An Asynchronous Leader Election Algorithm for
Dynamic Networks

B.Tech Seminar report

by

Sabitha C.B
ETAHECS068

Department of Computer Science And Engineering

Government Engineering College, Thrissur
December 2010

Seminar Report 2010

Acknowledgment

I would like to acknowledge and extend my sincere gratitude to the following

persons who have made the completion of this Seminar possible:

Head of the Department of Computer Science and Engineering Prof. Manoj

Kumar for permitting me to present this seminar.
Prof.K S Valsaraj, for providing me with timely guidance and motivation.

Mr.Ajay James, lecturer and Mrs.Baby Syla lecturer, for the constant re-

minders and encouragement during various stages of this Seminar.
All Computer Science and Engineering Department faculty members and Staff.
Most especially to my classmates for their support.

And to God almighty, who made all things possible.

Sabitha C.B
December 2010
Govt. Engineering College, Thrissur

Dept. of CSE, GEC, Thrissur i

Seminar Report 2010

Contents

1 Introduction 1
1.1 Organization Of the Report 3
2 Preliminaries 4
2.1 System Model 4
2.2 Modeling Asynchronous Dynamic Links 4
2.3 Configurations and Executions 0L, D
2.4 Problem Definition L 6
3 Leader Election Algorithm 8
3.1 Overview of Algorithm 10
4 Advantages and disadvantages 14
5 Conclusion 16
References 16

Dept. of CSE, GEC, Thrissur ii

Seminar Report 2010

List of Figures

2.1 State diagram for status variable of Link { u,v } 5
3.1 Code triggered by Update message. 10
3.2 Code triggered by link changes 11
3.3 Subroutines. 11

3.4 Simple execution when leader H becomes disconnected (a), with time
increasing from (a)-(h). With no other link changes, every node in the

connected component will eventually adopt G as its leader. 13

Dept. of CSE, GEC, Thrissur iii

Abstract

This is a leader election algorithm, used in dynamic networks. In this algorithm
what pattern of topology change occur, when the topology change is over then every
connected component in the network will contain a unique leader. Dynamic network
is a network whose communication topology changes frequently. This algorithm is
applicable in asynchronous networks. The algorithm is developed using ideas from a
routing algorithm named TORA. TORA (Temporally Ordered Routing Algorithm)
is a routing algorithm for mobile ad hoc networks. TORA uses a Wave algorithm
and a height-based mechanism for reversing the logical direction of communication
links [6]. In this algorithm if a node loses its last outgoing link it will start search
for the leader, if it cannot get a path to the leader it will elect itself as a leader. If
it finds the old leader there will not be any change in the leader. This algorithm can
elect any node as the leader, involves fewer types of messages than other algorithms,
and uses point-to-point communication rather than broadcasting. The strategy for
breaking ties between competing leaders makes this algorithm compact and elegant,
as messages sent between nodes carry only the height information of the sending node,
and every message is identical in content. This algorithm is also suited to an arbitrary
communication topology. It is proved that in certain well-behaved situations, a new

leader is not elected unnecessarily.

Seminar Report 2010

Chapter 1
Introduction

Leader election is important in distributed computing, it is used as a subroutine
for any application that requires the selection of a unique processor among multiple
candidate processors. Applications that need a leader range from the primary-backup
approach to replication based fault-tolerance to group communication systems , and
from video conferencing to multi-player games . A core activity for a network leader
is communication. Clear and transparent communication around the networks aims,
values and activities are crucial to building ownership and participation. A network
needs data, information and intelligence around which to plan, work and learn. A net-
work leader will be proactive in identifying and accessing knowledge sources within
and beyond the network. A network leader brokers and sustains the relationships,
carefully building trust and security as a foundation for innovation and experimenta-
tion.

In a dynamic network, communication links go up and down frequently. Wireless
mobile networks are one example of dynamic networks, since node mobility changes
the communication topology continuously. Even if nodes do not move, wireless com-
munications are subject to more interference than in the wired case, but wired net-
works can also experience frequent topology changes. Recent research has focused
on porting some of the applications mentioned above to dynamic networks, including
wireless and sensor networks. For instance, Wang and Wu propose a replication-based
scheme for data delivery in mobile and fault-prone sensor networks . Thus there is a
need for leader election algorithms that work in dynamic networks.

