Wireless Medical Sensor Networks in Emergency Response: Implementation and Pilot Results

Table of Contents

	Chapter No
	 Title

	
	Abstract

List Of Symbols

List Of Abbreviations

	1
	Introduction

· General

· Objective

· Existing System

· Proposed System

· Proposed System Features

	2
	 System Analysis

· Overview

· Modules

	3
	Feasibility Report

· Introduction

· Technical Feasibility

· Operational Feasibility

· Economic Feasibility

	4
	Requirements

· SDLC Methodology
· Functional Requirements

· Non- Functional Requirements

· Hardware Requirements

· Software Requirements

	5
	Design Engineering

· General

· Activity Diagram

· Use Case Diagram

· Sequence Diagram

· Collaboration Diagram

· Class Diagram

	6
	Technology Description

	7
	Snapshots

	8
	Coding

	9
	Software Testing

	10
	Conclusion

	11
	References

 Abstract:

This project explores the value of the implementation of mobile computing on the efficiency and effectiveness of an Emergency Medical Services. The health sector is currently one of the most attractive targets for Wireless Sensor Network (WSN) applications. A health monitoring application, for example, allows health professionals (doctors, nurses, etc.) in a hospital or clinic to constantly monitor patients fitted with tiny, wearable sensors capable of collecting sensitive, vital health information in real-time. The sensors are typically used for monitoring a number of global parameters such as blood oxygen level, blood pressures, pulse rate, temperature, electrocardiogram (ECG), etc.

The main aim of the project is to give immediate care to the patients as soon as possible by using the mobile computing technology and make the patients to alive, because of the timely response. Apart from the disaster responses this project can also implement in, In-hospitalization and Post- hospitalization.
List of Symbols

	S.NO
	SYMBOL NAME
	SYMBOL
	DESCRIPTION

	1
	Class
	
[image: image1.png]Class Namo

Tl Alioute Typelital vave

Iy operalonfarg I5) - el ypel)

	Classes represent a collection of similar entities grouped together.

	2
	Association
	
[image: image2.png]rolet

role2

Class1

Class2

	Association represents a static relationship between classes.

	3
	Aggregation
	
[image: image3.png]

	Aggregation is a form of association. It aggregates several classes into single class.

	4
	Actor
	
[image: image4.emf]Actor

	Actors are the users of the system and other external entity that react with the system.

	5
	Use Case
	
[image: image5.png]

	A use case is a interaction between the system and the external environment.

	6
	Relation (Uses)
	
[image: image6.png]

	It is used for additional process communication.

	7
	Communication
	
[image: image7.png]

	It is the communication between various use cases.

	8
	State
	
[image: image8.png]

	It represents the state of a process. Each state goes through various flows.

	9
	Initial State
	
[image: image9.emf]
	It represents the initial state of the object.

	10
	Final State
	
[image: image10.png]

	It represents the final state of the object.

	11
	Control Flow
	
[image: image11.emf]
	It represents the various control flow between the states.

	12
	Decision Box
	
[image: image12.png]

	It represents the decision making process from a constraint.

	13
	Component
	
[image: image13.emf]Component

	Components represent the physical components used in the system.

	14
	Data Process/State
	
[image: image14.png]

	A circle in DFD represents a state or process which has been triggered due to some event or action.

	15
	External Entity
	
[image: image15.emf]
	It represent any external entity such as keyboard, sensors etc which are used in the system.

	16
	Transition
	
[image: image16.png]

	It represent any communication that occurs between the processes.

	17
	Object Lifeline
	
[image: image17.png]

	Object lifelines represents the vertical dimension that objects communicates.

	18
	Message
	
[image: image18.png]Message

	It represents the messages exchanged.

List of Abbreviations

	S.NO
	ABBREVATION
	DESCRIPTION

	1
	Quos
	Quality of Service

	2
	DFD
	Data Flow Diagram

	3
	API
	Application Programming Interface

	4
	UML
	Unified Modeling Language

	5
	GUI
	Graphical User Interface

	6
	IDE
	Integrated Development Environment

	7
	GS
	Guaranteed service

	8
	EF
	Expedited Forwarding

	9
	AF
	Assured Forwarding

	10
	BE
	Best Effort

	11
	OCGRR
	Output Controlled Grant-based Round Robin

	12
	SDLC
	Software Development Life Cycle

	13
	MRR
	Multiple Round Robin

	14
	FCFS
	First Come First Served

	15
	DRR
	Deficit Round Robin

Introduction

We are introducing a new patient care paradigm to the emergency response arena through automation of the patient monitoring and tracking process. The miTags is a wireless sensor that can be distributed to casualties at a disaster scene in lieu of paper triage tags. Much like paper triage tags, a visible patient triage priority number can be set onboard the miTag. miTags relay sensor data - including vital signs, location, and triage status - over an ad-hoc mesh network to monitoring stations. The miTag supports two-way communication and can also be used to send messages to and from the patient. Multiple sensor add-ons to miTags were developed, including a GPS receiver, pulse oximeter, blood pressure cuff, temperature sensor, and ECG sensors (F2). Members of the distributed response team, such as treatment officers, incident commanders, receiving hospitals, and public health officials, can log onto a web portal to review real-time patient information. This allows them to maintain an accurate and global situational awareness of the casualties and provide better coordination between the pre-hospital caseload and receiving care facilities.

Existing System:

· Disaster response scenarios require a major shift toward more scalable, workflow-efficient, and cost-effective products for monitoring patients. Commercial monitors currently on the market require pre-installation of wireless networking infrastructure and can only accommodate a limited number of patients per installed network.
· These monitors are only capable of vital sign measurement, and have no capability to tracking patient location. This is not viable in a chaotic disaster scenario, as numerous patients are scattered across wide areas, and knowing the whereabouts of a patient is critical for responders to rescue that patient promptly.

· In addition, existing medical monitors are expensive, integrate poorly with workflows, and exhibit a high rate of false alarms that overwhelm care providers.
Proposed system:
· We developed an end-to-end sensor network platform to support automated patient monitoring by drawing upon 3 years of experience in the research and development of disaster response technologies.

· Throughout our research, we have collaborated closely with the diverse groups of stakeholders within the disaster response, including first responders, public health officials, and trauma centers, in order to design a system that would take into account each of their perspectives and accommodate their requirements.

· We present a solution for improving patient monitoring. It should be emphasized that the miTag is designed to optimize extensibility, scalability, and cost.

· It can be integrated with new sensor modalities to address a wide variety of problems within disaster response.

Modules:

1. Retrieving patient details with Gateway
2. First Level Analyzer

3. Server implementation and monitoring

Module Description:

Retrieving patient details with Gateway
Wireless medical sensors are electronic devices which are used to get patient details from human body. All the devices are connected to its corresponding human physiological input. The sensor gateway integrates all the sensor values from the human body and checks whether all the sensors are working properly, else it generates an alarm indicates that specific sensor was not working. