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Abstracts - With rapid advance of the network and data mining 
techniques, the protection of the confidentiality of sensitive 
information in a database becomes a critical issue to be resolved. 
Association analysis is a powerful and popular tool for 
discovering relationships hidden in large data sets. The 
relationships can be represented in a form of frequent itemsets 
or association rules. One rule is categorized as sensitive if its 
disclosure risk is above some given threshold. Privacy-
preserving data mining is an important issue which can be 
applied to various domains, such as Web commerce, crime 
reconnoitering, health care, and customer's consumption 
analysis. 

The main approach to hide sensitive frequent itemsets is to 
reduce the support of each given sensitive itemsets. This is done 
by modifying transactions or items in the database. However, 
the modifications will generate side effects, i.e., nonsensitive 
frequent itemsets falsely hidden (the loss itemsets) and spurious 
frequent itemsets falsely generated (the new itemsets). There is 
a trade-off between sensitive frequent itemsets hidden and side 
effects generated. Furthermore, it should always take huge 
computing time to solve the problem. 

In this study, we propose a novel algorithm, FHSFI, for 
fast hiding sensitive frequent itemsets (SFI). The FHSFI has 
achieved the following goals: 1) all SFI can be completely 
hidden while without generating all frequent itemsets; 2) limited 
side effects are generated; 3) any minimum support thresholds 
are allowed, and 4) only one database scan is required. 

Key Words: frequent itemsets, association rules, privacy 
preserving data mining, sensitive frequent itemsets, side effects. 

1. Introduction  

The data mining technologies have been an important 
technology for discovering previously unknown and potentially 
useful information from large data sets or databases. They can 

be applied to various domains, such as Web commerce, crime 
reconnoitering, health care, and customer's consumption 
analysis. Although these are useful technologies, there is also a 
threat to data privacy. For example, the association rule analysis 
is a powerful and popular tool for discovering relationships 
hidden in large data sets. Therefore, some private information 
could be easily discovered by this kind of tools. The protection 
of the confidentiality of sensitive information in a database 
becomes a critical issue to be resolved. 

The relationships discovered from a database can be 
represented in a form of frequent itemsets or association rules. 
One rule is categorized as sensitive if its disclosure risk is above 
some given threshold. With an association analyzer, if an 
itemset with support above a given minimal support, we call the 
itemset as a frequent itemset. 

The problem for finding an optimal sanitization of a source 
database with association rule analysis has been proven to be 
NP-Hard [1]. In [2,3,4,5] the authors presented different 
heuristic algorithms that modify transactions via inserting or 
deleting items for hiding sensitive rules or itemsets. 

Vassilios S. Verykios et al. [2] presented algorithms to hide 
sensitive association rules, but they generate high side effects 
and require multiple database scans. Instead of hiding sensitive 
association rules, Shyue-Liang Wang [3] proposed algorithms 
to hide sensitive items. The algorithm needs less number of 
database scans but the side effects generated is higher. Ali 
Amiri [4] also presented heuristic algorithms to hide sensitive 
items. Finally, Yi-Hung Wu et al. [5] proposed a heuristic 
method that could hide sensitive association rules with limited 
side effects. However, it spent a lot of time on comparing and 
checking if the sensitive rules are hidden and if side effects are 
produced. Besides, it could fail to hide some sensitive rules in 
some cases. 



 

In this study, we propose a novel algorithm, FHSFI for fast 
hiding sensitive frequent itemsets (SFI). The FHSFI has 
achieved the following goals: 1) all SFI can be completely 
hidden while without generating all frequent itemsets; 2) limited 
side effects are generated; 3) any minimum support thresholds 
are allowed, and 4) only one database scan is required. 

The remainder of this paper is organized as follows: 
Section 2 presents the problem formulation and notations. In 
Section 3, we introduce the concept of the proposed algorithm 
for fast hiding sensitive frequent itemsets and giving examples 
to illustrate the proposed algorithm. Section 4 is the 
experimental results which present the performance and various 
side effects of the proposed algorithm. Section 5 is the 
conclusion and further work. 

