Architectural Styles 
From Software Architecture -- Perspectives on an Emerging Discipline by M. Shaw and D. Garlan. Software architectures often use idiomatic patterns of system organization. Patterns and styles of design are pervasive in many engineering disciplines and an established understanding of the common forms of design is an indication of a mature engineering field. The shared vocabulary of design idioms and rules for using them are stored in engineering handbooks and in professional curricula.
Software architectures also use organizational styles
A common framework can be developed to compare different architectures. It consists of computational components (components and interactions between these components connectors. Examples of components are clients, servers, filters, layers and databases. Examples of connectors are procedure call, events broadcast, database protocols, and pipes.
A Partial List of Common Architecture Styles
· Dataflow Systems -- Batch sequential, Pipes and filters.

· Call-and-return systems -- Main program and subroutines, OO systems, Hierarchical layers.

· Independent components -- Communicating processes, Event Systems.

· Virtual Machines -- Interpreters, Rule-based systems.

· Data-centered systems (repositories) -- Databases, Hypertext system, Blackboards.

An architectural style defines a family of systems in terms of a pattern of structural organization. This provides a vocabulary of components and connector types, and a set of constraints on how they can be combined. A semantic model may also exist which specify how to determine a system's overall properties from the properties of its parts. Given this framework, we can approach specific architectural styles by answering the following questions:
· What is the design vocabulary -- the types of components and connectors?
· What are the allowable structural patterns?

· What is the underlying computational model?

· What are the essential invariants of the style?

· What are some common examples of its use?

· What are the advantages and disadvantages of using that style?

· What are some of the common specializations?

Common styles are: pipes and filters, objects, implicit invocation, layering, repositories, interpreters, and process control.
Pipes and Filters
· Each component has a set of inputs and outputs.

· A component reads a stream of data on its input and produces a stream of data on its outputs.

· Input is transformed both locally and incrementally so that output begins before input is consumed (a parallel system).

· Components are called filters.

· Connectors serve as conduits for the information streams and are termed pipes.

Invariant traits include the condition that filters must be independent entities, and they must not know the identity of upstream or downstream filters. They may specify input format and guarantee what appears on output, but they may not know which components appear at the ends of those pipes. Common specializations include pipelines which restrict topologies to linear sequences of filters, and bounded pipeswhich restrict the amount of data in pipes at one time. A degenerate version occurs when each filter processes all of its input as a single entity. This is a batch sequential system. In these systems pipes no longer provide a stream of data. The best-known example of pipe-and-filter architectures are Unix shell programmmes. Components are represented as Unix processes and pipes are created through the file system. Other examples include compilers, signal-processing systems, parallel programming, functional programming, and distributed systems.
Advantages to pipe-and-filter systems include:
· easy understanding of the system's behavior as the composition of filters

· they support reuse

· easy to maintain and enhance

· they support specialized analysis (throughput deadlock analysis)

· and they support concurrent execution

Disadvantages to pipe-and-filter systems include:
· they often lead to batch organization of processing
· poor for interactive applications

· can be difficult to maintain synchronization between two related but separate streams

· may force lowest common denominator on data transmission, resulting in added work for each filter to parse input and format output data which can, in turn, affect performance and increase complexity of the filters

Data Abstraction and Object-Oriented Organization

· Data and their associated operations are encapsulated into an abstract data type (object).

· The components of this style are the objects and connectors operate through procedure calls (methods).

· Two important characteristics of this style are: objects are responsible for maintaining the integrity of a resource and the representation of the object is hidden from other objects.

Nice properties of objects include:
· hidden implementation details which allow the object to be changed without affecting its clients
· bundling accessing routines and data allows designers to decompose problems into collections of interacting agents

Disadvantages to object-oriented systems include:
· for an object to interact with another object it must know identity of that other object (unlike pipe-and-filter systems)
· side-effects can occur if two objects use a common third object (if A use B and C uses B, then C's effect on B can cause unexpected side-effects on A)