This algorithm consider the problem as the one which ensures that, if link changes
eventually cease, then eventually each connected component of the network has a
unique leader, this is represented as the local leader election problem[3]. The algo-
rithm is presented as an extension of the leader election algorithm in, which in turn is
an extension of the MANET routing algorithm TORA[10]. TORA itself is based on

ideas from two routing algorithms presented by Gafni and Bertsekas [4]based on the

Dept. of CSE, GEC, Thrissur 1

section 1.0 Seminar Report 2010

notion of link reversal. In these algorithms, each node maintains a height variable,
drawn from a totally ordered set; the link between two nodes is considered to be
directed from the endpoint with larger height to that with smaller height. Whenever
a node becomes a sink, i.e., has no outgoing links, due to a link failure or due to
notification of a neighbors changed height, the node increases its height so that at
least one of its incoming links becomes outgoing. In one of the algorithms, the height
is a pair, while in the other the height is a triple; in both situations, heights are
compared lexicographically and the least significant component is the nodes unique
id. The algorithms cause an infinite number of messages to be sent if a portion of the
graph is disconnected from the destination.

This drawback is overcome in TORA, through the addition of a clever mechanism
by which nodes can identify that they have been partitioned from the destination. In
this case, the nodes go into a quiescent state. In TORA, each node maintains a 5-tuple
of integers for its height, consisting of, from left to right, a 3-tuple called the reference
level, a delta component, and the nodes unique id. The height tuple of each node is
lexicographically compared to the tuple of each neighbor to impose a logical direction
on links (higher tuple toward lower.) The purpose of a non-zero reference level is to
indicate when nodes have lost their path to the destination. Initially, the reference
level is all zeroes. When a node loses its last outgoing link due to a link disappearing,
it starts a new reference level by changing the first component of the triple to the
current time, the second to its own id, and the third to 0, meaning that the search for
the destination is started. Reference levels are propagated throughout a connected
component, as nodes lose outgoing links, in a search for an alternate directed path to
the destination. Propagation of reference levels is done using a mechanism by which a
node increases its reference level when it becomes a sink; the delta value of the height
is manipulated to ensure that links are oriented appropriately. If one section of the
communication graph is a dead-end, then the third component of the reference level
triple is set to 1. When this happens, the reference level is said to have been reflected,
since it is subsequently propagated back toward the originator. If the originator re-
ceives reflected reference levels back from all its neighbors, then it has identified a
partitioning from the destination.

The key observation in a Leader election algorithms for mobile ad hoc networks
presented by N. Mopani, J. Welch, and N. Vaidyal[6] is that TORA can be adapted for
leader election: when a node detects that it has been partitioned from the destination
(the old leader), then, instead of becoming quiescent, it elects itself. The information
about the new leader is then propagated through the connected component. A sixth
component was added to the height tuple to record the leaders id.

However, when multiple topology changes occur, this algorithm can fail. But this

Dept. of CSE, GEC, Thrissur 2

section 1.1 Seminar Report 2010

new algorithm works in an asynchronous system with arbitrary topology changes.
One new feature of this algorithm is to add a seventh component to the height: a
timestamp associated with the leader id that record the time that the leader was
elected. This algorithm also includes a new rule by which nodes can choose new lead-
ers. A newly elected leader initiates a wave algorithm[9]: when different leader ids
collide at a node, the one with the most recent timestamp is chosen as the winner
and the newly adopted height is further propagated. This strategy for breaking ties
between competing leaders makes our algorithm compact and elegant, as messages
sent between nodes carry only the height information of the sending node and every

message is identical in content.

1.1 Organization Of the Report

1. Chapter 2 describes Preliminaries for the algorithm
2. Chapter 3 describes Algorithm and its term

3. Chapter 4 describes Advantages and disadvantages comparing with other algo-

rithm

Dept. of CSE, GEC, Thrissur 3

Seminar Report 2010

Chapter 2

Preliminaries

2.1 System Model

In this algorithm the system is assumed as Directed Acyclic Graph (DAG) con-
sisting of a set P of computing nodes as set of vertices and a set L. of bidirectional
communication links between nodes as set of edges. L consists of one link for each
unordered pair of nodes, i.e., every possible link is represented. The nodes are as-
sumed to be completely reliable. The links between nodes go up and down, due to
the movement of the nodes. While a link is up, the communication across it is in
first-in-first-out order and is reliable but asynchronous.