2. Problem Formulation and Notations 

In Table 1, we summarize the notations used hereafter in 
this paper. Let I be a set of items in a transaction database D. 
And let I = {i1, i2, ..., im}; D = {t1, t2, …, tn}, where every 
transaction ti is a subset of I, i.e. ti⊆I. An example database is 
shown in Table 2. Let X be a set of items in I. If X⊆ti, we say 
that the transaction ti supports X. There are nine items, |I|=9, 
and five transactions, |D|=5, in the database. The support of 
itemset X can be computed by equation (1). An association rule 
is an implication of the form X→Y, where X⊂I, Y⊂I and X∩

Y= Ø. A rule X→Y will be extracted from a database if 
1) support(X∪Y) ≥ min_support (a given minimum support 

threshold) and 
2) confidence(X∪Y) ≥ min_confidence (a given minimum 

confidence threshold), 
where support(X∪Y) and confidence(X∪Y) are given by 
equations (2) and (3), .  

support(X) = ||X|| / |D|                                          (1) 
support(X Y∪ ) = ||X Y∪ || / |D|                             (2) 
confidence(X Y∪ ) = ||X∪Y|| / | X |                      (3) 

In equation (1), ||X|| denotes the number of transactions in 
the database that contains the itemset X, and |D| denotes the 
number of the transactions in the database D. If support(X) ≥ 
min_support, we call X as a frequent itemset. Table 3 shows the 
frequent itemsets for a given min_support = 60%. 

For the example X = {1,4,7}, since X⊆t1, X⊆t2 and X⊆

t3, we obtain ||X||=3. Therefore, support(1,4,7)=60%. Using the 
form X→Y (support, confidence) for association rules, the rules 
generated from the above itemset {1,4,7} can be described as 
1→4,7 (60%,75%), 4→1,7 (60%,100%), 7→1,4 (60%,75%), 
1,4→7 (60%,100%), 1,7→4 (60%,100%) and 4,7→1 
(60%,100%). 

Figure 1 shows the relationships among the sets, U, U’, 
and SFI. The study goal is to hide all SFI and to minimize the 
loss itemsets. That is, U’∩SFI = Ø and the set U–U’–SFI should 

be minimized. 
Table 1. Definitions of variables used in this paper 

Variable Definition 
D the original database 
D’ the released database which is transformed from D
U the sets of frequent itemsets generated from D 
U’ the sets of frequent itemsets generated from D’ 
ti a transaction in Database D 
|ti| the number of items in ti 
TID a unique identifier of each transaction 
SFI the set of sensitive frequent itemsets to be hidden 
SFI.tj a sensitive frequent itemset in the SFI 
||．|| the support count of an itemset, i.e., the number of 

transactions that support the itemset 
wi prior weight of ti 
PWT a table for storing TID and wi for each transaction 

in an order decreasing by wi 
MICi the maximal number of itemsets in SFI that contain 

an item ik, where ik∈ti, SFI.tj⊆ti 
SFI.t.i an item in SFI.tj that is supported by the 

transaction to be modified 
 

 
 

 
Figure 1. The relationships among the sets, U, U’, and SFI 

3 The Proposed Algorithm 

We now demonstrate the algorithm, FHSFI. Given D, SFI, 
and min_support, the algorithm is to generate a database to be 
released, D’, in which the sensitive frequent itemsets are hidden 
and the side effects generated are minimized. 

The sketch of the FHSFI algorithm is shown in Figure 2, 
which can be depicted as the following stages. 

Table 2. 
Database D 

TID Transaction
1 1,2,4,5,7
2 1,4,5,7 
3 1,4,6,7,8
4 1,2,5,9 
5 6,7,8 

Table 3. 
Frequent Itemsets
Itemset Support

1 80% 
4 60% 
5 60% 
7 80% 

1,4 60% 
1,5 60% 
1,7 60% 

1,4,7 60% 
4,7 60% 

SFI 
 

U’ 

U 



 

 
Figure 2. The pseudo code of the FHSFI algorithm 

In stage 1, FHSFI scans database once while collects all 
useful information about the correlation with SFI for each 
transaction, including ||SFI.tj|| and wi. The ||SFI.tj|| is used for 
checking if SFI.tj has been hidden. The wi is a prior weight of a 
transaction ti, which provides a heuristic for estimating side 
effects and can be computed by equation (4). 

wi = 1 / [2( | ti | - 1) / MICi].                                 (4) 

Table 4 shows an example of sensitive frequent itemset. 
Let t1 = {1,2,4,5,7}, which supports SFI.t1, SFI.t2 and SFI.t3. As 
shown in Figure 3 the correlation between t1 and the SFI can be 
represented by a graph G=<V,E>. Each node is for an item ik in 
t1; the weight associated with each edge in E denotes the 
number of the itemsets in SFI that contain the both adjacent 
nodes connected by the edge. Each node can be represented as 
({SFI.tj | SFI.tj ⊆ti, ik∈SFI.tj}, item_countSFI.t). For example, 
the node < {1,2,3}, 3> for item ‘1’ indicates that three itemsets 
in SFI that contain the item ‘1’, namely the SFI.t1, SFI.t2, and 
SFI.t3. As shown in Figure 3, item ‘1’ has the maximum 
item_countSFI.t which is equal to 3. Hence, we obtain MIC1 = 3 
and w1 = 3/16. 

