependency that is specified in the manifest. This is preferred in the majority of scenarios. However, there are cases where running an application with a different version of a dependency can be useful. In order to accomplish this, version policies can be included in an application's configuration file. For example, the following XML code fragment redirects references to version 5.0.0.0 of a shared assembly called "caclR" up to version 6.0.0.0 of that assembly:

<configuration>

 <runtime>

 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

 <dependentAssembly>

 <assemblyIdentity name="calcR"

 publicKeyToken="a1690a5ea44bab32"

 culture=""/>

 <bindingRedirect oldVersion="5.0.0.0"

 newVersion="6.0.0.0"/>

 </dependentAssembly>

 </assemblyBinding>

 </runtime>

</configuration>

How to Create a Publisher Policy Assembly?

A Publisher policy statement describes the compatibility of an assembly issued by the publisher of that shared assembly. Publisher policy is commonly used in service pack scenarios. For example, a publisher may produce a number of small releases that enhances certain features for a particular customer. For maintenance reasons, the publisher may wish to collect all of these fixes into a single service pack release and have all exsiting customers upgrade to the new service pack.

A publisher policy statement is an XML configuration file wrapped as a separate assembly. There are three reasons that publisher policies are shipped as assemblies. The first is to ensure that the policy statement comes from the author of the assembly that the policy is making the compatibility statement about. This is accomplished by requiring that the policy assembly has a strong name generated with the same key-pair as the original assembly. The second reason is ease of deployment. Publishers or administrators can ship policy statements using the assembly deployment mechansims provided by the .NET Framework, including the Windows Installer and code download. Using the Windows Installer is particularly convenient because all policy assemblies must be installed in the global assembly cache. Finally, assemblies ship policy statements so that they can be versioned. This allows a publisher to ship a subsequent statement if a previous policy is found not to work in some scenarios. In effect, this allows a publisher to change his mind about the compatibility of his assembly independent of when it was shipped. The flexibility enabled by decoupling the compatibility statements from the code makes it much easier to fix broken applications in the .NET Framework. If multiple versions of a given policy assembly are found in the assembly cache, the .NET Framework will use the policy assembly with the highest version number.

In general, there are two steps required to create a publisher policy assembly:

· 1. Create the XML file containing the compatibility statement. You will have to use an XML editor to create this file.

· 2. Use the Assembly Generation tool (Al.exe) to create an assembly containing the XML file.

The format of the xml file, along with rules about how the elements relate, is described in detail in the .NET Framework SDK Guide. Here is an example file:

<configuration>

 <runtime>

 <assemblyBinding>

 <dependentAssembly>

 <assemblyIdentity name="myasm"

 publicKeyToken="e9b4c4996039ede8"

 culture="en-us"/>

 <bindingRedirect oldVersion="1.0.0.0-1.0.9.9"

 newVersion="2.0.0.0"/>

 <codeBase version="2.0.0.0"

 href="http://www.foo.com/bar.dll"/>

 </dependentAssembly>

 </assemblyBinding>

 </runtime>

</configuration>

After the xml file is created, use the Assembly Generation tool to create a policy assembly. The following switches to the Assembly Generation tool are required:

1. /link: links the xml file into the assembly.

2. /out: gives the resulting policy assembly a name. Policy assemblies are found in the global assembly cache by naming convention. Therefore, their names must be:

policy.<major number>.<minor number>.<main assembly name>
For example, policy.2.0.myasm
3. /keyfile: The key pair used to give the assembly a strong name (or at least the public key if delay signing is used). As described earlier, this key pair must be the same key pair used to sign the assembly to which this policy statement applies.

4. /version: The version number of the policy assembly.

The following example shows a command line that uses the Assembly Generation tool:

Al /link:publisher.cfg /out:policy.2.0.myasm /keyfile:myasm.snk /version:2.0.0.0

In addition to policies specified at the application level, the .NET Framework also provides two other policy levels: publisher and administrator. A Publisher policy statement describes the compatibility of an assembly issued by the publisher of that shared assembly. Administrator policy is created using the same XML syntax as application level policy. The administrator policy file is called machine.config, and resides in the common language runtime install directory. The three policy levels are evaluated in the following order:

· Application Policy

· Publisher Policy

· Administrator Policy

How Do I...Get the types in an assembly?

using System; Once you have an object reference to the assembly of interest, you can call the GetTypes method on that assembly, which returns an array of all the types in that assembly. You can use control logic to identify the more specific types in that array, and use iterating logic to parse your array, returning the type information to the user if needed. The ability to retrieve type information can be useful for determining alternative types you could use for a given task, or identifying existing elements which could provide you with the functionality you need.

The first thing to learn when retrieving types from a particular assembly is, how to identify an assembly.The first is by identifying a particular object that you want to find the assembly of, and requesting the assembly for the module of that object (remember that a module is a logical grouping of types and code, such as a .dll or .exe). The second is by using the LoadFrom method of the Assembly class to load a specific assembly for a named module (such as myapp.exe).

using System.Reflection;

class CMain

{

static void Main(string[] args)

{

//step 1 load an assembly

Assembly asm = Assembly.LoadFrom("c:\\dotnet\\MathLibrary.dll");

//step 2 get the modules

Module[] modules = asm.GetModules();

foreach(Module mod in modules)

{

Console.WriteLine("module {0}", mod.Name);

//step 3 get types

Type[] types = mod.GetTypes();

foreach(Type t in types)

{

Console.WriteLine("Type {0}", t.Name);

//step 4 get methods

MethodInfo[] methods = t.GetMethods();

foreach(MethodInfo method in methods)

{

Console.WriteLine("method : {0} ",method.Name);

}

FieldInfo[] fields = t.GetFields();

foreach(FieldInfo field in fields)

{

Console.WriteLine("field : {0} ",field.Name);

}

}

}

}

}

How Do I...Create a assembly On the fly?

using System;

using System.Reflection;

using System.Reflection.Emit;

class CMain

{

static void Main(string[] args)

{

//step 0 get domain ref in which asm will be created

AppDomain domain = AppDomain.CurrentDomain;

//step 1 create a name for the asm

AssemblyName asmname = new AssemblyName();

asmname.Name = "MyFirstAssembly";

//step 2 build a asm

AssemblyBuilder asmbuilder =

domain.DefineDynamicAssembly(asmname,AssemblyBuilderAccess.Save);

//step 3 build a module

ModuleBuilder modbuilder =

asmbuilder.DefineDynamicModule("mymodule","mymodule.netmodule");

//step 4 create a type

TypeBuilder typebuilder =

modbuilder.DefineType("CA",TypeAttributes.Public);

//step 5 create a field

FieldBuilder field1 = typebuilder.DefineField

("empno", Type.GetType("System.String"),FieldAttributes.Private);

//step 6 create a method

MethodBuilder method1 = typebuilder.DefineMethod

("fun",MethodAttributes.Public,null,new Type[]{});

//step 7 write code in the method

ILGenerator il = method1.GetILGenerator();

il.Emit(OpCodes.Ret);

//step 8 save

typebuilder.CreateType();

asmbuilder.Save("myasm.dll");

}

}

}

How Do I...Invoke methods?