The whole system is modeled as a set of (infinite) state machines that interact
through shared events (a specialization of the IOA model). Each node and each link
is modeled as a separate state machine. The shared events are Link Up/Down notifi-
cations and receipt of messages, all of which are controlled and initiated by the link
and responded to by the node. The sending of a message is also a shared event, but
it is controlled and initiated by the node and responded to by the link; we are not
explicitly modeling this. The next subsection gives more details about how links are
modeled and specifies the initial states. The algorithm executed by the nodes and its

initial states are described in Chapter 3.

2.2 Modeling Asynchronous Dynamic Links

This section specifies how communication is assumed to occur over the dynamic
links, and how notification of a links status is synchronized at the two endpoints of the
link. The state of a link Link { u, v } which models the bidirectional. Communication
link between node u and node v, consists of a status variable and two queues of mes-

sages. The possible values of the status variable are Up, GoingDown,,, GoingDown,,,

Dept. of CSE, GEC, Thrissur 4

section 2.3 Seminar Report 2010

Down, ComingUp,, and ComingUp,. The link transitions among different values of
its status variable through LinkUp and LinkDown events.

Figure 2.1 shows the state transition diagram for Link { u, v}.

The intuition is that if a LinkUp (resp., LinkDown) occurs at one endpoint of
the link, then LinkUp (resp., LinkDown) must occur at the other endpoint before

LinkDown (resp., LinkUp) can occur at either end.

LinkUp, LinkUp,, LinkDown, LinkDeown,,
£
! LinkUp,, LinkDown,, ,I:

Figure 2.1: State diagram for status variable of Link { u, v }

The other components of the links local state are the two message queues:
mqueue, ,, holds messages in transit from u to v and mqueue,, holds messages in
transit from v to u. An attempt by node u to send a message to node v results in the
message being appended to mqueue,, if the links status is either ComingUp, or Up;
otherwise there is no effect. If the status is ComingUp,,, then messages in transit from
u to v are held in the queue until v has been notified that the link is Up. Once the
link is Up, the event by which node u receives the message at the head of mqueue, ,is
enabled to occur. An attempt by node v to send a message to node u is handled anal-
ogously. Whenever a LinkDown, or LinkDown, event occurs, both message queues
are emptied. Neither u nor v is alerted to which messages in transit have been lost
due to the LinkDown. In an initial state of the link, both message queues are empty

and the status is either Up or Down.

2.3 Configurations and Executions

The notion of configuration is used to capture an instantaneous snapshot of the

state of the entire system. A configuration is a vector of node states, one for each node

Dept. of CSE, GEC, Thrissur 5

section 2.4 Seminar Report 2010

in P, and a vector of link states, one for each link in L. Assume that the undirected
graph G = (V,E) defines the initial communication topology of the system, where V
is a set of vertices corresponding to the set P of nodes, and E, Is a set of edges cor-
responding to the set of communication links that are up. In an initial configuration
with respect to G, each node is in an initial state each link corresponding to an edge
in E is in an initial state with its status equal to Up, and every other link has its
status equal to Down.

Define an execution as an infinite sequence C0,el1,C1,e2,C2, . . . of alternating
configurations and events, starting with an initial configuration and, if finite, ending

with a configuration, that satisfies the following safety conditions:

e CO0 is an initial configuration (w.r.t. some initial topology G).
e The preconditions for event ei are true in Ci-1 for all i > 1.

e Ci is the result of executing event ei on configuration Ci-1, for all i > 1 (only
the node and link involved in an event change state, and they change according

to their state machine transitions).
An execution also satisfies the following liveness conditions:

e If a link remainsUp for infinitely long, then every message sent over the link is

eventually delivered.

e For each link, if only a finite number of link events occur, then the link status

after the last one is either Up or Down (not in between).

We also assign a positive real-valued global time gt to each event ei, i > 1,
such that gt(ei) < gt(ei+1) and, if the execution is infinite, the global times increase
without bound. Each configuration inherits the global time of its preceding event, so
gt(Ci) = gt(ei) for i > 1; we define gt(C0) to be 0. We assume that the nodes have

perfect clocks, i.e., the nodes have access to gt.