Stage 2 repeats to modify transitions one-by-one until all 
SFI have been hidden. The order of the transaction 
modifications is according to the prior weight associated with a 
transition. The following tasks are repeated until SFI is empty. 

• Select a transaction tk from PWT such that wk is maximal. 

• Select the item to be deleted, according to the heuristic 
shown in Figure 4, and delete it.   

• Recompute wk after modifying each item, and then insert it 
into the PWT in the maintained order.  

• Subtract 1 from ||SFI.tj|| if SFI.tj contains the deleted item 
and is supported by tk. 

• Remove SFI.tj from SFI, if the (||SFI.tj|| / |D|)< min_support.  

 
Figure 3. The correlation between t1 and SFI 

 
Figure 4 shows the heuristic procedure for determining which 
item to be modified and for computing MIC for transaction ti.  

 
Figure 4. The pseudo code of the Heuristic procedure 

Table 4.  
An example of sensitive 
frequent itemsets, SFI 

 Itemset 
1 1,2,5 
2 1,4,7 
3 1,5,7 
4 6,8 

Table 5. 
The support count for 

each itemset in SFI 
 Itemset ||．|| 

1 1,2,5 2 
2 1,4,7 3 
3 1,5,7 2 
4 6,8 2 

    FHSFI( ); 
    Input: D, SFI, min_support; 
    Output: D’; 
 
    Stage 1 
1   For each transaction ti in the Database D Do 
2   Begin 
3     If exist any SFI.t (sensitive frequent itemsets) supported by ti then
4     Begin 
5       ||SFI.tj|| : = ||SFI.tj|| + 1; 
6       MICi := the maximum item_count from Heuristic(i, SFI); 
7       Compute the prior weight wi for each ti by the function;  

wi = 1 / [2 ( | ti | - 1) / MICi];            
8       Store the TID and the wi in PWT; 
9     End; 
10  End; 
 

Stage 2 
11  While SFI is not empty (≠∅) do 
12  Begin 
13    Select a TID from PWT with maximal w; 
14    Determine which item in tTID will be modified according to 

Heuristic(TID, SFI); 
15    Modify the item; 
16    Modify wTID of the tTID and insert the TID into the PWT; 
17    For each SFI.tj that contains the modified item Do 
18    Begin 
19      ||SFI.tj||=||SFI.tj|| – 1; 
20      If ||SFI.tj|| / |D| < min_support then 
21        Remove SFI.tj from SFI; 
22    End; 
23  End; 

     Heuristic ( );   
     Input: TID, SFI; 
     Output: the item to be modified, MICi; 
1    Begin 
2    For each SFI.t in SFI do 
3    Begin 
4      If the transaction tTID fully supports SFI.tj then 
5      Begin 
6        For each item SFI.tj.i in SFI.tj Do 
7          item_countSFI.t.i = item_countSFI.t.i + 1; 
8      End; 
9    End; 
10  Select the SFI.t.i with maximum item_count as the item of 

tTID to be midified; 
11  Return(SFI.tj.i, item_count); 
12  End; 



 

 
Now, we use the following example for illustrating the 

proposed algorithm FHSFI. 

Example 1. Given D, SFI, as shown in Tables 2 and 4, and 
min_support = 40%. As shown in Table 5, the support count for 
each SFI.t can be obtained from D and SFI. For example, SFI.t2, 
{1,4,7}, is supported by t1, t2, and t3, so ||SFI.t2|| = 3. Table 6 
lists the length, MIC, and the prior weight for each transaction 
in the database. The PWT, as shown in Table 7, can be obtained 
by sorting Table 6 in the decreasing order by w. Then, the first 
transaction, i.e., t2, in PWT is chosen to be modified. According 
the heuristic shown in Figure 3, the item ‘1’ in t2 are removed. 
Hence, ||SFI.t2|| and ||SFI.t3|| will be reduced by 1. SFI.t3 is 
removed from SFI because the (||SFI.t3|| / |D|) < min_support. 
The process is repeated until the SFI is empty. Finally, the 
FHSFI algorithm removes the item ‘1’ in t2, the item ‘6’ or ‘8’ 
in t5 (select randomly), and the item ‘1’ in t1. Now all sensitive 
frequent itemsets in SFI have been hidden.                              ■ 