In many coding scenarios, you know the task that you want to carry out before you want to do it. Therefore, you can specify the methods that you need to invoke, and the parameters you need to pass them. However, there are also situations where you might want to dynamically invoke methods, based upon specific scenarios, or user actions. This capability is available through the Reflection namespace, by using the InvokeMember method on the Type object.

You can also take other actions, such as getting or setting the value of a specified property. These actions are available through the BindingFlags enumeration. The second parameter of InvokeMethod is a combination of the BindingFlags actions you specify. For example, if you want to invoke a static method on a class, you would include the static element in BindingFlags, and the InvokeMethod BindingFlag. The following example demonstrates how to invoke a hypothetical method

// calling a static method, receiving no arguments

// don't forget that we are using object in the reflection namespace...

using System;

using System.Reflection;

public class Invoke {

public static void Main (String [] cmdargs) {

// Declare a type object, used to call our InvokeMember method...

Type t = typeof (TestClass);

// BindingFlags has three bitor'ed elements. Default indicates

// that default binding rules should be applied.

t.InvokeMember ("SayHello",

BindingFlags.Default | BindingFlags.InvokeMethod

| BindingFlags.Static, null,

null, new object [] {});

}

}

Take a quick look at the rest of the parameters that were passed to the Invoke method. The first null argument passed is requesting that the default binder be used to bind the method you are invoking. When you invoke the default binder, include the default BindingFlags. Instead of null as the third parameter, you can specify a Binder object that defines a set of properties and enables binding, which may involve selection of an overloaded method or coercion of argument types. The second null argument is the object on which to invoke the method you chose. Finally, pass an object array of the arguments that the member receives.

Named arguments

You can also use named arguments, in which case you need to use a different overloaded version of the InvokeMember method. Create the array of object arguments as you have been doing so far, and also create a string array of the names of the parameters being passed. The overloaded method you want to use accepts the list of parameter names as the last parameter, and the list of values you want to set as the fifth parameter

// Calling a method using named arguments

// the argument array, and the parameter name array.

// to determine the names of the parameters in advance

object[] argValues = new object [] {"Mouse", "Micky"};

String [] argNames = new String [] {"lastName", "firstName"};

t.InvokeMember ("PrintName",

BindingFlags.Default | BindingFlags.InvokeMethod,

null, null, argValues, null, null, argNames);

The final example uses a slightly different process to invoke a method. Rather than using the Type object directly, create a separate MethodInfo object directly to represent the method you will be invoking. Then, call the Invoke method on your MethodInfo object, passing an instance of the object you need to invoke your method on (if you are invoking an instance method, but null if your method is static). As before, an object array of the parameters is required.

// Invoking a ByRef member

MethodInfo m = t.GetMethod("Swap");

args = new object[2];

args[0] = 1; args[1] = 2;

m.Invoke(new TestClass(),args);

Console.WriteLine ("{0}, {1}", args[0], args[1]);

How do I Serialize using XmlSerializer

Serializes and deserializes objects into and from XML documents. The XmlSerializer enables you to control how objects are encoded into XML. XML serialization is the process of converting an object's public properties and fields to a serial format for storage or transport. Deserialization re-creates the object in its original state from the XML output. You can thus think of serialization as a way of saving the state of an object into a stream or buffer

using System;

using System.IO;

using System.Xml.Serialization;

public class Dept

{

public long m_code;

private string m_name;

public Dept(long code,string name)

{

m_code = code; m_name = name;

}

public void Display()

{

Console.WriteLine("dept code: {0} name: {1} ",m_code,m_name);

}

}

class CMain

{

static void Main ()

{

MainXmlSerialize();

MainXmlDeserialize();

}

static void MainXmlDeserialize ()

{

Dept obj;

//step 1 create
a serializer

XmlSerializer sr = new XmlSerializer(typeof(Dept));

//step 2 create a file

StreamReader file = new StreamReader("c:\\dotnet\\abc.xml");

//step 3

obj = (Dept) sr.Deserialize(file);

//step 4 close the file

file.Close();

obj.Display();

}

static void MainXmlSerialize ()

{

Dept obj = new Dept (101,"Purchase");

//step 1 create
a serializer

XmlSerializer sr = new XmlSerializer(obj.GetType());

//step 2 create a file

StreamWriter file = new StreamWriter("c:\\dotnet\\abc.xml");

//step 3 serialize

sr.Serialize(file,obj);

//step 4 close the file

file.Close();

}

}

How do I Serialize using SoapSerializer

using System;

using System.IO;

using System.Runtime.Serialization.Formatters.Soap;

[Serializable]

public class Dept

{

public long m_code;

private string m_name;

public Dept(long code,string name)

{

m_code = code; m_name = name;

}

public void Display()

{

Console.WriteLine("dept code: {0} name: {1} ",m_code,m_name);

}

}

class CMain

{

static void MainSoapDeserialize()

{

Dept obj;

//step 1 create
a serializer

SoapFormatter fm = new SoapFormatter();

//step 2 open a file

FileStream file = File.Open("c:\\dotnet\\abc.xml",FileMode.Open);

//step 3

obj = (Dept) fm.Deserialize(file);

//step 4 close the file

file.Close();

obj.Display();

}

static void MainSoapSerialize()

{

Dept obj = new Emp(101,"Purchase");

//step 1 create
a serializer

SoapFormatter fm = new SoapFormatter();

//step 2 create a file

FileStream file = File.Create("c:\\dotnet\\abc.xml");

//step 3

fm.Serialize(file,obj);

//step 4 close the file

file.Close();

}

}

How do I Serialize using BinarSerializer

using System;

using System.IO;

using System.Runtime.Serialization.Formatters.Soap;

[Serializable]

public class Dept

{

public long m_code;

private string m_name;

public Dept(long code,string name)

{

m_code = code; m_name = name;

}

public void Display()

{

Console.WriteLine("dept code: {0} name: {1} ",m_code,m_name);

}

}

class CMain

{

static void Main()

{

}

static void MainSoapDeserialize()

{

Dept obj;

//step 1 create
a serializer

BinaryFormatter fm = new BinaryFormatter();

//step 2 open a file

FileStream file = File.Open("c:\\dotnet\\abc.xml",FileMode.Open);

//step 3

obj = (Dept) fm.Deserialize(file);

//step 4 close the file

file.Close();

obj.Display();

}

static void MainBinarySerialize()

{

Dept obj = new Dept (10,"jack",101,"Purchase");

//step 1 create
a serializer

BinaryFormatter fm = new BinaryFormatter();

//step 2 create a file

FileStream file = File.Create("c:\\dotnet\\abc.dat");

//step 3

fm.Serialize(file,obj);

//step 4 close the file

file.Close();

}

}

Domain

Historically, process boundaries have been used to isolate applications running on the same computer. Each application is loaded into a separate process, which isolates the application from other applications running on the same computer.