2.4 Problem Definition

Each node u in the system has a local variable lid, to hold the identifier of the
node currently considered by u to be the leader of the connected component contain-
ing u.

In every execution that includes a finite number of topology changes, we require

Dept. of CSE, GEC, Thrissur 6

section 2.4 Seminar Report 2010

that the following eventually holds: Every connected component CC of the final topol-
ogy contains a node ¢, the leader, such that lid, = ¢ for all nodes u CC, including ¢
itself.

This algorithm also ensures that eventually each link in the system has a direction
imposed on it by virtue of the data stored at each endpoint such that each connected
component CC is a leader-oriented DAG; i.e., every node has a directed path to the

leader.

Dept. of CSE, GEC, Thrissur 7

Seminar Report 2010

Chapter 3
Leader Election Algorithm

This section explains the local variables used in our leader election algorithm. The
pseudo code for the algorithm is presented in Figures 3.1, 3.2 and 3.3. An overview
and sample execution is given in Section 3.1. In the analysis, variable v of node i will
be indicated as v;. Each node i keep an array of heights, heighti, with an entry for
itself and for each of its neighbors, in which it stores the most recent height informa-
tion that it has received for those nodes.

Each height is a 7-tuple, with the following components:

1. 7, a nonnegative timestamp that is either 0 or the time when the current search

for an alternate path to the leader was initiated

2. oid, a nonnegative value that is either 0 or the id of the node that started the

current search

3. 1, a bit that is set to 0 when the current search is initiated and set to 1 when

the current search hits a dead end

4. 9, an integer that is set to ensure that links are directed appropriately to neigh-

bors with the same first three components

5. nlts, a nonpositive timestamp whose absolute value is the time when the current

leader was elected
6. lid, the id of the current leader

7. id, the id of the node

Components (7 ,0id, r) are referred to as the reference level, or RL; (7 ,0id)

alone are referred to as the reference level prefix; and (nlts, lid) is referred to as the

Dept. of CSE, GEC, Thrissur 8

section 3.0 Seminar Report 2010

leader pair or LP. The components of entry k in height; are referred to as (7 ,0idg,
Ik,0 g,nltsy, lidg,k) in the pseudo code.

Nodes communicate over links during the algorithm execution by sending Up-
date messages. Each message contains only the height tuple of the sending node.
The link between node i and one of its neighboring nodes j is considered by i to be
outgoing (directed from i to j) if and only if height,[i]> height;[j]. That is, node i
uses the information in its local state concerning itself and node j to determine (its
view of) the direction of the link to j. Because of message delays, it is not necessar-
ily the case that i and j have consistent views of the direction of the link between them.

Other events that occur at a node are formations (LinkUps) and failures (LinkDowns)
of links. Suppose the most recent indication that node i has received concerning the
link between itself and node j is a LinkUp. If i has received a message from j since
that LinkUp, then i considers j as one of its neighbors, and stores the id of j in its local
variable Ni. If i has not yet received a message from j, then the link is considered as
still forming, and i stores the id of j in its local variable forming;; j is not considered
a neighbor of i (yet).

Given an initial connected communication graph G = (V,E), with V correspond-
ing to the set of nodes and E to the set of communication links that are up, the initial

state of each node i is defined as follows.

e forming; is empty

e N, contains the id of every node j such that the vertices in V corresponding to

i and j are neighbors in G

e height;[i] = (0,0,0,d ;,0, ¢, i), where ¢ is the id of a fixed node in is connected

component, the current leader

e for each neighbor j of i, height;[j| = height;[j] (i.e., i has accurate information
about js height)

Furthermore, for each node i, d ; equals the distance from i to ¢; this condition
ensures that every node has a directed path to .

Next we define the conditions under which a node considers itself to be a sink.

e SINK = ((LP? ; = LP"; j N;) and (height;[i] < minheight;[j] j N;) and (lidii,
i)). This predicate is true when, according to is local state, i is not a leader, has
all neighbors with the same LP, and has no outgoing links. If node i has links

to any neighbors with different LPs, i is not considered a sink, regardless of the

Dept. of CSE, GEC, Thrissur 9

section 3.1 Seminar Report 2010

directions of those links.

3.1 Overview of Algorithm

We depict the network as a DAG in which each bidirectional communication link
points from a node with lexicographically higher height to another node with lexico-
graphically lower height. Nodes send algorithm messages only if initial knowledge of
neighboring nodes is not available, then the algorithm could begin with each node in
a singleton connected component.

