www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

WEB SERVICES

 “WEB SERVICES”
ABSTRACT

 This seminar describes the architecture for Web Services from the point of view of components, interactions and application development patterns. It is a framework for the building and deployment of Web Services applications.

 Web Services allow applications to be integrated more rapidly, easily and less expensively than ever before. Integration occurs at a higher level in the protocol stack, based on messages entered more on service semantics and less on network protocol semantics, thus enabling loose integration of business functions. These characteristics are ideal for connecting business functions across the Web both between enterprises and within enterprises. They provide a unifying programming model so that application integration inside and outside the enterprise can be done with a common approach, leveraging a common infrastructure. The integration and application of Web Services can be done in an incremental manner, using existing languages and platforms and by adopting existing legacy applications. Moreover, Web Services compliment Java??2 Platform, Enterprise Edition (J2EE), Common Object Request Broker Architecture (CORBA) and other standards for integration with more tightly coupled distributed and nondistributed applications. Web Services are a technology for deploying and providing access to business functions over the Web; J2EE, CORBA and other standards are technologies for implementing Web Services.

CONTENTS

 1. Introduction

 3

 1.1 Definition

 3

 1.2 Characteristics 3

 2. Model of web services 4

 2.1 Roles in web service architecture 5

 2.2 Operations in web service architecture 5

 2.3 Web service development lifecycle 5

 3. Architectural overview 7

 3.1. Web service stack 7

 3.1.1. Network layer 7

 3.1.2. XML based messaging layer 8

 3.1.3. Service description layer 8

 3.1.4. Service publication layer 8

 3.1.5. Service discovery layer 9

 3.1.6. Service flow layer 9

 4. Simple Object Access Protocol 10

 4.1. Introduction 10

 4.2. SOAP and XML 10

 4.3. SOAP Protocol 10

 4.4. SOAP request, response, fault 11

 4.4.1. SOAP request 11

 4.4.2. SOAP response 12

 4.4.3. SOAP fault 13

 5. Web Services Description Language 14

 5.1. Structure of WSDL 14

 5.1.1. Definition 14

 5.2. Example of WSDL document 15

 6. Universal Description Discovery and Integration 17

 6.1. Introduction 17

 6.2. UDDI registries 17

 6.3. Contents of UDDI 17

 7. Implementing web services 18

 7.1. Development tools 18

 7.1.1. A runtime server 18

 7.1.2. Management tools 18

 7.1.3. UDDI registry 18

 8. Security 20

 9. Standardisation 21

 10. Advantages 22

 11. Pitfalls 23

 12. Conclusion 24

 13. Reference 25

1. INTRODUCTION

 A Web Service is programmable application logic accessible using standard Internet protocols. Web Services combine the best aspects of component based development and the Web. Like components, Web Services represent functionality that can be easily reused without knowing how the service is implemented. Unlike current component technologies, which are accessed via proprietary protocols, Web Services are accessed via ubiquitous Web protocols (ex: HTTP) using universally accepted data formats (ex: XML).

 In practical business terms, Web Services have emerged as a powerful mechanism for integrating disparate IT systems and assets. They work using widely accepted, ubiquitous technologies and are governed by commonly adopted standards. Web Services can be adopted incrementally with little risk and at low cost. Today, enterprises use Web Services for point to point application integration, to reuse existing IT assets, and to securely connecting to business partners or customers. Independent Software Vendors (ISVs) embed Web Services functionality in their software products so they are easier to deploy.

 The Web Services architecture takes all the best features of the service oriented architecture and combines it with the Web. The Web supports universal communication using loosely coupled connections. Web protocols are completely vendor , platform , and language independent. The resulting effect is an architecture that eliminates the usual constraints of DCOM, CORBA, or RMI. Web Services support Web based access, easy integration, and service reusability.

1.1 Definition

A Web service is a software interface that describes a collection of operations that can be accessed over the network through standardized XML messaging.

Web services are a technology that allows applications to communicate with each other in a platform and programming language independent manner.

1.2 Characteristics

A Web Service exhibits the following definitive characteristics:

· A Web Service is accessible over the Web. Web Services communicate using platform independent and language neutral Web protocols. These Web protocols ensure easy integration of heterogeneous environments.

· A Web Service provides an interface that can be called from another program. This application to application programming interface can be invoked from any type of application client or service. The Web Service interface acts as a liaison between the Web and the actual application logic that implements the Service.

· A Web Service is registered and can be located through a Web Service Registry. The registry enables service consumers to find services that match their needs.

· Web Services support loosely coupled connections between systems. Web Services communicate by passing messages to each other. The Web Service interface adds a layer of abstraction to the environment that makes the connections flexible and adaptable.

