ABSTRACT
In this project we introduced the concept of Abstract Cell Complexes (ACC)on non-Euclidean spaces and some of its properties. Further we studied the concept of connectivity using notion of ACC. Also we established the result that every finite topological space with the separation property is isomorphic to an abstract cell complex. Finally we develop an algorithm for tracing the boundaries of the images.

INTRODUCTION

Geometry is an important tool for the study of digital images. However there are many geometrical problems in image analysis which cannot be solved on the basis of classical Euclidean geometry.
	In this project we introduced a new notion of Abstract Cell Complex (ACC) which is independent of Euclidean geometry and based on locally finite T0 topological space. Further, we introduced the boundary, frontier and connectivity among the abstract elements using the notion of closed set, open set and more importantly smallest neighborhood of elements in cell complexes. Finally we established the result every finite topological space with separation property is isomorphic to an Abstract Cell Complex (ACC).
	Using the ACC we encode the image with 0-cell, 1-cell, 2-cel and we developed an algorithm to trace the boundary of the images.

ABSTRACT CELL COMPLEXES
Definition: 1
	A topological space is a pair (E, SY) ) consisting of a set E of abstract elements and a system SY={S1,S2,S3,…,Si,…} of subsets of Si of E. These subsets are called the open subsets of the space and must satisfy the following axioms:

A (1). The empty subset Ǿ and the set E belong to SY

A (2). For every family F of subsets Si belonging to SY the union of all subsets which are elements of F must also belong to SY.

A (3).  If some subsets S1 and S2 belong to SY then the intersection S1  S2 must also belong to SY.
	A topological space said to have the separation property (more precisely T0- property) if it satisfies one more axiom:

A (4). For any two elements e1, e2  E there exists in SY such an open subset S’ that exactly one of the elements is in S’.

Definition: 2.2
A Topological space T = (E,SY) is called finite if   the set X contains finitely many 
elements.



Definition: 2.3
	Let (E,SY) be topological space. A collection SY of subsets of E is said to be locally finite in E if every point of E has a neighborhood that intersects only finite many elements of SY.

Example:2.1
            The finite topological space(E,SY) is defined by  SY = {(n, n+2)/nz}is locally finite in R.

Definition:2.3:
An  abstract cellular complex C=(E, B, dim)  is a set E of abstract elements provided with an antisymmetric, irreflexive and transitive binary relation BE×E called the bounding relation(or the face relation) and with a dimension function dim:E I from E into the set I of the non-negative integers such that
 
dim (e')<dim(e"), for all pairs (e, e") B

Example :2.2
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As an example of a finite topological space consider the surface of a finite polyhedron. It consists of three kinds of space elements are faces, edges and vertices. An edge l bounds two faces, say f’ and f’’. The edge l is bounded by two vertices v’ and v’’.
The maximum dimension of the cells of an Abstract Cell Complex is called its dimension. The cells with dimension 0(0-cell) are called points, cells are called pixels(faces) and that of dimension 3 are the voxels.

Definition:2.4
	A subset S of E is called open in C=(E,B,dim) if for every element e’ of S, all elements of C which are bounded by e’ are also in S.
	Example:2.3
	The set S={f’,l,f’’} is open. But S1= {v’,l,v’’} is not open.
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Definition:2.5
	A sub complex S=(E’,B’,dim’) of a given ACC C=(E,B,dim) is an ACC whose set E’ is a 
subset of E and the relation B’ is an intersection of B with E’ ×E’. The dimension dim’ is equel to dim for all cells of E’
	This definition makes clear that to define a sub complex S of C=(E,B,dim) it suffices to define a subset E’ of the elements of E. All sub complexes of C may be define intersections, unions and complements of sub complexes of an ACC C.

Definition:2.6
A sub complex S of C is called open in C if every subset defined in S is open.
Definition:2.7
	A finite Abstract Cell Complex(ACC) the intersection of all open sub complexes containing a given cell c is an open sub complex. It is called the smallest open neighbourhood of c in the ACC.
Example:2.4
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Definition:2.7
	The smallest subset of a set S which contains a given cell c of S and is closed in S is called closure of c relative to S.