When node i receives Update(h) from node j:

1. height[j] ‘=h
2. forming = forming \ {j}
3. N = Nu {j}
4. myOldHeight = height|i]
5. if ((nks’ lid") = (nits?’ lid?)) // leader pairs are the same
6. if (SiNkK)
7. if (3 (rpid,r) | (2 0id) =(tpid,r) ¥ keN)
8. if ((r>0) and (r=10))
9. REFLECTREFLEVEL
19. else if ((r>0) and (r=1) and (vid = i))
11. ELECTSELF
12, else
/7 (t=0) or (r>0 and r=1 and oid =)
13. sTARTNEWREFLEVEL
14. end if
15. else
// neighbors have different ref levels

16. PROPAGATELARGESTREFLEVEL
17. end if

// else not sink, do nothing
18. end if
19, else // leader pairs are different
20. ADOPTLPIFPRIORITY (J)
21. end 1f
22. if (myOldHeight # heighti])
23. send UpdateCheighti]) to all k€ (N U forming)

24. end if

Figure 3.1: Code triggered by Update message.

Dept. of CSE, GEC, Thrissur 10

section 3.1 Seminar Report 2010

When LinkDown event occurs at node ¢ for link to node j:
N =N\ { i }
Jarming = forming\{j}
if (N=0)

ELECTSELF
else if (SINK)

STARTNEWREFLEVEL

send UpdateCheighti]) o all ke (N U forming)
end if

00 ~1 Oh v B s DD =

forming = forming U {j}

When LinkUp event occurs at node ¢ for link to node j:
1.
2. send Update(heighti]) over new link

Figure 3.2: Code triggered by link changes

ELECTSELF
1. heighdi] == (0,0,0,0,-1,i,i)
/f t is current time, negated for timestasp
REFLECTREFLEVEL
1. heighdi] m=(r,0id,1,0,nls' lid i)

FROPAGATEL ARGESTREFLEVEL
1. {t',oid,r)= urﬁ.a.{{t',u:}..l'l',;*)| €N}
2. ' :=min{ §* | keN and (t,0id,r) =" 0id")} =1

STARTNEWREFLEVEL
1. !rfrg.f:r{r] = (ri,0,0nls' id' i) // t is current time

ADOPTLPIFFRIORITY ()

P if (Cmiles < nls’) or ((nls' =nls') and (lidd < Hid')))
2. Mghr[r'] =t abd! , r!, 8 + 1, nlx, i 1)

3. end 1f

Figure 3.3: Subroutines.

when they change the contents of their height tuple. The contents of the height
tuple at a particular node are changed only when the node elects itself a leader, when
it changes its current leader, or when it loses its last outgoing link to its current leader.
The network is quiescent when there is no message in transit on any link. Messages
that do not cause a node to lose its last outgoing link to its current leader or to change
its current leader result only in a change to the internal data that node keeps about
its neighbors heights.
Figure 3.4 shows a sample execution of the algorithm.
Each part (a)-(h) is discussed below.
(a) A quiescent network is a leader-oriented DAG in which node H is the current
leader. The height of each node is displayed in parenthesis. Link direction in this
Figure is shown using solid-headed arrows and messages in transit are arrows with

outlined heads superimposed on the links that point from message sender to receiver.

Dept. of CSE, GEC, Thrissur 11

section 3.1 Seminar Report 2010

(b) When non-leader node G loses its last outgoing link due to the loss of the link
to node H, G executes subroutine STARTNEWREFLEVEL and takes on RL (5,G,0)
and 0 = 0. Then node G sends messages with its new height to all its neighbors. By
raising its height in this way, G has started a search for leader H.

(c¢) NodesD, E, and F receive the messages sent from node G, messages that cause
each of these nodes to take on RL (5,G,0) and set its d to -1, ensuring that its height is
low er than Gs but higher than the other neighbors. Then D, E and F send messages
to their neighbors.

(d) Node B has received messages from both E and D with the new RL (5,G,0), and
C has received a message from F with RL (5,G,0); as a result, B and C take on RL
(5,G,0) with 0 set to -2, and send messages.