2. MODEL OF WEB SERVICES

 The Web Services architecture is based upon the interactions between three roles: service provider, service registry and service requestor. The interactions involve publish, find and bind operations. Together, these roles and operations act upon the Web Services artifacts: the Web service software module and its description. In a typical scenario, a service provider hosts a network accessible software module (an implementation of a Web service).

 The service provider defines a service description for the Web service and publishes it to a service requestor or service registry. The service requestor uses a find operation to retrieve the service description locally or from the service registry and uses the service description to bind with the service provider and invoke or interact with the Web service implementation. Service provider and service requestor roles are logical constructs and a service can exhibit characteristics of both. Figure 1 illustrates these operations, the components providing them and their interactions.

 Find Publish

 WSDL UDDI WSDL, UDDI

 Bind

Fig 1 Web Services roles, operations and artifacts

2.1 Roles in Web Services Architecture

· Service provider: From a business perspective, this is the owner of the service. From an architectural perspective, this platform hosts access to the service.

· Service requestor: From a business perspective, this business requires certain functions to be satisfied. From an architectural perspective, this application is looking for and invoking or initiating an interaction with a service. The service requestor role can be played by a browser driven by a person or a program without a user interface, for example another Web service.

· Service registry: This is a searchable registry of service descriptions where service providers publish their service descriptions. Service requestors find services and obtain binding information (in the service descriptions) for services during development for static binding or during execution for dynamic binding. For statically bound service requestors, the service registry is an optional role in the architecture, because a service provider can send the description directly to service requestors. Likewise, service requestors can obtain a service description from other sources besides a service registry, such as a local file, FTP site, Web site, Advertisement and Discovery of Services (ADS) or Discovery of Web Services (DISCO).

2.2 Operations in A Web Service Architecture

 For an application to take advantage of Web Services, three behaviours must take place: publication of service descriptions, lookup or finding of service descriptions, and binding or invoking of services based on the service description. These behaviours can occur singly or iteratively. In detail, these operations are:

· Publish: To be accessible, a service description needs to be published so that the service requestor can find it. Where it is published can vary depending upon the requirements of the application.

· Find: In the find operation, the service requestor retrieves a service description directly or queries the service registry for the type of service required. The find operation can be involved in two different lifecycle phases for the service requestor: at design time to retrieve the service's interface description for program development, and at runtime to retrieve the service's binding and location description for invocation.

· Bind: Eventually, a service needs to be invoked. In the bind operation the service requestor invokes or initiates an interaction with the service at runtime using the binding details in the service description to locate, contact and invoke the service.

 The Web Services architecture explains how to instantiate the elements and implement the operations in an interoperable manner.

2.3 Web Services Development Lifecycle

 The Web Services development lifecycle includes the design, deployment, and runtime requirements for each of the roles: service registry, service provider and service requestor. Each role has specific requirements for each element of the development lifecycle. The development and deployment of a service registry is outside the scope of this seminar.

 The development lifecycle can have four phases:

· Build: The build phase of the lifecycle includes development and testing of the Web service implementation, the definition of the service interface description and the definition of the service implementation description. Web service implementations can be provided by creating new Web Services, transforming existing applications into Web Services, and composing new Web Services from other Web Services and applications.

· Deploy: The deploy phase includes the publication of the service interface and service implementation definition to a service requestor or service registry and deployment of the executables for the Web service into an execution environment (typically, a Web application server).

· Run: During the run phase, the Web service is available for invocation. At this point, the Web service is fully deployed, operational and network accessible from the service provider. Now the service requestor can perform the find and bind operations.

· Manage: The manage phase covers ongoing management and administration of the Web service application. Security, availability, performance, quality of service and business processes must all be addressed.

3. ARCHITECTURAL OVERVIEW

 We can examine the IBM Web Services architecture in several layers. First, we will look at a conceptual stack for Web Services and the stack details. Then we will discuss the criteria for choosing the network protocol. We will also review basic XML based messaging distributed computing. We extend basic XML messaging with service description, which is explained in terms of a service description stack. Following this, we discuss the role of service description in the Web Services architecture, illustrating the range of service publication techniques supporting static and dynamic Web Services applications. Related to service publication, we discuss the role of service discovery.

3.1 The Web Services Stack

 To perform the three operations of publish, find and bind in an interoperable manner, there must be a Web Services stack that embraces standards at each level. Figure shows a conceptual Web Services stack. The upper layers build upon the capabilities provided by the lower layers. The vertical towers represent requirements that must be addressed at every level of the stack. The text on the left represents standard technologies that apply at that layer of the stack.