The applications are isolated because memory addresses are process-relative; a memory pointer passed from one process to another cannot be used in any meaningful way in the target process. In addition, you cannot make direct calls between two processes. Instead, you must use proxies, which provide a level of indirection.

Managed code must be passed through a verification process before it can be run. The verification process determines whether the code can attempt to access invalid memory addresses or perform some other action that could cause the process in which it is running to fail to operate properly. Code that passes the verification test is said to be type-safe. The ability to verify code as type-safe enables the common language runtime to provide as great a level of isolation as the process boundary, at a much lower performance cost.

Application domains provide a secure and versatile unit of processing that the common language runtime can use to provide isolation between applications. You can run several application domains in a single process with the same level of isolation that would exist in separate processes, but without incurring the additional overhead of making cross-process calls or switching between processes. The ability to run multiple applications within a single process dramatically increases server scalability.

Isolating applications is also important for application security. For example, you can run controls from several Web applications in a single browser process in such a way that the controls cannot access each other's data and resources.

The isolation provided by application domains has the following benefits:

· Faults in one application cannot affect other applications. Because type-safe code cannot cause memory faults, using application domains ensures that code running in one domain cannot affect other applications in the process.

· Individual applications can be stopped without stopping the entire process. Using application domains enables you to unload the code running in a single application.

Note You cannot unload individual assemblies or types. Only a complete domain can be unloaded.

· Code running in one application cannot directly access code or resources from another application. The common language runtime enforces this isolation by preventing direct calls between objects in different application domains. Objects that pass between domains are either copied or accessed by proxy.

· The behavior of code is scoped by the application in which it runs. In other words, the application domain provides configuration settings such as application version policies, the location of any remote assemblies it accesses, and information about where to locate assemblies that are loaded into the domain.

· Permissions granted to code can be controlled by the application domain in which the code is running.

All objects created in a remote domain are returned by reference and have to derive from MarshallByRefObject. Objects passed as parameters to a remote method call can be forwarded by value or by reference. The default behavior is pass by value provided the object in question is marked by the custom attribute [serializable]. Additionally, the object could implement the ISerializable interface, which provides flexibility in how the object should be serialized and deserialized. Objects that are not marshal by reference or marshal by value cannot be accessed across domains.

using System;

using System.Runtime.Remoting;

namespace BULibrary

{

[Serializable]

public class CBank

{

public CBank()

{

Console.WriteLine(AppDomain.CurrentDomain.FriendlyName);

}

public void Credit()

{

Console.WriteLine(AppDomain.CurrentDomain.FriendlyName);

Console.WriteLine("credit");

}

}

public class CBankEx : MarshalByRefObject

{

CBank m_bank = new CBank();

public CBankEx()

{

Console.WriteLine(AppDomain.CurrentDomain.FriendlyName);

}

public void Debit()

{

Console.WriteLine(AppDomain.CurrentDomain.FriendlyName);

Console.WriteLine("debit");

}

public CBank GetBank()

{

return m_bank;

}

}

}

While a common language runtime host creates application domains automatically when they are needed, you can create your own application domains and load into them assemblies you want to personally manage. You can also create application domains from which you execute code.You create a new application domain using one of the overloaded CreateDomain methods in the System.AppDomain class. You can give the application domain a name and reference it by that name.

using System;

using System.Reflection;

namespace TestinterDomain

{

class Class1

{

static void Main(string[] args)

{

//step 1 create a domain

AppDomain domain = AppDomain.CreateDomain("MyDomain");

//step 2 load the assembly in the new domain

//step 3 create a instance of CBajnk

//step 4 get a serialized object in current domain

object obj =domain.CreateInstanceAndUnwrap("BULibrary","BULibrary.CBankEx");

//step 5 get the type

Type t = obj.GetType();

//step 6 call the method

t.InvokeMember("Debit",BindingFlags.InvokeMethod,null, obj, null);

//step 7 unload the domain

AppDomain.Unload(domain);

}

}

}

Satellite Assembly

One time in .NET that you need to know about satellite assemblies is when you are dealing with localization. For localizing text, one doesn't hard code text on a page, but uses a key for that text. The text equivalent for the key is retrieved from a file called a resource file. A resource file is essentially a dictionary of associations between the keys and their textual values. You will have this resource file duplicated once for each language that you support. .NET will retrieve values from these multiple language-resource files based on the chosen language context.

String.txt

name=jack

key=value

Step 1: Use resgen to create a .resources file from a .resx file.

Resgen MyText.resx

The above command will create a file called:

MyText.resources

Step 2: Use al.exe to create the satellite assembly:

Al.exe

 /t:lib

 /embed:MyText.en-gb.Resources,MyApplication.MyText.en-gb.Resources

 /culture:hi-gb

 /out:MyApplication.resources.dll

There are a couple of things worth noting here:

/t:lib: Says you are interested in a .dll.

/embed:MyText.en-gb.Resources,MyApplication.MyText.en-gb.Resources : Embeds and renames the resource to a target name to match the Visual Studio IDE naming structure.

/culture:hi-gb : Identifies the culture in which you are interested.

/out:MyApplication.resources.dll : Name of the DLL in which you are interested.

The generated .dll has to have that naming convention for .NET to find it. Also notice that you have to specify the culture setting, even though the culture is available in the name of the resource files. So it has to be mentioned in both places.

Place the Satellite Assembly in the Appropriate Directory

Once the satellite assembly is created, physically copy the .dll to the following directory:

\MyApplication\bin\en-gb\MyApplication.Resources.DLL

c:/> resgen string.txt

c:/> al /t:library /embed:string.resource /out:string.resource.dll

using System;

using System.Resources;

namespace testResource

{

class CMain

{

static void Main(string[] args)

{

ResourceManager rm =

ResourceManager.CreateFileBasedResourceManager("mystring","c:\\dotnet",null);

Console.WriteLine(rm.GetString("name"));

}

}

}

Place the Satellite Assembly in the Appropriate Directory

Once the satellite assembly is created, physically copy the .dll to the following directory:

\MyApplication\bin\en-gb\MyApplication.Resources.DLL

This would have been identical if Visual Studio IDE had generated this file. Repeat this process for each languagein which you are interested.

The SN utility.
The Strong Name tool helps sign assemblies with strong names. Sn.exe provides options for key management, signature generation, and signature verification.

The following command creates a new, random key pair and stores it in keyPair.snk.

sn -k keyPair.snk

The following command stores the key in keyPair.snk in the container MyContainer in the strong name CSP.

sn -i keyPair.snk MyContainer

The following command extracts the public key from keyPair.snk and stores it in publicKey.snk.

sn -p keyPair.snk publicKey.snk

The following command verifies the assembly MyAsm.dll.

sn -v MyAsm.dll

The following command deletes MyContainer from the default CSP.

sn -d MyContainer
The gacutil utility.

Gacutil.exe provides options that support reference counting similar to the reference counting scheme supported by Windows Installer. You can use Gacutil.exe to install two applications that install the same assembly; the tool keeps track of the number of references to the assembly. As a result, the assembly will remain on the computer until both applications are uninstalled. If you are using Gacutil.exe for actual product installations, use the options that support reference counting. Use the /i and /r options together to install an assembly and add a reference to count it. Use the /u and /r options together to remove a reference count for an assembly. Be aware that using the /i and /u options alone does not support reference counting. These options are appropriate for use during product development but not for actual product installations.

Use the /il or /ul options to install or uninstall a list of assemblies stored in an ANSI text file. The contents of the text file must be formatted correctly. To use a text file to install assemblies, specify the path to each assembly on a separate line in the file. The following example demonstrates the contents of a file containing assemblies to install.

myAssembly1.dll

myAssembly2.dll

myAssembly3.dll

To use a text file to uninstall assemblies, specify the fully qualified assembly name for each assembly on a separate line in the file. The following example demonstrates the contents of a file containing assemblies to uninstall.

myAssembly1,Version=1.1.0.0,Culture=en,PublicKeyToken=874e23ab874e23ab

myAssembly2,Version=1.1.0.0,Culture=en,PublicKeyToken=874e23ab874e23ab

myAssembly3,Version=1.1.0.0,Culture=en,PublicKeyToken=874e23ab874e23ab

Examples

The following command installs the assembly mydll.dll into the global assembly cache.

gacutil /i mydll.dll

The following command removes the assembly hello from the global assembly cache as long as no reference counts exist for the assembly.

gacutil /u hello

Note that the previous command might remove more than one assembly from the assembly cache because the assembly name is not fully specified. For example, if both version 1.0.0.0 and 3.2.2.1 of hello are installed in the cache, the command gacutil /u hello removes both of the assemblies.

Use the following example to avoid removing more than one assembly. This command removes only the hello assembly that matches the fully specified version number, culture, and public key.

gacutil /u hello, Version=1.0.0.1, Culture="de",PublicKeyToken=45e343aae32233ca

The following command installs the assemblies specified in the file assemblyList.txt into the global assembly cache.

gacutil /il assemblyList.txt

The following command removes the assemblies specified in the file assemblyList.txt from the global assembly cache.

gacutil /ul assemblyList.txt

The following command installs myDll.dll into the global assembly cache and adds a reference to count it. The assembly myDll.dll is used by the application MyApp. The UNINSTALL_KEY MyApp parameter specifies the registry key that adds MyApp to Add/Remove Programs in Windows. The description parameter is specified as My Application Description.

gacutil /i /r myDll.dll UNINSTALL_KEY MyApp "My Application Description"

The following command installs myDll.dll into the global assembly cache and adds a reference to count it. The scheme parameter, FILEPATH, and the id parameter, c:\applications\myApp\myApp.exe, specify the path to the application that is installing myDll.dll. The description parameter is specified as MyApp.

gacutil /i /r myDll.dll FILEPATH c:\applications\myApp\myApp.exe MyApp

The following command installs myDll.dll into the global assembly cache and adds a reference to count it. The scheme parameter, OPAQUE, allows you to customize the id and description parameters.

gacutil /i /r mydll.dll OPAQUE "Insert custom application details here" "Insert Custom description information here"

The following command removes the reference to myDll.dll by the application myApp. If this is the last reference to the assembly, it will also remove the assembly from the global assembly cache.

gacutil /u /r myDll.dll FILEPATH c:\applications\myApp\myApp.exe MyApp

The following command lists the contents of the global assembly cache.

gacutil /l

Runtime migration of an assembly.

When you build a .NET Framework application against a specific version of a strong-named assembly, the application uses that version of the assembly at run time. However, sometimes you might want the application to run against a newer version of an assembly. An application configuration file, machine configuration file, or a publisher policy file can redirect one version of an assembly to another. For details on how the common language runtime uses these files to determine which assembly version to use, see How the Runtime Locates Assemblies. You can use the .NET Framework Configuration tool (Mscorcfg.msc) to redirect assembly versions at both the application level and the machine level, or you can directly edit the configuration file.

Note You cannot redirect versions for assemblies that are not strong-named. The common language runtime ignores the version for assemblies that are not strong-named.

Redirecting Assembly Versions Using Publisher Policy

Vendors of assemblies can state that applications should use a newer version of an assembly by including a publisher policy file with the upgraded assembly. The publisher policy file, which is located in the global assembly cache, contains assembly redirection settings.

Each major.minor version of an assembly has its own publisher policy file. For example, redirections from version 1.1.2.222 to 1.1.3.000 and from version 1.1.2.321 to version 1.1.3.000 both go into the same file. However, a redirection from version 2.0.0.999 to version 3.0.0.000 goes into a different file.

If a publisher policy file exists, the runtime checks this file after checking the assembly's manifest and application configuration file. Vendors should use publisher policies only when the new assembly is backward compatible with the assembly being redirected.

You can bypass publisher policy by specifying settings in the application configuration file.

Bypassing Publisher Policy

New versions of assemblies that claim to be backward compatible can still break an application. When this happens, you can use the following setting in the application configuration file to make the runtime bypass the publisher policy:

<publisherPolicy apply="no">

Bypass publisher policy to keep your application running for your users, but make sure you report the problem to the assembly vendor. Once an assembly has a publisher policy, the vendor should make sure that the assembly is backward compatible and that clients can use the new version as much as possible.

Redirecting Assembly Versions at the Application Level

Suppose that the assembly's vendor releases a newer version of an assembly that your application uses, but does not supply a publisher policy because the vendor does not want to guarantee that the new assembly is backward compatible with the original version. You can specify that your application use the newer version of the assembly by putting assembly binding information in your application's configuration file.