Theorem:2.1
	Every finite topological space with the separation property is isomorphic to an abstract cell complex.
Proof:
	Let (E,SY) be the finite topological space with separation property.
	Let E={e1,e2,e3,…,en}.
The relation R between the elements of E is defined as
		ei related to ej if ej SON(ei) and ei ≠ ej
Claim (1)	R is antisymmetric
	Obviously (ei, ei)R since eiSON (ei) for ei=ei
Claim (2)	R is antisymmetric
	If (ei,ej)R implies that ejSON(ei) and ej≠ei. Since (E,SY) has Separation property. Therefore there exists atleast one neighbourhood of ej which does not contain ei. Therefore eiSON(ej). Hence (ej,ei) R.
This is true for all ei,ej R.Hence R is antisymmetric.
Claim (3)	R is transitive
	(ei,ej)  R and (ej,ek)R then to prove that (ei,ek)R
(ei,ej)R implies that ejSON(ei)
(ej,ek)R implies that eiSON(ej)
Let S=SON(e1)SON(e2). Then S is a open set contains both ei and ej, but SON(ej) is smallest neighbourhood containing ej implies that S=SON(ej) and SON(ej)SON(ei) similarly we prove that SON(ek)SON(ej).
This implies that ekSON(ei).
Hence(ei,ek) R.
Claim 4: If (ei,ej) R then dim(ei)<dim(ej)
Now we define the dimension of ei.
dim(ei)=maxek(CARD(SON(ek))- CARD(SN(ei))
  From the claim3 (ei,ej)R, implies that SON(ej) < SON(ei)
Therefore CARD(SON(ek))<CARD(SN(ei))
	This implies maxek(CARD(SON(ek))-CARD(SN(ei))<
maxek(CARD(SON(ek)))-CARD(SN(ej))
Therefore dim(ei)<dim(ej)
If SON(ei)=ei for all eiE.Then the space becomes discrete topological space. In ACC, the boundary relation becomes empty then it contains the elements of 0-dimensional is isomorphic to discrete  space.
	Thus we have from that a finite topological space which atleast one smallest neighbourhood consists of more than one element is isomorphic to ACC.
 Hence the proof.
CHAPTER 3
CO-ORDINATE ASSIGNMENT RULE
Definition 3.1:
	Two cells e’ and e’’ of an ACC C are called incident with each other in C iff either e’=e’’, or e’ bounds e’’, or e’’boinds e’.
Definition 3.2:
Two cells e’ and e’’ of an ACC C are called connected to each other in C iff either e’ is incident with e’’, or there exists in C a cell c which is connected to both e’ and e’’.
Definition 3.3:
	A sequence of cells of an ACC C beginning with c’ and finishing with c’’ is called a path in C from c’ to c’’ if every two cells which are adjacent in the sequence are incident.
Definition 3.4:
	An ACC C is called path-connected if for any two cells c’ and c’’ of C there exists a path in C from c’ to c’’.
Definition 3.5:
	The topological boundary of a subset T of the space S is the set of all space elements whose each neighborhood intersects both T and its complement S-T.
Definition 3.6:
The frontier of a sub complex S of an ACC C relative to C is the sub comlex Fr(S,C) consisting of all cells c of C such that the SON(c) contains cells both of S and of its complement C-S.
Let us consider a 2-dimensional(2D) images as of a 2D Cartesian complex containing the cells of dimensions from 0To2. According to this rule we assigned integer to every element in the image.
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						Figure 3.1
Rule:
	Each pixel F of a 2D image gets one 0-cell assigned to it as its “own”
Cell. This is the 0-cell lying in the corner of F which is the nearest to the origion of the coordinates. Also two 1-cells incident to F and to P1 are declared to be own cells of F. Thus each pixel gets three own cells of lower dimensions. All own cells of F get the same coordinate as F. They can be distinguished by their type.




CHAPTER 4
ALGORITHM IMPLEMENTATION
In this algorithm at each boundary point (0-cell) p, find the next boundary crack C incident to P and make a step along the crack(1-cell) to the next boundary point. Repeat this procedure until the starting point is reached again. Starting points of all boundary components must be found during an exhaustive search through the whole image. The following subroutine Trace() is called each time when a not yet visited boundary point of a region is found.
To avoid calling Trace() more than once for one and the same foreground component vertical cracks must be labeled. Trace() follows the boundary of one foreground region while starting and stopping at the
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