 UDDI

 UDDI

 WSDL

 SOAP

HTTP, SMTP,

Email, MQ, IIOP

Fig 2 Web Services conceptual stack

3.1.1 Network Layer

 The foundation of the Web Services stack is the network. Web Services must be network accessible to be invoked by a service requestor. Web Services that are publicly available on the Internet use commonly deployed network protocols. Because of its ubiquity, HTTP is the de facto standard network protocol for Internet available Web Services. Other Internet protocols can be supported, including SMTP and FTP.

 The network protocol used in any given situation depends on application requirements. For Web Services accessible from the Internet, the network technology choices will favor ubiquitously deployed protocols such as HTTP. For Web Services being provided and consumed within an Intranet, there is the opportunity to agree upon the use of alternative network technologies. The network technology can be chosen based on other requirements, including security, availability, performance and reliability. This allows Web Services to capitalize on existing higher function networking infrastructures and message-oriented middleware, such as MQSeries. Within an enterprise with multiple types of network infrastructures, HTTP can be used to bridge between them. One of the benefits of Web Services is that it provides a unified programming model for the development and usage of private Intranet and public Internet services. As a result, the choice of network technology will be transparent to the developer of the service.

3.1.2 XML Based Messaging Layer

The next layer, XML based messaging, represents the use of XML as the basis for the messaging protocol. SOAP is the chosen XML messaging protocol for many reasons:

· It is the standardized enveloping mechanism for communicating document centric messages and remote procedure calls using XML.

· It is simple; it is an HTTP POST with an XML envelope as payload.

· It is preferred over simple HTTP POST of XML because it defines a standard mechanism to incorporate orthogonal extensions to the message using SOAP headers and a standard encoding of operation or function.

· SOAP messages support the publish, find and bind operations in the Web Services architecture.

3.1.3 Service Description Layer

 The service description layer is actually a stack of description documents. First, WSDL is the de facto standard for XML based service description. This is the minimum standard service description necessary to support interoperable Web Services. WSDL defines the interface and mechanics of service interaction. Additional description is necessary to specify the business context, qualities of service and service to service relationships. The WSDL document can be complemented by other service description documents to describe these higher-level aspects of the Web service. For example, business context is described using UDDI data structures in addition to the WSDL document. Service composition and flow are described in a Web Services

Flow Language (WSFL) document.

Web service is defined as being network accessible via SOAP and represented by a service description, the first three layers of this stack are required to provide or use any Web service. The simplest stack would consist of HTTP for the network layer, the SOAP protocol for the XML messaging layer and WSDL for the service description layer. This is the interoperable base stack that all inter enterprise, or public, Web Services should support. Web Services, especially intra enterprise, or private, Web Services, can support other network protocols and distributed computing technologies.

Fig 3. Interoperable base Web Services stack

 The stack depicted in Figure 3 provides for interoperability and enables Web Services to leverage the existing Internet infrastructure. This creates a low cost of entry to a ubiquitous environment. Flexibility is not compromised by the interoperability requirement, because additional support can be provided for alternative and value add technologies. For example, SOAP over HTTP must be supported, but SOAP over MQ can be supported as well.

 While the bottom three layers of the stack identify technologies for compliance and interoperability, the next two layers service publication and service discovery can be implemented with a range of solutions.

3.1.4 Service Publication

 Any action that makes a WSDL document available to a service requestor, at any stage of the service requestor's lifecycle, qualifies as service publication. The simplest, most static example at this layer is the service provider sending a WSDL document directly to a service requestor. This is called direct publication. E mail is one vehicle for direct publication. Direct publication is useful for statically bound applications. Alternatively, the service provider can publish the WSDL document describing the service to a host local WSDL registry, private UDDI registry or the UDDI operator node.

3.1.5 Service Discovery

 Because a Web service cannot be discovered if it has not been published, service discovery depends upon service publication. The variety of discovery mechanisms at this layer parallels the set of publication mechanisms. Any mechanism that allows the service requestor to gain access to the service description and make it available to the application at runtime qualifies as service discovery. The simplest, most static example of discovery is static discovery wherein the service requestor retrieves a WSDL document from a local file. This is usually the WSDL document obtained through a direct publish or the results of a previous find operation. Alternatively, the service can be discovered at design time or runtime using a local WSDL registry, a private UDDI registry or the UDDI operator node.

3.1.6 Service Flow Layer

 Because a Web service's implementation is a software module, it is natural to produce Web Services by composing Web Services. A composition of Web Services could play one of several roles. Intra enterprise Web Services might collaborate to present a single Web service interface to the public, or the Web Services from different enterprises might collaborate to perform machine to machine, business to business transactions. Alternatively, a workflow manager might call each Web service as it participates in a business process. The topmost layer, service flow, describes how service to service communications, collaborations, and flows are performed. WSFL is used to describe these interactions. The topic of Web Services flows is covered in its own section "Business Processes, Workflows and Web Services."