Redirecting Assembly Versions at the Machine Level

There might be rare cases when a machine administrator wants all applications on a machine to use a specific version of an assembly. For example, you might want every application to use a particular assembly version because it fixes a security hole. If an assembly is redirected in the machine's configuration file, all applications using the old version will use the new version. The machine configuration file overrides the application configuration file and the publisher policy.

Specifying Assembly Binding in Configuration Files

The application configuration file, machine configuration file, and publisher policy file use the same XML schema to process assembly redirection.

Assembly Binding

Specify information for an assembly by placing information for each assembly inside a <dependentAssembly> element. The <assemblyIdentity> element contains information that identifies an assembly. You can have more than one <dependentAssembly> element in the configuration file, but there must be exactly one <assemblyIdentity> element in each <dependentAssembly> element.

To bind an assembly, you must specify the string "urn:schemas-microsoft-com:asm.v1" with the xmlns attribute in the <assemblyBinding> tag.

Specifying Publisher Policy

To make the runtime bypass the publisher policy for a particular assembly, put the <publisherPolicy> element in the <dependentAssembly> element. To make the runtime bypass publisher policy for all assemblies that the application uses, put this setting in the <assemblyBinding> element. You can also use the .NET Framework Configuration tool (Mscorcfg.msc) to bypass publisher policy.

The default setting for the apply attribute is yes. Setting the apply attribute to no overrides any previous yes settings. For example, if apply is set to no at the application level, any assembly-specific apply setting is ignored, even if it declares the value to be yes. Thus, the no setting is the only useful state, as this changes the default.

Redirecting Assembly Versions

To redirect one version to another, use the <bindingRedirect> element. The oldVersion attribute can specify either a single version, or a range of versions. For example, <bindingRedirect oldVersion="1.1.0.0-1.2.0.0" newVersion="2.0.0.0"/> specifies that the runtime should use version 2.0.0.0 instead of the assembly versions between 1.1.0.0 and 1.2.0.0.

Example

The following example shows how to redirect one version of myAssembly to another, and turn off publisher policy for mySecondAssembly.

<configuration>

 <runtime>

 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

 <dependentAssembly>

 <assemblyIdentity name="myAssembly"

 publicKeyToken="32ab4ba45e0a69a1"

 culture="en-us" />

 <!-- Assembly versions can be redirected in application, publisher policy, or machine configuration files. -->

 <bindingRedirect oldVersion="1.0.0.0"

 newVersion="2.0.0.0"/>

 </dependentAssembly>

 <dependentAssembly>

 <assemblyIdentity name="mySecondAssembly"

 publicKeyToken="32ab4ba45e0a69a1"

 culture="en-us" />

 <!-- Publisher policy can be set only in the application configuration file. -->

 <publisherPolicy apply="no">

 </dependentAssembly>

 </assemblyBinding>

 </runtime>

</configuration>

Redirecting .NET Framework Assembly Binding

You can use the appliesTo attribute on the <assemblyBinding> element in an application configuration file to redirect assembly binding references to a specific version of the .NET Framework. This optional attribute uses a .NET Framework version number to indicate what version it applies to. If no appliesTo attribute is specified, the <assemblyBinding> element applies to all versions of the .NET Framework.

The appliesTo attribute was introduced in .NET Framework version 1.1; it is ignored by the .NET Framework version 1.0. This means that all <assemblyBinding> elements are applied when using the .NET Framework version 1.0, even if an appliesTo attribute is specified.

For example, to redirect assembly binding for the .NET Framework version 1.0 assembly Regcode, you would include the following XML code in your application configuration file.

<runtime>

 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1" appliesTo="v1.0.3705">

 <dependentAssembly>

 * assembly information goes here *

 </dependentAssembly>

 </assemblyBinding>

</runtime>

The <assemblyBinding> elements are order-sensitive. You should enter assembly binding redirection information for any .NET Framework version 1.0 assemblies first, followed by assembly binding redirection information for any .NET Framework version 1.1 assemblies. Finally, enter assembly binding redirection information for any .NET Framework assembly redirection that does not use the appliesTo attribute and therefore applies to all versions of the .NET Framework. In case of a conflict in redirection, the first matching redirection statement in the configuration file is used.

For example, to redirect one reference to a .NET Framework version 1.0 assembly and another reference to a .NET Framework version 1.1 assembly, you would use the pattern shown in the following pseudocode.

<assemblyBinding xmlns="..." appliesTo="v1.0.3705">

 <! — .NET Framework version 1.0 redirects here -->

</assemblyBinding>

<assemblyBinding xmlns="..." appliesTo="v1.1.5000">

 <! — .NET Framework version 1.1 redirects here -->

</assemblyBinding>

<assemblyBinding xmlns="...">

 <!-- redirects meant for all versions of the runtime -->

</assemblyBinding>

Delay Signing an Assembly
An organization can have a closely guarded key pair that developers do not have access to on a daily basis. The public key is often available, but access to the private key is restricted to only a few individuals. When developing assemblies with strong names, each assembly that references the strong-named target assembly contains the token of the public key used to give the target assembly a strong name. This requires that the public key be available during the development process.

You can use delayed or partial signing at build time to reserve space in the portable executable (PE) file for the strong name signature, but defer the actual signing until some later stage (typically just before shipping the assembly).

The following steps outline the process to delay sign an assembly:

Obtain the public key portion of the key pair from the organization that will do the eventual signing. Typically this key is in the form of an .snk file, which can be created using the Strong Name tool (Sn.exe) provided by the .NET Framework SDK.

Annotate the source code for the assembly with two custom attributes from System.Reflection:

AssemblyKeyFileAttribute, which passes the name of the file containing the public key as a parameter to its constructor.

AssemblyDelaySignAttribute, which indicates that delay signing is being used by passing true as a parameter to its constructor. For example:

[Visual Basic]

 <Assembly:AssemblyKeyFileAttribute("myKey.snk")>

 <Assembly:AssemblyDelaySignAttribute(true)>

[C#]

 [assembly:AssemblyKeyFileAttribute("myKey.snk")]

 [assembly:AssemblyDelaySignAttribute(true)]

The compiler inserts the public key into the assembly manifest and reserves space in the PE file for the full strong name signature. The real public key must be stored while the assembly is built so that other assemblies that reference this assembly can obtain the key to store in their own assembly reference.

Because the assembly does not have a valid strong name signature, the verification of that signature must be turned off. You can do this by using the –Vr option with the Strong Name tool.

