	

		Abstract

	The main objective of this white paper is to emphasize the idea of using Cloud Computing concepts in Real Time environments. Since the idea is very generic and abstract so we have tried to come up with a case study, where there will be some level of implementation details.
We all know that when there is some level of implementation involved things get pretty easy to understand. The use of technical jargons is very limited. As you read through this white paper you will find that the language is very simple and easy to understand.
The case study presented in the following few lines is not a fully fledged solution. It’s just an idea and its abstract implementation. We hope some good contributions will be made to this idea as it gradually grows.

[bookmark: _Toc434033608][bookmark: _Toc434033803][bookmark: _Toc434034553][bookmark: _Toc434034683][bookmark: _Toc434037956][bookmark: _Toc434038164][bookmark: _Toc24433417]
 (
Hence, cloud computing is basically a distributed computing concept.
Many well known concepts like (1) MapReduce and (2) BigTable are good examples of cloud computing technology used in real time situations. These two concepts are part of the already existing “GFS” – Google File System.
)Cloud Computing and Real-Time Computing
This section assumes the reader to have a fair knowledge on cloud computing. We will still focus on some key features of cloud computing so that you can brush up your understanding.
To describe cloud computing in a technical manner we can put it this way – “Cloud Computing is the idea of providing services on virtual machines allocated on top of a large physical machine pool”.
The large physical machine pool is not a single big resource; instead it is a collection of many distributed resources over the web. The web or internet is termed as cloud over here. Hence, cloud computing is basically a distributed computing concept. And the distributed computing is done by many service nodes scattered through out the cloud.
On the other hand Real time computing focuses on systems that are subjected to “Real time constraints”. In such systems the operational deadline i.e. the event to response time is a critical factor.
Real time systems can be of various levels. Many factors like reliability, speed, load support etc decides on the level of real time requirements.
Is Cloud computing concepts beneficial for RTC?
We have had enough brushing up; let’s get into the real picture. What is the possibility that these two technologies can get together? We say its quiet high. Both these technologies will intersect when the requirement comes to large resource pool. Its quiet obvious that Real time environments are frequently based on large resource pools. The environment can range between mission critical situations to some simple online reservation system. Whatever be the situation, the resource pool needs to be large in order to meet the expectations.
When we simulate a big resource pool into many small distributed resources that also over the web, what happens to the reliability and speed of the service using them? Can a real time system rely on such resource pools? Now here comes cloud computing into the picture.
It is quiet obvious that when you use non-distributed or centralized resource pools you can achieve high degree of reliability and speed in comparison to distributed resource pools. But cloud computing can reduce the gap to a good extent so that we can start building real time systems on distributed resource pools.
Many well known concepts like (1) MapReduce and (2) BigTable are good examples of cloud computing technology used in real time situations. These two concepts are part of the already existing “GFS” – Google File System. The MapReduce concept was developed by Google in 2003. This concept concentrates mainly on mapping distributed data and then reducing the data considerably by grouping common items. Refer the following diagram to understand MapReduce better –

 (
Reduced INDEX
) (
This
: A
Page
: A
c
ontains
: A
s
o
: A
m
uch
: A
text
: A
) (
This Page contains so much text
) (
PAGE A
)
 (
contains: A, B
much: A
My: B
Page: A, B
so: A
text: A, B
this: A
too: B
)

 (
My: B
Page: B
contains: B
text: B
too
) (
My Page contains text too
) (
PAGE B
)
 (
Therefore, mixing many such ideas with Cloud computing concepts it is possible to build a service that will use enormous distributed resource pool and at the same time will be real time too.
Therefore, in this case study instead of focusing on a specific Real Time Computing problem, we have come up with a more generic solution that focuses on the enhancement of existing Operating System capabilities to meet Real Time SLAs
Therefore, mixing many such ideas with Cloud computing concepts it is possible to build a service that will use enormous distributed resource pool and at the same time will be real time too.
Therefore, mixing many such ideas with Cloud computing concepts it is possible to build a service that will use enormous distributed resource pool and at the same time will be real time too.
Therefore, mixing many such ideas with Cloud computing concepts it is possible to build a service that will use enormous distributed resource pool and at the same time will be real time too.
Therefore, mixing many such ideas with Cloud computing concepts it is possible to build a service that will use enormous distributed resource pool and at the same time will be real time too.
Therefore, mixing many such ideas with Cloud computing concepts it is possible to build a service that will use enormous distributed resource pool and at the same time will be real time too.
Many well known concepts like (1) MapReduce and (2) BigTable are good examples of cloud computing technology used in real time situations. These two concepts are part of the already existing “GFS” – Google File System.
)

Therefore, mixing many such ideas with Cloud computing concepts it is possible to build a service that will use enormous distributed resource pool and at the same time will be real time too.