Event-Based, Implicit Invocation

Instead of invoking a procedure directly, a component announces (broadcasts) one or more events. Other components in the system can register interest in an event by associating a procedure with it. The system invokes all events which have registered with it. Event announcement ``implicitly'' causes the invocation of procedures in other models. This style originates in constraint satisfaction, daemons, and packet-switched networks. Architectural components are modules whose interface provides both a collection of procedures and a set of events. Procedures may be called normally or be registered with events in the system. Implicit invocation systems are used in:
· programming environments to integrate tools
· database management systems to ensure consistency constraints

· user interfaces to separate data from representation

Implicit invocation facilitates reuse by allowing any component to register for events, and eases system evolution by allowing components to be replaced without affecting the interfaces of other components in the system. The primary disadvantage to implicit invocation is that the components relinquish control over the computation performed by the system. A component cannot assume that other components will respond to its requests and does not know what order events will be processed. In systems with a shared repository of data the performance and accuracy of the resource manager can become critical. Reasoning about correctness can be difficult because the meaning of a procedure that announces events will depend on the context in which it was invoked.
Layered Systems
A layered system is organized hierarchically with each layer providing service to the layer above it and serving as a client to the layer below. In some systems inner layers are hidden from all except the adjacent outer layer. Connectors are defined by the protocols that determine how layers will interact. Constraints include limiting interactions to adjacent layers. The best known example of this style appears in layered communication protocols OSI-ISO (Open Systems Interconnection - International Standards Organization) communication system. Lower levels describe hardware connections and higher levels describe application. Layered systems support designs based on increasing levels of abstraction. Complex problems may be partitioned into a series of steps. Enhancement is supported through limiting the number of other layers with which communication occurs. Disadvantages include the difficulty in structuring some systems in a layered fashion. Performance considerations may not be well served by layered systems especially when high level functions require close coupling to low level implementations. It may be difficult to find the right level of abstraction especially if existing systems cross several layers.
Repositories
Repository style systems have two distinct components: a central data structure which represents the current state, and a collection of independent components which operate on the data-store. Two methods of control exist for these systems. If input transactions select the processes to execute then a traditional database can be used as a repository. If the state of the data-store is the main trigger for selecting processes then the repository can be a blackboard. A blackboard model usually has three components:
1. The knowledge source: independent pieces of application specific knowledge. Interaction between knowledge sources takes place only through the blackboard.
2. The blackboard data structure: state data, organized into an application-dependent hierarchy. Knowledge sources make changes to the blackboard that lead incrementally to a solution to the problem.

3. Control: driven by the state of the blackboard. Knowledge sources respond opportunistically when changes in the blackboard make them applicable.

Invocation of a knowledge source is dependent upon the state of the blackboard. Control can be implemented in the knowledge source, the blackboard, externally, or a combination of these. Blackboard systems have traditionally been used for applications requiring requiring complex interpretations of signal processing. Programming environments can be considered as having a shared repository of programs and program fragments.
Interpreters
Interpreters create a virtual machine in software. There are generally four components to an interpreter, these are the program being interpreted, the state of the program, the state of the interpreter, and the interpreter itself. They are commonly used to narrow the gap between the computing engine in hardware and the semantics of a program. Programming languages can be thought of as providing a virtual languagemachine. Examples include Pascal, Java, BASIC.
Other Familiar Systems
Distributed processes -- have developed a number of common organizations for multiprocess systems. Some are defined by their topology (e.g. ring, star) and others are characterized in terms of the kind of interprocess protocols that are used (e.g. heartbeat algorithms). A common form of distributed system architecture is client-server. A server provides services to the clients. The server does not usually know the number or identity of the clients which will access it. The clients know the identity of the server (or can find it out through another name-server) and access it through a remote procedure call. Main program/subroutine organizations: The primary organization of many systems mirrors the programming language in which the system is written. State-transition systems: A common organization for many reactive systems. Define in terms of a set of states and a set of named transitions.
Heterogeneous Architectures
Most systems typically involve the combination of several styles. Components of a hierarchical system may have an internal structure developed using a different method. Connectors may also be decomposed into other systems (e.g. pipes can be implemented internally as FIFO queues). A single component may also use a mixture of architectural connectors. An example of this is Unix pipes-and-filter system in which the file system acts as the repository, receives control through initialization switches, and interacts with other components through pipes. 


