A CAPTCHA is a type of challenge-response test used in computing as an attempt to ensure that the response is not generated by a computer. The process usually involves one computer (a server) asking a user to complete a simple test which the computer is able to generate and grade. Because other computers are supposedly unable to solve the CAPTCHA, any user entering a correct solution is presumed to be human. Thus, it is sometimes described as a reverse Turing test, because it is administered by a machine and targeted to a human, in contrast to the standard Turing test that is typically administered by a human and targeted to a machine. A common type of CAPTCHA requires the user to type letters or digits from a distorted image that appears on the screen.
The term "CAPTCHA" was coined in 2000 by Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford (all of Carnegie Mellon University). It is a contrived acronym based on the word "capture" and standing for "Completely Automated Public Turing test to tell Computers and Humans Apart". Carnegie Mellon University attempted to trademark the term, but the trademark application was abandoned on 21 April 2008.

A CAPTCHA is a means of automatically generating challenges which intends to:
· Provide a problem easy enough for all humans to solve.
· Prevent standard automated software from filling out a form, unless it is specially designed to circumvent specific CAPTCHA systems.
A check box in a form that reads "check this box please" is the simplest (and perhaps least effective) form of a CAPTCHA. CAPTCHAs do not have to rely on difficult problems in artificial intelligence, although they can.
This has the benefit of distinguishing humans from computers. It also creates incentive to further develop artificial intelligence of computers.

Vulnerabilities
HTTP does not distinguish between human & machine users.
HTTP & SSL do not guarantee client software or user is benign.
Malicious bots can be anonymous and distributed.
Benign bots spider for searches, etc.

Threats to Web

Content Theft-- stealing paid data
Copyright Infringement-- “scraping” content from one site to display on another, “out of context”
Unwanted spidering-- search engines may ignore robots.txt or “nofollow” tags
Poll Stuffing-- MIT vs. CMU on /. [1]
Web Spam-- unsolicited commenting, abusing free email, scraping addresses

Web Spam

· Web comments, discussions, guest books, Wikis, many public forms are open to spam messages.
· More eyeballs per message than e-mail
· E-mail spam is illegal, but most Web spam is legal.
· Bots collect email addresses on Web.

TYPES OF CAPTCHA
1.TEXT BASED:
· Images of distorted text.
[image: 35]
· Frequently cracked and improved.
· In current version, 5 pairs of overlapped words. User identifies 3 words.
[image: 30]
· Random placement, font, distortion, background pattern
· Overlapping words need no noise.
[image: 39]
2.Visual puzzle
[image: 1][image: 2]
[image: 3][image: 4]
· Computer can generate & display, but not solve.
· If too many choices, humans get it wrong.
[image: 5][image: 6]
[image: 8][image: 7]
· If not enough choices, computers can be effective with random guess.

3. Photo Recognition
[image: 0][image: 0][image: 0][image: 0]
· Need large image DB
· Images need keywords
· Four images with same keyword shown
· Random subset of keywords as choices
· Poor implementations easy to crack (color of top left pixel unique, etc.)

4.SPEECH CAPTCHA
· Usually spells out one-time-password in synthesized or recorded voices
· Voice recognition cracks simple case.
· Applied audio filters risk human misunderstanding.
· Used with image CAPTCHA for increased accessibility.
· If both use same OTP, easier to crack.

[image: CAPTCHA Picture][image:]

5. 3D CAPTCHA
· Renders OTP in 3D space to image
· Reputedly the most difficult to crack
· Server needs good graphics card to be practical (rare)
· Can be combined with other methods
· Not yet common
· Might see more in future
[image: 01] [image: 02]