(e) Node A has received message from both nodes B and C. In this situation, node
A is connected only to nodes that are participating in the search started by node G
for leader H. In this case, node A reflects the search by setting the reflection bit in
the (5,G,*) reference level to 1, resetting its 0 to 0, and sending its new height to its
neighbors.

(f) Nodes B and C take on the reflected reference level (5,G,1) and set their ¢ to -1,
causing their heights to be lower than As and higher than their other neighbors. Then
they send their new heights to their neighbors.

g) Nodes D, E, and F act similarly as B and C did in part (f), but set their variables
to -2. (h) When node G receives the reflected reference level from all its neighbors at
time 14, it knows that its search for H is in vain and it elects itself. The new LP (-14,
G) then propagates through the component assuming no further link changes occur;
eventually each node has RL (0,0,0) and LP (-14,G), with D, E and having 6 = 1, B
and C having 6 = 2, and A having /= 3.

Dept. of CSE, GEC, Thrissur 12

section 3.1 Seminar Report 2010

F0.0.0,4,01 4, A) (0.0,0.4.0=1 H)LA)

(0.0,000-1 4y (000,30 L, B B HECY
B
~{8,8,6,%,{-1,H], ;
D
10.0,0.2,-1.0),8) ¥ ¥ 00261 OGR- HLE T (0,0,0,2-1.H)F)
O A
G) 00,011, HLG) G {5.0,0,0,0-1,H) G}
{0U0L.00u(=1, HLH) (a} (00000, (=1 1) 1) (h)
(00,0,2,0-1 Hy A (00,041 MY A}

A

{0,0,0,9.4-1,H)L.C)

(5,G01,(-1.H).E} (5.6,01(1HLF) (5.6.0,41.61H).E)
3 {m.o.n.{-m;.a; G) (5.5.0.0,6-1,H),8)
(c) (d)
(500, 1,0, - 1) A) :E.H.'lﬂg_[:&-.lﬂ.m

(B =1 (=1, 1],) (56,01 E0HLFY G O-T-1,H),E)

& T © &
@ 15001 H LG \@ﬁ_u_n,u,g.i H1L.G)

(e) (0
15,G,1,001,HLAY (B.5.1.8.1-1.HLA)
A Al
(SGALAHLS o TR (SGALTHLB) o RS eI
B
55, 1,720, H)L D)
(5.0 DT ML) (5.6 R HF (SSTRHLE T W 155,121 1) F}
E
{B.G.E.D.»{-'t.ﬂl.fr} lﬂ.ﬂ.ﬂ.ﬂ.:-ikﬂﬂ.ﬁ]

Figure 3.4: Simple execution when leader H becomes disconnected (a), with time
increasing from (a)-(h). With no other link changes, every node in the connected
component will eventually adopt G as its leader.

Dept. of CSE, GEC, Thrissur 13

Seminar Report 2010

Chapter 4
Advantages and disadvantages

Several other leader election algorithms have been developed based on MANET
routing algorithms. An efficient leader election algorithm for mobile ad hoc networks
presented by P. Parvathipuram, V. Kumar, and G.-C. Yang[7] is based on the Zone
Routing Protocol Z. Haas. A new routing protocol for the reconfigurable wireless
networks[5]. A correctness proof is given, but only for the synchronous case assuming
only one topology change. In a self-stabilizing leader election algorithm for highly
dynamic ad hoc mobile networks, Derhab and Badache present a leader election al-
gorithm for ad hoc wireless networks that, like this algorithm, is based on the algo-
rithms(Leader election algorithms for mobile ad hoc networks) presented by Malpani.
This algorithm is simpler and uses fewer message types and smaller messages than
the algorithm presented by Derhab and Badache. Unlike Derhab and Badache, we
can prove this algorithm is correct even when communication is asynchronous and
multiple link changes and network partitions occur during the leader election process.
Dagdeviren in a hierarchical leader election protocol for mobile ad hoc networks[1]
and Rahman in an algorithm for performance analysis of leader election algorithms
in mobile ad hoc networks[8] have recently proposed leader election algorithms for
mobile ad hoc networks; these algorithms have been evaluated solely through simula-
tion, and lack correctness proofs. A different direction is randomized leader election
algorithms for wireless networks; this algorithm is deterministic. Fault-tolerant leader
election algorithms have been proposed for wired networks. Representative examples
are Mans and Santoros algorithm for loop graphs subject to permanent link failures
and Singhs algorithm for complete graphs, Leader Election in the Presence of Link

Failures subject to intermittent link failures.