The following example turns off verification for an assembly called myAssembly.dll.

sn –Vr myAssembly.dll

CAUTION Use the -Vr option only during development. Adding an assembly to the skip verification list creates a security vulnerability. A malicious assembly could use the fully specified assembly name (assembly name, version, culture, and public key token) of the assembly added to the skip verification list to fake its identity. This would allow the malicious assembly to also skip verification.

Later, usually just before shipping, you submit the assembly to your organization's signing authority for the actual strong name signing using the –R option with the Strong Name tool.

The following example signs an assembly called myAssembly.dll with a strong name using the sgKey.snk key pair.

sn -R myAssembly.dll sgKey.snk
[C++]

#using <mscorlib.dll>

#using <System.dll>

using namespace System;

using namespace System::ComponentModel;

// The following example demonstrates how to create

// a resource class that implements the IDisposable interface

// and the IDisposable.Dispose method.

// A base class that implements IDisposable.

// By implementing IDisposable, you are announcing that

// instances of this type allocate scarce resources.

public __gc class MyResource : public IDisposable {

 // Pointer to an external unmanaged resource.

 IntPtr handle;

 // Other managed resource this class uses.

 Component* component;

 // Track whether Dispose has been called.

 bool disposed;

public:

 // The class constructor.

 MyResource(IntPtr handle) {

 this->handle = handle;

 disposed = false;

 }

 // Implement IDisposable*

 // Do not make this method virtual.

 // A derived class should not be able to this method.

 void Dispose() {

 Dispose(true);

 // This object will be cleaned up by the Dispose method.

 // Therefore, you should call GC::SupressFinalize to

 // take this object off the finalization queue

 // and prevent finalization code for this object

 // from executing a second time.

 GC::SuppressFinalize(this);

 }

private:

 // Dispose(bool disposing) executes in two distinct scenarios.

 // If disposing equals true, the method has been called directly

 // or indirectly by a user's code. Managed and unmanaged resources

 // can be disposed.

 // If disposing equals false, the method has been called by the

 // runtime from inside the finalizer and you should not reference

 // other objects. Only unmanaged resources can be disposed.

 void Dispose(bool disposing) {

 // Check to see if Dispose has already been called.

 if (!this->disposed) {

 // If disposing equals true, dispose all managed

 // and unmanaged resources.

 if (disposing) {

 // Dispose managed resources.

 component->Dispose();

 }

 // Call the appropriate methods to clean up

 // unmanaged resources here.

 // If disposing is false,

 // only the following code is executed.

 CloseHandle(handle);

 handle = IntPtr::Zero;

 }

 disposed = true;

 }

 // Use interop to call the method necessary

 // to clean up the unmanaged resource.

 [System::Runtime::InteropServices::DllImport(S"Kernel32")]

 static Boolean CloseHandle(IntPtr handle);

 // Use C# destructor syntax for finalization code.

 // This destructor will run only if the Dispose method

 // does not get called.

 // It gives your base class the opportunity to finalize.

 // Do not provide destructors in types derived from this class.

 ~MyResource() {

 // Do not re-create Dispose clean-up code here.

 // Calling Dispose(false) is optimal in terms of

 // readability and maintainability.

 Dispose(false);

 }

};
Platform Invoke

The platform invoke service makes it possible to call functions that are exported from an unmanaged DLL. Using platform invoke is similar to calling the LoadLibrary and GetProcAddress Win32 API functions, which call into an exported funtion. It is also similar to using a Declare statement in Visual Basic.

Each exported function being called must have a managed method defintion. The method definition can be provided as part of any class and is attributed with the DllImport attribute in C# or with Declare statement in VB.NET to indicate that the method is implemented in unmananged code.

#include<iostream.h>

extern "C" void __stdcall fun()

{

cout<<"inside win dll"<<endl;

}

LIBRARY
MyWinDll

EXPORTS

fun

In order to call the fuinction in a Dll, you need the metadata that describes each method and its arguments. The necessary metadata is provided by defining a managed class with one or more static methods. The class and the static methods can have any name you choose. You might want to create several classes that contain related functions or simply group all the functions you need into a single class.

In C# the DllImport attribute is used to identify the name of the actual DLL that contains the exported function. The method must be defined as static and external in order to apply the attribute.

namespace testWinCallback

{

delegate void FUNPTR ();

class CMain

{

[DllImport(@"c:\dotnet\MyWinDll.dll")]

public static extern void fun();

static void Main(string[] args)

{

fun();

}

}

}

Many unmanaged DLL functions expect you to pass structures, as a parameter to the function. When using platform invoke to pass a structure, you must provide additional information to format the type. In managed code, a formatted type is a structure or class that is annotated with the StructLayoutAttribute to ensure predictable layout information to its members.

Handling Callbacks from WinDll

A simple win dll server

#include<iostream.h>

typedef void(*FUNPTR)();

FUNPTR pfun;

extern "C" void __stdcall SetFun(FUNPTR tp)

{

cout<<"inside set fun"<<endl;

pfun = tp;

}

extern "C" void __stdcall CallFun()

{

cout<<"begin callback"<<endl;

pfun();

cout<<"end callback"<<endl;

}

LIBRARY
MyWinDll

EXPORTS

SetFun

CallFun

A simple .Net Client

using System;

using System.Runtime.InteropServices;

namespace testWinCallback

{

delegate void FUNPTR ();

class CMain

{

[DllImport(@"c:\dotnet\MyWinDll.dll")]

public static extern void SetFun(FUNPTR tp);

[DllImport(@"c:\dotnet\MyWinDll.dll")]

public static extern void CallFun();

public static void fun()

{

Console.WriteLine("inside .net fun");

}

static void Main(string[] args)

{

FUNPTR pfun = new FUNPTR(fun);

SetFun(pfun);

CallFun();

}

}

}

Dynamic Binding to a Win Dll

using System;

using System.Reflection;

using System.Reflection.Emit;

using System.Runtime.InteropServices;

namespace DynamicWinDll

{

class CMain

{

[DllImport("kernel32.dll")]

public static extern IntPtr LoadLibrary(string filename);

[DllImport("kernel32.dll")]

public static extern IntPtr GetProcAddress(IntPtr handle,string fun);

[DllImport("kernel32.dll")]

public static extern void FreeLibrary(IntPtr handle);

static void Main(string[] args)

{

//step1 load the dll

IntPtr handle = LoadLibrary("c:\\dotnet\\MyWinDll.dll");

//step 2 get address of function

IntPtr funptr = GetProcAddress(handle,"fun");

//step 3 call the function

CallFunction(funptr);

//step4 unload the dll

 FreeLibrary(handle);

}

public static void CallFunction(IntPtr pfun)

{

//step 0 get domain ref in which asm will be created

AppDomain domain = AppDomain.CurrentDomain;