VIDEO CAPTCHA
 Unfortunately, many users ﬁnd existing character-recognition based CAPTCHAs frustrating and attack success rates as high as 60% have been reported for Microsoft’s
Hotmail CAPTCHA . To address these problems, we present a ﬁrst attempt at using content-based video labeling (‘tagging’) as a CAPTCHA task. We deﬁne correct responses using tags provided by the individual that posts a video to a public database (YouTube.com), along with tags on videos designated as being ‘related’ in the database.In an experiment involving 184 human participants, we were able to increase human pass rates on our video CAPTCHAs from roughly 70% to 90% while keeping the success of a frequency-based attack ﬁxed at around 13%. Through a diﬀerent parameterization of the challenge generation and tag matching algorithms, we were able to reduce the success rate of the same attack to 2%, while still increasing the human pass rate to 75% .The frequency-based attack we consider is simple but logical for this type of CAPTCHA: the computer submits the three tags with the highest estimated frequencies below the rejection threshold, on the assumption that the tag frequency estimates used in creating the CAPTCHAs are publicly available. A screenshot of our video-based CAPTCHA is shown in Figure 1. To pass the challenge, a user provides three words (‘tags’) describing the video. If one of the submitted tags belongs to the automatically generated ground truth tag set, the challenge is passed. This task is similar to the ESP game of von Ahn et al. in which online users are randomly paired and presented with an image that they then submit tags to describe. Players cannot see each other’s submitted tags until they agree on a common tag, at which point the round of the game ends. Our video CAPTCHA is similar to a game of ESP in which one player is online, while the other player’s responses (the ground truth tags) are computed automatically.

 Generating and Grading Challenges
Challenges are generated using a public video database (YouTube.com in our case). To select a video for
generating a challenge, we use a modiﬁed version of a random walk through the videos in the database.
A Video CAPTCHA. The user watches a video and provides three tags. If one belongs to a set of ground truth tags, the challenge is passed. We randomly select a word from an English dictionary and query the video database using it, and randomly select one of the returned videos. We then randomly select a tag from this video, query the database using the tag, and randomly select one of the returned videos. The process of selecting a tag, querying, and selecting a video is repeated for a number of steps randomly chosen between 1 and 100 in our experiments. Because of the database that we selected, a human was needed in the loop to insure that the selected video had appropriate content and contained English tags (due to the intended audience), but otherwise challenge
generation is entirely automatic. Once a video has been selected, we generate our challenges using a function with four parameters: the number of tags from related videos in the database to add n, the rejection threshold for tag frequencies t, and two Boolean variables controlling whether word stemming s and approximate string matching l are used. In the simplest version of our CAPTCHA (i.e. the control condition in our experiments), no tags are added, no tags are rejected, and neither word stemming nor approximate matching are used. As can be seen in Table 1, people perform surprisingly well under this condition (69.7% pass rate in our experiment).
In our work, we used YouTube’s related videos algorithm to obtain sources for additional ground truth tags. The workings of this algorithm are unpublished, but ‘relatedness’ seems to involve tag similarity and the number of views that a video has received. In our generation algorithm, we currently ignore the number of views for each video, and instead sort the returned related videos in decreasing order of cosine similarity for the tag sets. For a pair of videos, we represent their tag sets using binary vectors A and B, indicating which words in the union of the two tag sets are present for each video, and then compute their similarity as in the following:
Sim(A, B) = cos θ =
A · B
kAkkBk
Up to n new, unique tags are then added to the ground truth set, as they appear in the sorted video list (selecting randomly if the last video observed has more unique tags than there are left to add). An interesting observation during our experiments was that this procedure often resulted in common misspellings of words such as ‘balloon’ (e.g. baloon) being added to the ground truth set.
The tag frequency rejection threshold t is used to increase security, by rejecting tags with an estimated frequency greater than or equal to this threshold. Tag frequencies were estimated using multiple random walks of the YouTube graph. The walking protocol is identical to that used to select challenge videos, except that all visited video identiﬁers and tags are stored in order to estimate frequencies . The three most
frequent tags found in our walks (over 86,368 videos) were ‘music’ (5.6%), ‘video’ (4.8%) and ‘live’ (3.4%).
When we plotted the tags found in our walks in increasing order of frequency, the shape of the curve is exponential; a small number of words are used very frequently while most others are used very rarely.
2
Our video CAPTCHA challenge is passed if one of the submitted tags matches a ground truth tag. In the control condition, this is performed using exact matching (ignoring capitalization and punctuation).To increase usability, word stems produced using the Porter Stemming algorithm can be added to the submitted tag set (controlled by s), and approximate matching of submitted to ground truth tags using a length-normalized Levenshtein distance may be added (controlled by l).

Balancing Usability and Security in a Video
Testing the Hypothesis
n Number of related tags added.
t Pruning threshold.
s Use stemming?
l Use inexact match?
One may increase usability while maintaining security against a frequency-based attack in a video CAPTCHA by intelligently extending the set of user-supplied and ground truth tags.