Where and when does Real Time Computing come into picture?

When do we experience Real Time Computing? We all know about a famous site http://www.irctc.co.in this is actually the online railway ticket reservation website launched by IRCTC in India. India has an extremely large population of more than one billion. And about 10 million or one crore people issue a train ticket form irctc.co.in. And when there are so many online consumers available, the chances of concurrent ticket issuing requests is too high. In such circumstances the load of the server hosting the website and its resources can be immense. Including all these constraints they still have to achieve some real-time SLAs i.e. the response time should be fast enough, every transaction should be atomic etc. Hence, now we can get a good picture of Real Time Computing.

Let’s return to basics of computing. Any type of automated or semi-automated computing requires an Operating System for minimum computation. Whenever I say the term “Operating System” don’t just think about Microsoft Windows or Linux etc. Any thing that helps us run different software and hardware with proper communication can be termed as an Operating System. The selection of a better Operating System can help us achieve more SLAs.

Therefore, in this case study instead of focusing on a specific Real Time Computing problem, we have come up with a more generic solution that focuses on the enhancement of existing Operating System capabilities to meet Real Time SLAs.
When a consumer subscribes for a CCRTD service from any CSP (CCRTD service provider) he enables himself to rent a configuration with exactly the level of Real Time Computing required by him. While provisioning an Operating System for himself, he is asked by the CCRTD service to select the level of Real Time required. According to his choice he will be prompted to select resources that are distributed in the Cloud. Once he is completed with his provisioning, he can build applications on that configuration as expected. For example; instead of using its own resources IRCTC can rent or lease a suitable configuration from any CSP and build its http://www.irctc.co.in on that platform. So now we are not confined to a specific RTC problem.
 (
If we try to think in a more general manner, cloud computing and operating system can be quiet analogues. An Operating System is divided into many modules called kernel modules. Similarly cloud computing is divided into many services
.
Hence, we have transformed or mixed the concepts of modules and services into a new concept called “Machines”.
Important Note
:
What’s so special about these concepts that it affected the masses, the common people?
It’s the ability of the common people reaching these technologies. You merely have to buy an Rs 10/- or 0.2
US
 $ recharge voucher in order to start using mobile phone. And it’s almost the same rate you have to pay in any internet café for browsing an hour of internet.
If we can provide this person (Operating System) to the common people like mobile phone or internet, who knows this can stand up as another leap to human species.
)Why Cloud Computing inspired CCRTD-OS as a Case Study?

CCRTD OS – Cloud Computed Real Time Distributed Operating System. Why is this peculiar name justified? If we try to think in a more general manner, cloud computing and operating system can be quiet analogues. An Operating System is divided into many modules called kernel modules. Similarly cloud computing is divided into many services.

Hence, we have transformed or mixed the concepts of modules and services into a new concept called “Machines”. Each important activity of the CCRTD – OS is processed by these machines. There is a CPU – FAM which centrally governs the behavior of these machines i.e. a logical CPU. This logical CPU has the ability to run multiple consumer requests simultaneously and at the same time mould itself to the expected Real Time necessity of the consumer. For example consider a particular consumer demanding for quick response rather that reliable response, in such a situation the CPU – FAM can switch to a UDP framework rather that working in TCP framework.
Business Aspects of CCRTD-OS
	
Let’s keep the concepts of cloud computing away for some moments. What are the revolutionary names in modern technology that has brought about leaps to human species? To name a few we can target technologies like mobile phones and the internet. What’s so special about these concepts that it affected the masses, the common people?

It’s the ability of the common people reaching these technologies. You merely have to buy an Rs 10/- or 0.2 US $ recharge voucher in order to start using mobile phone. And it’s almost the same rate you have to pay in any internet café for browsing an hour of internet. And we all know how powerful these technologies are. We have seen people having 0% computer knowledge but excellent cell phone users. We have seen kids utilizing the internet like information power houses. What’s the reason behind them being so successful consumers, is it mere intelligence or something else? I believe it’s the awareness they get by paying very little for some thing really important.

What can be the next possible step after cell phones and internet? By the time you brain-storm yourself lets share some more valuable information. What’s the basic requirement for a computing device to work? A computing device can be anything; it may be calculator, a personal desktop or a server. But each one of them requires an Operating system. The most basic process that needs to communicate between the user and the hardware.

If we can provide this person (Operating System) to the common people like mobile phone or internet, who knows this can stand up as another leap to human species. Now the question that we are going to face is HOW? How is this exciting concept going to work? How are we actually going to do it? This white paper is intended to high light the implementation of Cloud Computing concepts in Real Time Computing. The mother of Computing is an Operating System itself. Hence, we have targeted for a case study, where we have mixed the concepts of existing distributed operating system with the concepts of Cloud Computing. This mixed idea will be providing the common mass with a real time and sophisticated Operating system in which they can do real time computing by merely paying very less money.
 (
Why not rent him the configuration? Why not use the required configuration for some finite period of time, and pay for what ever he uses. Cloud Computing has been targeting the industries, the big bullies of the society. We believe that it can even target the society as a whole
.
The consumers themselves can behave as peers. And they get discounts for that. They share their resources for which they get a reasonable discount for what they use.
)Why not make Cloud computing reach the common people?

Consider a person who is able to buy a desktop for about Rs 10,000. He actually needs a system with some hi-fi configuration. What are his alternatives? He makes himself believe that paying some Rs 30,000/- is not worth his dreams. So what is the solution?

Why not rent him the configuration? Why not use the required configuration for some finite period of time, and pay for what ever he uses. Cloud Computing has been targeting the industries, the big bullies of the society. We believe that it can even target the society as a whole.

The next question, where from are the resources coming from? First any organization can take up the charge for providing this service. What service? You can simulate a complete service starting from processor to storage. You provide an IT environment for the consumer and they are going to pay back for that. Second, the consumers themselves can behave as peers. And they get discounts for that. They share their resources for which they get a reasonable discount for what they use.

For our case study let’s take an imaginary “John” as our virtual consumer. John is a engineer in some small IT industry. He has been through constant learning for some period of time. Now he thinks that it’s high time to implement his ideas. Our “John” can be any rookie entrepreneur looking for business of his ideas. But he hardly has any infrastructure or resource to test his ideas. Gradually he drops off his idea.

Suddenly John hears about some configuration renting company. He starts to dream again. The laboratory of dreams is floating in the clouds (internet). He calculates the budget for renting a configuration of his choice and gets into action.
An Abstract Idea About The Implementation
As discussed above we are trying to implement a distributed Operating system based on the concepts of cloud computing and real time computing. Hence, we can call our OS as “CCRTD-OS” i.e. Cloud Computed Real Time Distributed Operating System.
This OS will not be locally implemented on any machine, rather it will be served to common people as a service like the internet. Hence, any organization hosting such a service will be called a CCRTD-OS service provider like the Internet service provider. In short we call it as “CSP”.
When any person i.e. consumer subscribes for a connection from any CSP, he will be provided with a user account and a username password to log into his account. The user will be expected to have a simple system where the client side software or terminal of the CCRTD-OS can be installed. The consumer’s machine is also expected to be connected with the internet.
 (
On selecting any resource the terminal will prompt the user with information regarding that resource. For example say the user selects a physical disk as a resource from the cloud. The OS will then prompt with a status message about the PD i.e. information like – what is the available space in that PD, the PD is a SAS or SATA, what is the cost of utilization per time basis etc.
After the
consumer selects all its resources to provision an OS for himself, the terminal then prompts the user to select the appropriate real time requirement for his OS.
)When the consumer logs into his account through the client terminal from his system, he will be provider with a CCRTD-OS provisioning screen. Refer the following diagram for a probable provisioning screen –
CCRTD FRONT END

 (
Provisioning Screen
) (
Hardware Inventory
)

 (
Software Inventory
)

 (
Create Real-time Template
) (
Other Inventory
)

 (
PROVISION MY OS
)

As you can see there are various windows in the screen performing various operations. The three screens on the right displays different inventories or resources that are currently available to the consumer in the cloud. These are distributed resources. On selecting any resource the terminal will prompt the user with information regarding that resource. For example say the user selects a physical disk as a resource from the cloud. The OS will then prompt with a status message about the PD i.e. information like – what is the available space in that PD, the PD is a SAS or SATA, what is the cost of utilization per time basis etc.
After the consumer selects all its resources to provision an OS for himself, the terminal then prompts the user to select the appropriate real time requirement for his OS.
On the basis of the input made by the consumer a template is created that may be an XML file which is stored in the back end of the CCRTD-OS. This template can be used later by the CCRTD-OS to monitor whether the performance of the provisioned OS for the consumer meets the real time SLAs or not.
CCRTD Architecture Diagram
 (
CLIENT 1
) (
CLIENT 2
)
 (
On the basis of the input made by the consumer a template is created that may be an XML file which is stored in the back end of the CCRTD-OS. This template can be used later by the CCRTD-OS to monitor whether the performance of the provisioned OS for the consumer meets the real time SLAs or not.
)
 (
Client software
) (
Client software
)

 (
CCRTD – OS – CLIENT SIDE
)

 (
CCRTD X WINDOW SUB-SYSTEM
) (
PROVISIONED OS X WINDOW SUB-SYSTEM
)

 (
Main
Memory Management Machine
) (
Data Migration Machine
) (
Network services management Machine
) (
Security and Authorization Machine
) (
Software Inventory Management Machine
) (
Utility calculation and Bill generation Machine
) (
Provisioned OS for Client, Management Machine
) (
Record-Log and Context Management Machine
) (
Disaster Recovery Service Machine
) (
Global Provisioning service Machine
) (
Session Management Machine
) (
I/O management Machine
) (
Load distribution management Machine
) (
Process Synchronization and Scheduling Machine
) (
CENTRAL PROCESSING UNIT FOR ALL MACHINES
(CPU-FAM)
) (
Real time objective achieving Machine
) (
Hardware Inventory Management Machine
) (
CCRTD Client/Admin Interfacing Unit
)

 (
Provisioned OS for Client, Management Machine
) (
Record
-Log and Context Management Machine
) (
Disas
ter Recovery Service Machine
) (
Global Provisioning service Machine
)

[bookmark: _Toc433967025][bookmark: _Toc434033611][bookmark: _Toc434033806][bookmark: _Toc434034556][bookmark: _Toc434034686][bookmark: _Toc434037959][bookmark: _Toc434038167][bookmark: _Toc24433420]
 (
CLOUD – IT resources distributed over the Internet
)

The above diagram represents the architecture diagram of the CCRTD-OS. The entire architecture can be broadly divided into three parts:-
1. CCRTD-OS Client Side Terminal.
2. CCRTD-OS Central Processing unit and associated machines.
3. Distributed Resource Pool.
We have already discussed about the client side terminal and presented you a probable architecture. The Distributed Resource Pool is connected with the CCRTD-OS Central Processing Unit and associated machines with the help of the present IT infrastructure i.e. the Internet.
Various resource items can communicate with the CCRTS-OS CPU and associated machines through various protocols, like the storage devices can communicate using iSCSI protocol; the software applications can use TCP or UDP communication etc.
Now we shall move on to the CCRTD-OS CPU and associated machine block. As the architecture diagram revels, it resembles an Operating System. This OS is distributed i.e. its various machines are installed on separate physical machines but they can intercommunicate with each other and work as a single OS.
This block is completely responsible for provisioning a Real time OS. We will be discussing some important aspects of this OS.

Two Channels of Communication

 (
The CCRTD server side OS comprises of sixteen independent machines. All these machines are controlled by the CPU-FAM. The term “machine” is used since each of them is designed for processing a particular task in the CCRTD.
Each machine uses a set of sub-machines to process a particular task. The lists of sub machines are not explicit to any owning machine. Hence, we can sometimes call them as Service Machines
)The client or consumer will be provided with an application software that will be locally installed in his/her machine. The application software is the only means of communication for the consumer with CCRTD service. The software enables the consumer to have two different channels of communication.

First, when the consumer communicates directly with CPU-FAM and second, when the consumer communicates with the OS provisioned by him/her. The Admin for CCRTD also communicates with CPU-FAM through the same channel as the consumer, but his/her privileges are different from any normal consumer.

CPU-FAM, Machines and Sub-Machines or Service Machines

The CCRTD server side OS comprises of sixteen independent machines. All these machines are controlled by the CPU-FAM. The term “machine” is used since each of them is designed for processing a particular task in the CCRTD. The above design gives a superficial abstraction of the actual implementation.

Each machine uses a set of sub-machines to process a particular task. The lists of sub machines are not explicit to any owning machine. Hence, we can sometimes call them as Service Machines. They exist collaterally with the other machines and are used dynamically whenever they are required. So there can be scenarios where two machines will be using a sub-machine simultaneously.

Sixteen machines and control unit for CCRTD-OS

Control Unit

1. CCRTD-OS Client or Admin interfacing unit.
2. Central Processing Unit For All Machines. (CPU-FAM)

Service or Sub-Machines

1. Main Memory Management Unit.
2. Process Synchronization and Scheduling Machine.
3. I/O Management Machine.
4. Load Distribution Management Machine.
5. Real Time SLA Monitoring Machine.
6. Data Migration Machine.
7. Security and Authorization Machine.
8. Network Services Management Machine.
9. Utility Calculation and Bill Generation Machine.
10. Software Inventory Management Machine.
11. Hardware Inventory Management Machine.
12. Session Management Machine.
13. Global Provisioning Service Machine. (GPS).
14. Disaster Recovery Service Machine.
15. Record Log and Context Management Machine.
16. Provisioned OS for Client Management Machine.

As you can see most of the machines are having names that are similar to OS kernel modules. But there are some machines which are newly introduced in this setup. You have also to keep in mind that though the machines sound similar to existing kernel modules but their functioning will be much more complicated since they will be executing on distributed architecture. Anyways we will be giving some brief idea about the newly introduced machines in the following lines.

Load Distribution Management Machine

 (
You have also to keep in mind that though the machines sound similar to existing kernel modules but their functioning will be much more complicated since they will be executing on distributed architecture.
Separate instances of Real time
SLA
 Monitoring Machine will be running concurrently in the CCRTD-OS to serve independent consumers. Each instance continuously monitors for any
SLA
 diversions. Incase it finds any probable diversion in the future; it takes complete authority of the CCRTD-OS from CPU-FAM and uses all the other machines in order to confirm that the diversion is removed. After returning the provisioned OS to a safe state it again hands over the control to the CPU-FAM.
)As the name suggests this machine is used for distributing the load evenly through out the resource pool in an intelligent way. For instance consider an example when the client has provisioned an OS for himself but is running out of storage space. In such a situation the CCRTD-OS client terminal will prompt the user to dynamically add new PDs into his provisioned OS. After getting confirmation from the client the required actions will be executed.

Starting from the process of monitoring the active resources to dynamically balance resources is the responsibility of this machine.

Real Time SLA Monitoring Machine

This is a very important machine which forms the basis of our CCRTD-OS. Actually due to this machine CCRTD-OS is expected to perform in real time standard.

If you can remember when we were discussing about the client side provisioning screen, there the client had an option to create a template regarding his real time requirements for his provisioned OS. The template can be an XML file whose information will be fed to this machine. This machine will have some pre-existing policy sets pertaining to different levels of real time SLAs. After getting the information from the template this machine selects a particular real time policy set for the consumer.

Separate instances of this machine will be running concurrently in the CCRTD-OS to serve independent consumers. Each instance continuously monitors for any SLA diversions. Incase it finds any probable diversion in the future; it takes complete authority of the CCRTD-OS from CPU-FAM and uses all the other machines in order to confirm that the diversion is removed. After returning the provisioned OS to a safe state it again hands over the control to the CPU-FAM.

Utility Calculation and Bill Generation Machine

This machine is responsible for calculating the utility of each resource used by the consumer and generates a bill for him/her. If the consumer has opted for a PRE-PAID scheme it deducts the calculated amount from the consumers account and if the consumer has opted for a POST-PAID scheme it generates a bill for him and sends it to the consumer at the end of the month.

Global Provisioning Service Machine. (GPS).

GPS is a wonderful machine. This machine takes input in form of information through a XML file generated by the consumer. The consumer generates this file when he creates a provisioning graph in his CCRTD-OS client terminal. This machine parses the XML file and takes further input from them to provision the OS desired by the consumer. The inputs from the XML file are actually resource instances existing in the cloud. The GPS gathers all the requested resources and provisions them. After provisioning is completed this machine transfers control to the Provisioned OS for Client Management Machine. After the above activity is completed then the second channel of communication with the consumer is opened. The X window system for this channel of communication then comes into picture.

CONCLUSION

After much of the discussion you can find that we have tried to give an abstract idea about the implementation details. Even if the details are less but we believe they are enough to inculcate the actual idea behind this white paper.

Some part of the implementation has already started. And if we are able to produce a version 0.0.1 of CCRTD-OS, we would like to contribute it to the open source community. This white paper can then for the basis of the further development of this idea.