In this algorithm, the algorithm stops the propagation of the older leader.
This could be changed so that older leaders are sometimes chosen over the newer

ones. However, there is a potential problem with selecting an older leader, as it is less

Dept. of CSE, GEC, Thrissur 14

section 4.0 Seminar Report 2010

likely to be up-to-date as topology changes in the network are still occurring. During
the implementation of the algorithm presented by A. Derhab and N. Badache. A
preliminary comparison between the performance of the two algorithms on the same
topology records shows that the algorithm presented by A. Derhab and N. Badache.
is only marginally better with regards to the number of messages it uses to find a
unique leader for each connected network component. The algorithm of Derhab and
Badache uses fewer messages than the algorithm of Ingram; it does so at the expense
of higher computational cost and higher algorithm complexity, and therefore may not
be an efficient nor correct solution to the leader election problem on distributed net-

works with highly asynchronous message delays.

Dept. of CSE, GEC, Thrissur

15

Seminar Report 2010

Chapter 5
Conclusion

We have described a leader election algorithm for asynchronous dynamic net-
works. This algorithm will work in networks having frequently changing topology is
present. Also work in situations where several topology change occur simultaneously.
It can break the ties when more than one node initiate the search and collide at a
common node. Our algorithm is simpler and uses fewer message types and smaller
messages than other algorithms. A set of circumstances were identified under which
the algorithm does not elect a leader unnecessarily, but it remains to give a more
complete characterization of such circumstances. The algorithm relies on the nodes
having perfectly synchronized clocks; an interesting open question is to quantify the
effect on the algorithm of approximately synchronized clocks. Future work can focus
on a more thorough investigation of the performance and computational complexity

and testing a modification of this algorithm.

Dept. of CSE, GEC, Thrissur

16

Seminar Report 2010

References

[1] O. Dagdeviren and K. Erciyes. A hierarchical leader election protocol for mobile

ad hoc networks. In Proc. 8th Intl Conf. on Computational Science, 2008.

[2] A. Derhab and N. Badache. A self-stabilizing leader election algorithm in highly
dynamic ad hoc mobile networks. IEEE Trans. on Parallel and Distributed Sys-
tems, 2008.

[3] C. Fetzer and F. Cristian. A highly available local leader election service. IEEE

Trans. on Software Engineering, 1999.

[4] E. Gafni and D. Bertsekas. Distributed algorithms for generating loop-free routes
in networks with frequently changing topology. IEEE Trans. on Communications,
1981.

[5] Z. Haas. A new routing protocol for the reconfigurable wireless networks. In Proc.
6th IEEE Intl Conf. on Universal Personal Comm., 1997.

[6] N. Malpani, J. Welch, and N. Vaidya. Leader election algorithms for mobile ad
hoc networks. In Proc. ACM DIAL-M Workshop, 2000.

[7] P. Parvathipuram, V. Kumar, and G.-C. Yang. An efficient leader election algo-
rithm for mobile ad hoc networks. In Proc. 1st Intl Conf. on Dist. Computing
and Internet Technology, 2004.

[8] David A. Patterson, John L. Hennessy, ” Computer Architecture, A Quantitative
Approach”, Morgan Kaufmann Publications Inc., San Mateo, California, USA,
1990

[9] M. Rahman, M. Abdullah-Al-Wadud, and O. Chae. Performance analysis of
leader election algorithms in mobile ad hoc networks. Intl J. of Computer Science
and Network Security, 2008.

[10] G. Tel. Introduction to Distributed Algorithms, Second Edition. Cambridge Uni-
versity Press, 2000.

Dept. of CSE, GEC, Thrissur 17

section 5.0 Seminar Report 2010

[11] V. Park and M. S. Corson. A highly adaptive distributed routing algorithm for
mobile wireless networks. In Proc. INFOCOMY9, 1997.

[12] Rebecca Ingram, Patrick Shields, Jennifer E. Walter, Jennifer L. Welch .An Asyn-
chronous Leader Election Algorithm for Dynamic Networks Technical Report
2009-1-1, Department of Computer Science and Engineering, Texas A and M

University

Dept. of CSE, GEC, Thrissur 18