ATTACK TAGS USED
T 	Best Attack Tags 		# Pruned	 Sˆc(A)
1.0	 [music, video, live]		 0		 0.1377
0.01	 [dj, remix, vs]		 37 		 0.0291
0.009	 [girl, school, el] 		44		 0.0256
0.008 	[animation, michael, star]	 49		 0.0237
0.007	 [concert, news, day]	 67 		0.0207
0.006	 [fantasy, dragon, rb] 	92		 0.0179
0.005	 [islam, humor, blues] 	129 		0.0148
0.004	 [real, bass, 12]		 184 		0.0120
0.003 	[uk, spoof, pro] 		302 		0.0090
0.002	 [seven, jr, patrick] 		570 		0.0060
0.001 	[ff, kings, ds] 		1402 			0.0030
[image:]

APPLICATIONS OF CAPTCHA

CAPTCHAs have several applications for practical security, including (but not limited to):
· Preventing Comment Spam in Blogs. Most bloggers are familiar with programs that submit bogus comments, usually for the purpose of raising search engine ranks of some website (e.g., "buy penny stocks here"). This is called comment spam. By using a CAPTCHA, only humans can enter comments on a blog. There is no need to make users sign up before they enter a comment, and no legitimate comments are ever lost!
· Protecting Website Registration. Several companies (Yahoo!, Microsoft, etc.) offer free email services. Up until a few years ago, most of these services suffered from a specific type of attack: "bots" that would sign up for thousands of email accounts every minute. The solution to this problem was to use CAPTCHAs to ensure that only humans obtain free accounts. In general, free services should be protected with a CAPTCHA in order to prevent abuse by automated programs.
· Online Polls. In November 1999, http://www.slashdot.org released an online poll asking which was the best graduate school in computer science (a dangerous question to ask over the web!). As is the case with most online polls, IP addresses of voters were recorded in order to prevent single users from voting more than once. However, students at Carnegie Mellon found a way to stuff the ballots using programs that voted for CMU thousands of times. CMU's score started growing rapidly. The next day, students at MIT wrote their own program and the poll became a contest between voting "bots." MIT finished with 21,156 votes, Carnegie Mellon with 21,032 and every other school with less than 1,000. Can the result of any online poll be trusted? Not unless the poll ensures that only humans can vote.
· Preventing Dictionary Attacks. CAPTCHAs can also be used to prevent dictionary attacks in password systems. The idea is simple: prevent a computer from being able to iterate through the entire space of passwords by requiring it to solve a CAPTCHA after a certain number of unsuccessful logins.
· Search Engine Bots. It is sometimes desirable to keep webpages unindexed to prevent others from finding them easily. There is an html tag to prevent search engine bots from reading web pages. The tag, however, doesn't guarantee that bots won't read a web page; it only serves to say "no bots, please." Search engine bots, since they usually belong to large companies, respect web pages that don't want to allow them in. However, in order to truly guarantee that bots won't enter a web site, CAPTCHAs are needed.
· Worms and Spam. CAPTCHAs also offer a plausible solution against email worms and spam: "I will only accept an email if I know there is a human behind the other computer." A few companies are already marketing this idea.

Custom CAPTCHA
Starting from Open Source or public domain code, not too difficult to customize.
Customizing can make your implementation resistant to all but direct assaults.
CAPTCHA volunteers may help you test and improve your algorithm.
Can be stronger than using a service or preconfigured software.

CAPTCHA Beyond the Web
Prevent dictionary attacks in any password system (Pinkas & Sander)
Protect e-mail systems from worms, spam, other malware-- if sender not in address book or message is suspect, challenge sender with CAPTCHA.
Deter unwanted macro-scripting of a standalone application.

 Future Work
The security of the Video CAPTCHA was only tested by a frequency-based attack. We acknowledge that
other attacks may perform better. For example, computer vision could be used to located frames with
text-segments in them, OCR them, and submit these as tags. Content-based Video Retrieval systems could
be used to locate videos with similar content (and then submit their tags). Audio analysis might give an
indication as to the content of the video.
The tag set expansion techniques presented are also an interesting avenue of future research. We can
imagine other CAPTCHAs being developed which utilize social structure, perhaps one using Flickr images.
image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.jpeg

image13.jpeg

image14.jpeg

image15.jpeg

image16.png

image17.png

image18.png

image19.png

image20.emf

image1.jpeg

image2.jpeg

image3.jpeg

image4.png

image5.png