//step 1 create a name for the asm

AssemblyName asmname = new AssemblyName();

asmname.Name = "MyFirstAssembly";

//step 2 build a asm

AssemblyBuilder asmbuilder = domain.DefineDynamicAssembly

(asmname,AssemblyBuilderAccess.Run);

//step 3 build a module

ModuleBuilder modbuilder = asmbuilder.DefineDynamicModule("mymodule");

//step 4 create a global method

MethodBuilder method = modbuilder.DefineGlobalMethod

("GlobalFun",MethodAttributes.Public | MethodAttributes.Static,

null, new Type[]{});

//step 5 write il instruction

ILGenerator il = method.GetILGenerator();

//step a push function address on the stack

il.Emit(OpCodes.Ldc_I4 , pfun.ToInt32());

//step b call the function on the stack

il.EmitCalli(OpCodes.Calli,

CallingConvention.StdCall, null, new Type[]{});

//step c return

il.Emit(OpCodes.Ret);

//step 6 save

modbuilder.CreateGlobalFunctions();

//step 7 call the dynamically created method

MethodInfo methodinfo = modbuilder.GetMethod("GlobalFun");

methodinfo.Invoke(null,null);

}

}

}

COM Interoperability

COM interoperability provides support for producing and consuming COM objects from mananged code.

Objects that are intended to be consumed by COM applications must be designed with interoperability in mind right from the start. Before a type can be consumed by a COM application, the type must meet the following requirements.

· The managed type (class, interface, struct or enum) must be public.

· It is strongly recommended that the class explicitly implement an interface instead of exposing class interface, which contains all of the members of the class and all the members of its base classes.

· The members of the type that are being accessed from COM must be public, non-static instance memebers. Private, protected, internal, and static members are not accessible.

· If you need to create the type from COM, it must have a public, default (parameterless) constructor.

How Do I...Build a .NET Client That Uses a COM Server?

This section explains how to build managed code that uses COM. The steps involved in the build process are as follows:

5. Obtain an assembly containing definitions of the COM types to be used.

6. Install the assembly in the global assembly cache. (optional)

7. Reference the assembly containing the COM type definitions.

8. Reference the COM types.

Obtain an Assembly Containing Definitions of the COM Types to be Used

Before any managed application can reference a specific type, the type must be described in metadata. For managed types, this is easy because the compiler that produces the managed code also produces the necessary metadata. Getting metadata for existing COM types is a little more tricky. There are several ways to do this.

1. Obtain a signed assembly containing the metadata from the producer of the library. The provider of the COM types should be the first source of metadata for any COM library. This allows the vendor to sign the assembly with the correct publisher key.

2. If a signed assembly is not available from the publisher, consider using the tlbimp.exe (Type Library Importer) utility to produce an assembly yourself. You can produce an assembly from most COM type libraries. If the assembly is to be shared, the assembly must be signed with a publisher's key. The tlbimp.exe can produce signed assemblies using the /keyfile option.

tlbimp SHDocVw.dll /keyfile:MyKey.snk /out:ExplorerLib.dll

3. As a last resort, the metadata can be created directly from source code. In order to do this, the types are defined in a language like C# or Visual Basic .NET and marked with the ComImportAttribute. The attribute is used to by the runtime to differentiate these types from other managed types. There are several other attributes that can be used to customize how a managed type is exposed to COM.

[ComImport] interface IMyComInterface {...}

Install the Assembly in the Global Assembly Cache

If you want your assembly containing definitions of the COM types to be shared among several applications, it must be installed in the global assembly cache (GAC). Use gacutil.exe to install an assembly in the GAC.

gacutil /i ExplorerLib.dll

Reference the Assembly Containing the Type Definitions.

With Visual Basic .NET or with C#, you can reference the assembly using the compiler /r switch or you can add reference to the project directly from Visual Studio .NET development tool.

csc TestClient.cs /r:ExplorerLib.dll

vbc TestClient.vb /r:ExplorerLib.dll

Reference the COM Types

Once the reference to the type library is added to the project, the types defined within that library can be referenced from managed code.

How Do I...Build a .NET Server Callable from COM clients?

This section explains how to build and install managed code that will be used from COM applications. The steps involved in the build process are as follows:

9. Write and compile the managed code.

10. Generate a type library for the assembly using the tlbexp.exe utility.

11. Install and register the assembly.

12. Write and compile the COM code that references types in the assembly.

Writing and Compiling the Managed Code

Before setting out to build an assembly that will be used from COM, it is important to understand the limitations of the common language runtime's interoperability services. Refer to the Get Started with Interoperability for specific details on exactly what those limitations are.

If your managed assembly is designed to be shared among several applications, be sure that the assembly has a shared name so that it can be installed in the global assembly cache (see How Do I...Create an Assembly with a Shared Name?). If your assembly does not have have a shared name, it can only be used by a single application.

Once the managed code is written, the compilation process is the same as it would be for any other piece of managed code.

Generating a Type Library

Most unmanaged application development tools require a type library before you can make references to external types. A type library can be generated from an assembly using the tlbexp.exe, which produces a .tlb file that can then be referenced from your unmanaged development tool.

tlbexp TestServer.dll

For example, with Visual Basic 6.0, you can reference the .tlb file from the Project/References dialog. In Visual C++ 6.0, you can use the #import statement to import the type defintions from the type library directly into C++. Once the reference to the type library is added to the project, the types defined within that library can be referenced from unmanaged code.

Installing and Registering the Assembly

In order to actually create managed types from unmanaged code, the assembly needs to be installed in the global assembly cache (GAC) and registered for use from COM.

You can install an assembly in the global assembly cache using gacutil.exe utility. Assemblies can be uninstalled using the /u option.

gacutil /i TestServer.dll

If the assembly is to be used privately by a single application, it can be copied directly to the application directory (rather than installing the assembly in the GAC). Private assemblies do not require shared names, but they must be registered for use from COM.

You can register an assembly using regasm.exe utility. Assemblies can be uninstalled using the /u option.

regasm TestServer.dll

Writing and Compiling the Unmanaged Code

Once the assembly is registered and properly installed, the types defined within the assembly can be used from COM as though they were normal COM types. For example, new objects can be created by calling CoCreateInstance API or by calling CreateObject or GetObject from Visual Basic or script languages. See the remaining samples in this section for specific coding details.

using System;

using System.Reflection;

Dynamic Binding to a COM server

namespace DynamicCom

{

class CMain

{

static void Main(string[] args)

{

//setp 1 get type

Type t = Type.GetTypeFromProgID("MyComServer.CA");

//step 2 instantiate

object obj = Activator.CreateInstance(t);

.

//step 3 call

t.InvokeMember("fun",BindingFlags.InvokeMethod,null, obj, new object[] {});

}

}

}

Building a Sink in .Net

using System;

using System.Runtime.InteropServices;

using HISOAsmServer;

namespace DotNetSink

{

//create a sink

class CSink : _ICAEvents

{

public void TimeExpire()

{

Console.WriteLine("my sink .net");

}

}

class CMain

{

static void Main(string[] args)

{

//step 2 create a instance of component

CCA obj = new CCAClass();

//step 3 get connection point Container

UCOMIConnectionPointContainer icpc = (UCOMIConnectionPointContainer) obj;

//step 4 get GUID of sink interface

Guid id = typeof(_ICAEvents).GUID;

//step 5 find the cp

UCOMIConnectionPoint icp;

icpc.FindConnectionPoint(ref id,out icp);

//step 6 give the sionk to server

int cookie;

CSink sink = new CSink();

icp.Advise(sink,out cookie);

//step 7

obj.fun();

//step 8

icp.Unadvise(cookie);

}

}

}

using DllImport attribute.

This example shows you how to use the DllImport attribute to output a message by calling puts from msvcrt.dll.

// PInvokeTest.cs

using System;

using System.Runtime.InteropServices;

class PlatformInvokeTest

{

 [DllImport("msvcrt.dll")]

 public static extern int puts(string c);

 [DllImport("msvcrt.dll")]

 internal static extern int _flushall();

 public static void Main()

 {

 puts("Test");

 _flushall();

 }

}

Output

Test
Tlbimp.exe utility.

The Type Library Importer converts the type definitions found within a COM type library into equivalent definitions in a common language runtime assembly. The output of Tlbimp.exe is a binary file (an assembly) that contains runtime metadata for the types defined within the original type library. You can examine this file with tools such as Ildasm.exe.

Tlbimp.exe performs conversions on an entire type library at one time. You cannot use the tool to generate type information for a subset of the types defined within a single type library.

It is often useful or necessary to be able to assign strong names to assemblies. Therefore, Tlbimp.exe includes options for supplying the information necessary to generate strongly named assemblies. Both the /keyfile: and /keycontainer: options sign assemblies with strong names. Therefore, it is logical to supply only one of these options at a time.

A resource ID can optionally be appended to a type library file when importing a type library from a module containing multiple type libraries. Tlbimp.exe is able to locate this file only if it is in the current directory or if you specify the full path. See the example later in this topic.

Examples

The following command generates a metadata DLL with the same name as the type library found in myTest.dll and with the .dll extension.

tlbimp myTest.tlb

The following command generates a metadata DLL with the name myTest.dll.

tlbimp myTest.tlb /out:myTest.dll

The following command generates a metadata DLL with the same name as the type library specified by MyModule.dll\1 and with the .dll extension. MyModule.dll\1 must be located in the current directory.

tlbimp MyModule.dll\1

The following command generates a metadata DLL with the name myTestLib.dll for the type library TestLib.dll. The /transform:dispret option transforms any [out, retval] parameters of methods on dispinterfaces in the type library into return values in the managed library.

tlbimp TestLib.dll /transform:dispret /out:myTestLib.dll

The type library TestLib.dll, in the preceding example, includes a dispinterface method named SomeMethod that returns void and has an [out, retval] parameter. The following code is the input type library method signature for SomeMethod in TestLib.dll.

void SomeMethod([out, retval] VARIANT_BOOL*);

Specifying the /transform:dispret option causes Tlbimp.exe to transform the [out, retval] parameter of SomeMethod into a bool return value. The following is the method signature that Tlbimp.exe produces for SomeMethod in the managed library myTestLib.dll when the /transform:dispret option is specified.

[C#]

bool SomeMethod();

If you use Tlbimp.exe to produce a managed library for TestLib.dll without specifying the /transform:dispret, the tool produces the following method signature for SomeMethod in the managed library myTestLib.dll.

[C#]

void SomeMethod(out bool x);
Tlbexp.exe utility

The Type Library Exporter generates a type library that describes the types defined in a common language runtime assembly.

Tlbexp.exe generates a type library that contains definitions of the types defined in the assembly. Applications such as Visual Basic 6.0 can use the generated type library to bind to the .NET types defined in the assembly.

The entire assembly is converted at once. You cannot use Tlbexp.exe to generate type information for a subset of the types defined in an assembly.

You cannot use Tlbexp.exe to produce a type library from an assembly that was imported using the Type Library Importer (Tlbimp.exe). Instead, you should refer to the original type library that was imported with Tlbimp.exe. You can export a type library from an assembly that references assemblies that were imported using Tlbimp.exe. See the examples section below.

Tlbexp.exe places generated type libraries in the current working directory or the directory specified for the output file. A single assembly might cause several type libraries to be generated.

Tlbexp.exe generates a type library but does not register it. This is in contrast to the Assembly Registration tool (Regasm.exe), which both generates and registers a type library. To generate and register a type library with COM, use Regasm.exe.

Because type libraries cannot accommodate all the information found in assemblies, Tlbexp.exe might discard some data during the export process. For an explanation of the transformation process and identification of the source of each piece of information emitted to a type library, see the Assembly to Type Library Conversion Summary.

Examples

The following command generates a type library with the same name as the assembly found in myTest.dll.

tlbexp myTest.dll

The following command generates a type library with the name clipper.tlb.

tlbexp myTest.dll /out:clipper.tlb

The following example illustrates using Tlbexp.exe to export a type library from an assembly that references assemblies that were imported using Tlbimp.exe.

First use Tlbimp.exe to import the type library myLib.tlb and save it as myLib.dll.

tlbimp myLib.tlb /out:myLib.dll

The following command uses the C# compiler to compile the Sample.dll, which references myLib.dll created in the previous example.

CSC Sample.cs /reference:myLib.dll /out:Sample.dll

The following command generates a type library for Sample.dll that references myLib.dll.

tlbexp Sample.dll

Assembly Registration Tool
The Assembly Registration tool reads the metadata within an assembly and adds the necessary entries to the registry, which allows COM clients to create .NET Framework classes transparently. Once a class is registered, any COM client can use it as though the class were a COM class. The class is registered only once, when the assembly is installed. Instances of classes within the assembly cannot be created from COM until they are actually registered.

The following command registers all public classes contained in myTest.dll.

regasm myTest.dll

The following command generates the file myTest.reg, which contains all the necessary registry entries. This command does not update the registry.

regasm myTest.dll /regfile:myTest.reg

The following command registers all public classes contained in myTest.dll, and generates and registers the type library myTest.tlb, which contains definitions of all the public types defined in myTest.dll.

regasm myTest.dll /tlb:myTest.tlb