4. Performance Evaluation 

We have performed our experiments on a notebook with 
1.5G MHz processor and 512 MB memory, under Windows XP 
operating system. The IBM data generator [11] is used to 
synthesize the databases for the experiments. Databases with 
sizes 5K, 10K, 15K, 20K, 25K, and 30K are generated for the 
series of experiments. The average length of transactions of 
each database is 10 and 50 items in the generated database. The 
minimum support threshold given is 30%. The experimental 
results are obtained by averaging from 5 independent trials with 
different SFIs.  

The performance of the FHSFI algorithm has been 
measured according to three criteria: CPU time requirements, 
side effects produced, and the number of entries modified. 
Tables 8 and 9 present the experimental results for |SFI|=5 and 
|SFI|=10, respectively. 

The CPU time requirements, side-effect evaluation, and the 
number of entries modified for varied |D| and |SFI| are shown in 
Figures 6, 7, and 8, respectively. 
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Figure 6. CPU time requirements 
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Figure 7. The side-effect evaluation 

 

Table 8. Experiment results for |SFI|=5 

|D| CPU time(ms) |U| |U’| #loss itemsets #modified entries

5000 326.6 439 428.6 5.4 143 
10000 454.2 417 406.4 5.6 307.2 
15000 701 426 415.6 5.4 513 
20000 905 442 431 6 711.6 
25000 1183.6 432 421.2 5.8 902.8 
30000 1502 443 432.4 5.6 863.8 

Table 9. Experiment results for |SFI|=10 

|D| CPU time(ms) |U| |U’| #loss itemsets #modified entries

5000 314.4 439 420.2 8.8 236.8 

10000 578.8 417 396.4 10.6 604.2 

15000 807.2 426 406 10 896.6 

20000 1155.6 442 422 10 1177 

25000 1550 432 412.6 9.4 1450.6 

30000 1899 443 422.8 10 1521.4 

Table 6. 
The MIC and prior weight for each 

transaction in D 
TID Transaction |ti| MIC w 

1 1,2,4,5,7 5 3 3/16 
2 1,4,5,7 4 2 2/8 
3 1,4,6,7,8 5 1 1/16 
4 1,2,5,9 4 1 1/8 
5 6,7,8 3 1 1/4  

Table 7. 
The example 

PWT 
 TID w 
1 2 2/8 
2 5 1/4 
3 1 3/16
4 4 1/8 
5 3 1/16 
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Figure 8. The number of entries modified 

The experimental results for FHSFI can be summarized as 
follows: 

• As shown in Figure 6, the CPU time is linear growth with 
the size of database and is scalable with the size of SFI. 

• The number of loss itemsets is independent of the size of 
database, but linear-related with the size of SFI sets, which 
can be discovered in Figure 7. 

• The number of the modified entries depends on the size of 
the database and the size of SFI. However, since the 
heuristic procedures are used to determine the order of 
modifications, we can observe in Figure 8 that only a small 
part of transactions in the database are modified. For 
|D|=10000, only 600 transactions are modified for 
completely hiding the 10 itemsets in SFI. 

5. Conclusions and further work 

In this paper, we have presented the FHSFI algorithm in 
order to fast hide sensitive frequent itemsets with limited side 
effects. The correlations between the sensitive itemsets and each 
transaction in the original database are analyzed. A heuristic 
function to obtain a prior weight for each transaction is given. 
The order of transactions to be modified can be efficiently 
decided by the weight for each transaction. This will reduce the 
time to deal with the transactions whose modification is not 
helpful for hiding the given sensitive frequent itemsets. In other 
words, the number of transactions in D that we have to deal 
with could also be reduced.  

Our approach has achieved the following goals: 1) all SFI 
can be completely hidden while without generating all frequent 
itemsets; 2) limited side effects are generated; 3) any minimum 
support thresholds are allowed; and 4) only one database scan is 
required. In this research, one of our goals is hiding all SFI with 
limited side effects, but our algorithm still causes some loss rule 
sets. We are currently considering extensions on the algorithms 
to solve the problem. Another one is to apply the ideas 
introduced in this paper to fast hide sensitive association rules. 
These issues could be studied in the future. 
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