4. SIMPLE OBJECT ACESS PROTOCOL

4.1 Introduction

 SOAP stands for Simple Object Access Protocol. SOAP is a lightweight protocol intended for exchanging structured information in a decentralized, distributed environment. It is based on XML technologies and defines an extensible framework for exchanging messages over a variety of underlying protocols. The messaging framework is independent of any particular programming model.

This topic provides an overview and includes the following sections:

· SOAP and XML

· SOAP Requests, Responses and Faults

· While SOAP can potentially be used in combination with a variety of other protocols, the most common is HTTP.

4.2 SOAP and XML

 SOAP is an protocol which enables applications to exchange information by means of XML documents, structured in a standard way. One advantage of using XML is that it is not limited to any particular language, application, or operating system. Using XML makes SOAP independent, as it provides the standardization for the messaging. Because SOAP is XML based, SOAP messages are actually text messages. This gives it an advantage over similar protocols, such as those for CORBA. This means that:

· SOAP is firewall friendly, as it is a text based protocol operating over HTTP.

· SOAP based applications are easier to debug because XML is easier to read than a binary stream.

· Because SOAP is text based, there are fewer security issues than when implementing proprietary solutions.

· A SOAP message consists of a mandatory SOAP envelope, an optional SOAP header, and a mandatory SOAP body.

4.3 THE SOAP PROTOCOL

 The SOAP 1.1 Specification and the SOAP 1.2 Working Draft describe the structure of a SOAP message. In general, a SOAP message consists of three elements: the top level Envelope element and two of its children (the Header element and the Body element). A SOAP message with all three of these elements is shown in fig3.

The three main elements are described below:

· Soap: Envelope

 The Envelope is the top element of the XML document representing the message. The SOAP Envelope contains the header and body. The Envelope also includes definitions of the XML namespaces that are used by the rest of the SOAP message.

· SOAP: Header

 The header section is an optional element for carrying auxiliary information for authentication, transactions, routing and payments. If the Header element exists, it has to be the first child of the Envelope element. The processing instructions in the header section are normally in separate elements, called header blocks.

Fig 3 Sample SOAP Message

· SOAP: Body

 The body is where the main message data resides. It consists of only one element, although it may have an unlimited number of child nodes.

4.4 SOAP Requests, Responses, and Faults

 When SOAP is used as a messaging protocol, requests are generated by the client and sent to the server in the SOAP format. The server processes the SOAP request, and then returns either a SOAP response or a SOAP fault back to the client. The format of SOAP requests, responses and faults are very similar.

 The format is quite straightforward. The request begins with a standard HTTP header . The Content Type field shows that the HTTP message is in XML, and the SOAP Action field tells the remote host that it is, in fact, a SOAP message.

4.4.1 SOAP Requests

 The following is an example of a SOAP request from the W3C Simple Object Access Protocol (SOAP) 1.1 Specification). The SOAP message is preceded by a standard HTTP header.
The Content Type field shows that the HTTP message is in XML, and the SOAPAction field indicates to the remote host that it is a SOAP message.

Fig 4 Sample SOAP Request
4.4.2 SOAP Responses

 Each SOAP request results in an action. The results of the action are translated by the SOAP processor into a SOAP response and returned to the sender via an HTTP reply. The following is an example of a SOAP response from the W3C Simple Object Access Protocol (SOAP) 1.1 Specification

 The response is structured just like the request. The only difference is that the body contains the encoded result to the method call sent in the preceding request. If there is an exception during the processing of a message, a SOAP fault is generated. The format is similar to a regular SOAP response.

 Fig 5 Sample SOAP Response

4.4.3 SOAP Fault

 The following is an example of a SOAP fault from the W3C Simple Object Access Protocol (SOAP) 1.1 Specification.

Fig 6 Sample SOAP Fault

5. WEB SERVICE DESCRIPTION LANGUAGE

 WSDL is an XML vocabulary for describing a Web Service. A WSDL document describes what functionality a Web Service offers, how it communicates, and where it is accessible. WSDL provides a structured mechanism to describe the operations a Web Service can perform, the formats of the messages that it can process, the protocols that it supports, and the access point of an instance of the Web Service. SOAP development tools can use a WSDL description to automatically generate a SOAP interface.

 A WSDL description defines a service as a collection of network endpoints or ports. Each port is defined abstractly as a port type, which supports a collection of operations. Each operation processes a particular set of messages. A binding maps a port type to a specific protocol and data format. A port instantiates a port type and binding at a Specific network address.

 Because WSDL is designed to be read by computers and not humans, it is not necessary to learn WSDL. WASP can automatically generate the WSDL for your services. WASP also includes WSDL2Java for client generation, which can generate appropriate interfaces from the WSDL. However, it is useful to be able to understand a WSDL file, since WSDL is a key Web Service technology. To this end, an overview of WSDL in included here.

5.1 Structure of a WSDL

 The following is an introduction to WSDL using a simple example of a Weather Service. The first section provides descriptions of the main parts of the WSDL. A WSDL file consists of a set of clearly defined sections, with each section related to a specific component of the Web Service that is created from the WSDL. The following provides detail on each of the significant sections of the WSDL. Each section described below may be matched up with the full example at the end of this section.

5.1.1 Definitions:

 The Definitions element contains the other entire element definitions contained within the WSDL document.

· Service: A service consists of a collection of related ports, with each port specifying a particular service. A WSDL may have 0, 1 or more <service> elements. Each port element references a unique <binding> element, specified in the binding section. When generating the Web Service with the WSDLC compiler, each service specified here is generated into a method.

· Bindings: A WSDL may have 0, 1 or more <binding> elements. The <binding > element is used to specify how each <operation> call is sent. i.e: via SOAP.

· Port Type: There may be 0, 1 or more <port types> defined, each with a unique name. When generating the Stubs and Service Interfaces using the WSDLC compiler, one client stub will be created for each Port Type defined. Each port type defines one or more operations using the <operation > element. Each unique <operation > element defines an operation and the input/output messages associated with the operation. The <operation > elements within a port type define the syntax for calling all methods in the Port Types.

· Message: The message section represents the abstract definition of the data being transmitted and defines the format of the message. A message may consist of one or more ports, each of which is associated with a port type. <message> elements consist of 1 or more <part> sections. Each part element corresponds to a parameter. Each part has a type attribute. Messages will be either Requests (input) or Responses (output).

· Types: Types are used to define data types and/or the schema namespaces used.

5.2 Example of WSDL Document

 Below is a sample WSDL file. This file describes the public interface for the weather service used in the SOAP example above

<?xml version="1.0" encoding="UTF 8"?>

<definitions name="WeatherService"

 targetNamespace="http://www.ecerami.com/wsdl/WeatherService.wsdl"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://www.ecerami.com/wsdl/WeatherService.wsdl"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <message name="getWeatherRequest">

 <part name="zipcode" type="xsd:string"/>

 </message>

 <message name="getWeatherResponse">

 <part name="temperature" type="xsd:int"/>

 </message>

 <portType name="Weather_PortType">

 <operation name="getWeather">

 <input message="tns:getWeatherRequest"/>

 <output message="tns:getWeatherResponse"/>

 </operation>

 </portType>

 <binding name="Weather_Binding" type="tns:Weather_PortType">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="getWeather">

 <soap:operation soapAction=""/>

 <input>

 <soap:body

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="urn:examples:weatherservice"

 use="encoded"/>

 </input>

 <output>

 <soap:body

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="urn:examples:weatherservice"

 use="encoded"/>

 </output>

 </operation>

 </binding>

 <service name="Weather_Service">

 <documentation>WSDL File for Weather Service</documentation>

 <port binding="tns:Weather_Binding" name="Weather_Port">

 <soap:address

 location="http://localhost:8080/soap/servlet/rpcrouter"/>

 </port>

 </service>

</definitions>

6. UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION

6.1 Introduction

 Universal Description, Discovery, and Integration (UDDI) is a directory for connecting providers and requesters of Web Services. Providers register information about their Web Services in the UDDI directory, and requesters query the UDDI to find Web Services that meet their needs. UDDI operations can be invoked using a SOAP client or manually via a user interface.

6.2 UDDI Registries

 There are three types of UDDI registries:

· Public directory: A collection of UDDI servers hosted by major IT corporations, including Microsoft, IBM and HP. Anyone can obtain an account and register and search for services.

· Protected directories: Groups of companies or other entities with shared interests sometimes create their own UDDI server. They might do this to limit access or simply to improve technical performance. These servers can be set up to export part or all of their contents to the public directory.

· Private directories: These registries are hosted within companies and are not part of the public access business directory. They typically host internal networks or networks shared between a company and its trusted business partners.

6.3 Contents of UDDI

 A UDDI Registry contains information about businesses and the services they offer. The information is organized as follows:

· Business Entity: A business entity contains information about a business including its name, a short description, and some basic contact information. Each business can also be associated with unique business identifiers, including a Thomas Register identifier and a D U N S number, and with a list of categorizations that describe the business. UDDI V2 products allow businesses or industry groups to create additional describing categories, a very powerful feature.

· Business Service: Associated with the business entity is a list of business services offered by the business entity. Each business service entry contains a business description of the service, a list of categories that describe the service, and a list of binding templates that point to technical information about the service.

· Binding Templates: Associated with each business service entry is a list of binding templates that provide information on where to find the service and how to use the service. For example, a binding template may contain the access point of the service implementation and a pointer to the WSDL document that describes the service. The binding template also associates the business service with a service type.

· Service Types: A service type, defined by a construct called a tModel, defines an abstract service. Multiple businesses can offer the same type of service, all supporting the same service interface. A tModel specifies information such as the tModel name, the name of the organization that published the tModel, a list of categories that describe the tModel, and pointers to technical specifications for the tModel. For example, a tModel may point to a WSDL document that describes an abstract service type.

7. IMPLEMENTING WEB SERVICES

 To create Web services, you need a set of products that supports the core Web services technologies and provides a foundation for building and deploying Web services. You need development tools, a runtime server, and a set of management services. Here's how they all work Together

7.1 Development tools:

 These are used to create Web services, to generate WSDL descriptions that describe those services, and to generate client proxies that can be used to send messages to the service. Development tools may also provide wizards to register or discover services in a UDDI registry.

7.1.1 A runtime server:

 Processes SOAP messages and provides a runtime container for Web services. The runtime server often runs within a Web or J2EE application server such as IBM WebSphere, BEA Web Logic, JBoss or Tomcat, but can also be embedded inside an application itself. The runtime server listens for SOAP requests. For each request, the runtime server processes the SOAP message, translates the XML data into the service's native language, and invokes the service. When the service completes its work, the runtime server translates the return value (anything from a simple type to a cyclic object graph) into XML, packages it into a SOAP response message, and sends the message back to the calling application.

7.1.2 Management tools

 Provide mechanisms to deploy, undeploy, start, stop, configure, and administer your Web services. An administrative console is obviously useful, and other potential management services include a WSDL repository, a single sign on (SSO) service, and runtime monitoring facilities.

7.1.3 A UDDI registry

 Provides a central catalog and information structure where various business entities register themselves and the services they offer through their WSDL definitions.

7.1 Runtime Environment of web services

 Figure 7 shows a typical runtime environment for Web services. Web services are normally deployed within a Web services server (the runtime server). A Web services server usually executes within a Web server or application server. In a Java environment, a Web services server normally runs as a Servlet. A Web services server consists of a SOAP message processor and a Web service container. The SOAP message processor processes a SOAP message, converts it from XML into native language data types (e.g., Java and C++), and routes the request to the application that implements the service. The application normally executes within the Web service container, which manages the lifecycle of the application. When you deploy a Web service, you would also deploy its WSDL document. You'll want to register the Web service in a UDDI registry to help other applications find the service. The client application uses UDDI to find the service and the WSDL it points to. It then uses the WSDL file to generate a client proxy. At runtime, the client uses the client proxy to construct and send SOAP messages to the Web service. This example also shows the client and the service using a single sign on service authentication.

[image: image1.png]Register service

Applation that
implements the weh

SOAP and WSDL
Pracessing

Find -

appication
Browser
Devicce etc

Autherticate

[b servis runtine proctcts

Codedt generated by WS ol
‘appication Code

Fig 7 Web service runtime environments

8. SECURITY

 Is a Web Services security layer really required? The industry already has a set of existing and widely accepted transport layer security mechanisms for message based architectures such as Secure Sockets Layer (SSL) and Internet Protocol Security (IPSec), why add another? To answer that question we will examine the requirements and explore several scenarios in which the security provided by the various existing transport layer security mechanisms alone does not provide adequate security in a Web Services model. In general, there are four basic security requirements that the Web Services security layer must provide:

· Confidentiality: Is the property that information is not made available or disclosed to unauthorized individuals, entities, or processes, and guarantees that the contents of the message are not disclosed to unauthorized individuals.

· Authorization: Is the granting of authority, which includes the granting of access based on access rights and guarantees that the sender is authorized to send a message.

· Data integrity: Is the property that data has not been undetectable altered or destroyed in an unauthorized manner or by unauthorized users thereby insuring that the message was not modified accidentally or deliberately in transit.

· Proof of origin: Is evidence identifying the originator of a message or data? It asserts that the message was transmitted by a properly identified sender and is not a replay of a previously transmitted message. This requirement implies data integrity.

 The need to manage different styles of resource access in a dynamic world of Web Services based on XML messaging and workflow necessitates a re-evaluation of the relationship between policy, trust and risk assessment. Existing access control models based on an individual identity are evolving into a role based trust domain relationship in which an individual is acting under the authority granted to it by a trusted authority to perform a particular task. The IBM Web Services architecture defines agents that want information (service requestors) and agents that provide information (service providers), and sometimes agents that provide information about information (service brokers, meta information providers or service registries). The service broker gets a lot of requests for its information and it needs to be able to decide who wants what and whether or not they are granted access. Infrastructures and relationships change quickly and the policies governing them need to be flexible in allowing or denying access.

 Moreover, while XML holds the promise of providing a common interface to such services, it does not provide the entire infrastructure needed to implement such a vision. Further, XML might not be appropriate for building the entire Web Services security layer. The goal is to identify where it is important to provide information in an XML format to allow for common data exchange, and where it is important to utilize the existing security mechanism that exist on platforms today.

 The SOAP envelope is defined in XML and enables you to add a large variety of meta information to the message, such as transaction IDs, message routing information and message security. The SOAP envelope consists of two parts: header and body. The header is a generic mechanism for adding features to a SOAP message. All immediate child elements of the SOAP header element are called header entries. The body is a container for application data such as RPC intended for the ultimate recipient of the message. Thus, SOAP can be considered to introduce another layer between the transport layer (for example, HTTP) and the application layer (for example, business data), which is a convenient place for conveying message meta information.

The SOAP header provides an extensible mechanism for extending a SOAP message for many uses. The SOAP header is the most rational place to add security features to messages, but the SOAP specification itself does not specify such header elements.

9. STANDARDIZATION

 Two standards groups are working on the definition of official Web services standards: W3C and the Organization for the Advancement of Structured Information Standards (OASIS). W3C focuses on core infrastructure specifications, and OASIS focuses on higher-level functionality. W3C initiated its Web services standardization efforts with the launch of the XML Protocol Working Group (XMLP) in September 2000. In February 2002, W3C greatly expanded its Web services effort with the formation of the W3C Web Services Activity. The goal of the W3C Web Services Activity is to "design a set of technologies in order to bring the development of Web services to its full potential." The W3C Web Services Activity currently consists of three working groups and one coordination group:

· WS Arch: The Web Services Architecture Working Group is chartered with producing a document that describes an open, platform independent, modular, simple, decentralized and extensible architecture for Web services. The core functional components of a Web Services Architecture are transport, description and discovery, which just so happen to correlate with the SOAP, WSDL and UDDI technologies. The WS Archgroup is also looking beyond the basic technologies to extend the architecture to support functions such as security, reliable message delivery, transactions and conversations.

· WS Desc: The Web Services Description Working Group is chartered with producing a specification for an XML language that can be used to describe a Web service. The WS Desc is using the WSDL 1.1 specification as a starting point for its efforts.

· XMLP: The XML Protocol Working Group is chartered to produce a specification for an XML protocol that can be used to pass XML based messages and RPCs between applications. The XMLP used the SOAP 1.1 specification as a starting point for its efforts. The XMLP is promotes the development of open, interoperable technologies. A standards group provides a venue that gives any interested party, large or small, equal footing in the development of these technologies.

· WSCG: The Web Services Coordination Group acts as a forum for coordination among the various Web Service Activity working groups and among other related W3C activities and non W3C standards efforts. The WSCGwill play a very important role because there are many other activities within W3C and other organizations outside of W3C that are also working on important standards for Web services technology. Perhaps the most critical dependency is on the W3C XML Activity, which oversees development of XML, Namespaces in XML, XML Information Set and XML Schema. SOAP, WSDL and UDDI are based on these XML standards. OASIS, the other standards group, has more than 30 Technical Committees working on various XML based standards, most of which apply to the Web Services Architecture.

10. ADVANTAGES

Web Services offer many benefits over other types of Internet protocol based services.

· Interoperability: This is the most important benefit of Web Services. Web Services typically work outside of private networks, offering developers a non proprietary route to their solutions. Services developed are likely, therefore, to have a longer life span, offering better return on investment of the developed service. Web Services also allow developers to use various programming languages, such as: Java, C++, VBScript, JavaScript, or Perl. In addition, thanks to the use of standards based communications methods, Web Services are virtually platform independent.

· Usability: Web Services allow the business logic of many different systems to be exposed over the Web. This gives your applications the freedom to use the Web Services that they need. Instead of re inventing the wheel for each client, you need only include additional application specific business logic into the client side. This allows you to develop services and/or client side code using the languages and tools that you want.

· Reusability: Web Services provide not only exploitation of the component based model of application development, but the closest thing possible to zero coding deployment of such services. This makes it easy to reuse Web Service components as appropriate in other services. It also makes it easy to deploy legacy code as a Web Service.

· Deployability: Web Services are deployed over standard Internet technologies; it enables Web Services to be deployed even over the firewall to servers running on the Internet on the other side of the globe. In addition, due to the use of existing standards, underlying security (such as SSL) is already built in.

11. PITFALLS

What do you need to know about the downside of Web Services? From a technical standpoint, there are some performance trade offs to worry about. There are choices to be made about when to use asynchronous versus synchronous processing, for example. Another technical issue revolves around auditability. You need to be sure that the Web Services themselves, and the environment in which they're deployed, contain the instrumentation that will allow them to be monitored in real time. How else will be you able to trace and track what's happening in this much more dynamic networked world?

Creating a Web Service is a proverbial piece of cake. Today's software development tools make it easy for programmers to wrap up chunks of code and to publish them as Web Services. However, those tools don't insure that the services that have been created are well architect for the loosely coupled, dynamic binding world of services oriented architecture. The primary difficulty in creating Web Services and applications with a service-oriented architecture is getting developers and architects to think loosely coupled and asynchronous. The transactions that client/server developers imagine are tightly coupled and synchronous: it's a two-way conversation, and we're both staying here until we're both finished.

For that reason, you're going to want to have a small team of senior architects lead your Web Services development and deployment initiatives. Designers who have been developing and deploying distributed object systems for a number of years are your best bet. You'll need to find the few souls within your IT organization who are the most experienced in designing loosely coupled asynchronous applications and have them do the design work, educate the rest of your development team, and do quality assurance on the Web Services you develop in house or purchase or use from third parties.

12. CONCLUSION

 Web Services will be pervasive by 2005, infiltrating the majority of strategic applications. This is not to say that Web Services will replace other middleware, and certainly existing applications will not be rewritten in Web Services. But, as new, streamlined business processes emerge, they will require various functions in the application portfolio be delivered on demand. These on demand functions will be delivered by wrapping existing application steps as Web Services.

 Business and IT executives should begin now to set goals, priorities, and plans to prepare for the impending pressure from customers and suppliers to use Web Services.

13. REFERENCES

http://www.systinet.com/downloads/totorialone.pdf

http://www.systinet.com/downloads/totorialtwo.pdf

http://www.systinet.com/downloads/totorialthree.pdf

http://www.systinet.com/downloads/totorialfour.pdf

http://www.systinet.com/downloads/totorialfive.pdf

http://webservices.xml.com/pub/a/ws/2002/02/12/webservicefaqs.html

http://www 106.ibm.com/developerworks/web/webarchitecture.pdf

http://www.systinet.com/downloads/primecserver.pdf

http://www.alphaworks.ibm.com/tech/be4ws/faqs.html

Management

Quality of services

Security

Service Description

Service Description

Service Description

Service Description

XML Based Messaging Layer

NETWORK

XML Based Messaging Layer

NETWORK

Service Registry

<soap:Envelope

soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>

<PriorityHeader xmlns="http://msdn.microsoft.com/AYS/6/2002/">

<Priority>HighPriority</Priority>

</PriorityHeader>

</soap:Header>

<soap:Body>

<PlaceOrder xmlns="http://msdn.microsoft.com/AYS/6/2002/">

<quantity>100</quantity>

</PlaceOrder>

</soap:Body>

</soap:Envelope>

 Service Requester

HTTP/1.1 500 Internal Server Error

Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <SOAP-ENV:Fault>

 <faultcode>SOAP-ENV:MustUnderstand</faultcode>

 <faultstring>SOAP Must Understand Error</faultstring>

 </SOAP-ENV:Fault>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

HTTP/1.1 200 OK

Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

<SOAP-ENV:Envelope xmlns:SOAPENV="

http://schemas.xmlsoap.org/soap/envelope/"

SOAP- ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <SOAP-ENV:Header>

 <t:Transaction xmlns:t="some-URI"

 xsi:type="xsd:int"

mustUnderstand="1">5</t:Transaction>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <m:GetLastTradePriceResponse

 xmlns:m="Some-URI">

 <Price>34.5</Price>

 </m:GetLastTradePriceResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

POST /StockQuote HTTP/1.1

Host: www.stockquoteserver.com

Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

SOAPAction: "Some-URI"

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP

ENV-encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Header>

 <t:Transaction

 xmlns:t="some-URI"

 SOAP-ENV:mustUnderstand="1">

 5

 </t:Transaction>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">

<symbol>DEF</symbol>

 </m:GetLastTradePrice>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Service Registry

 Service Description

 Service Description

Service

WEB SERVICES
 Page 14 of 28
www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

_1127517945

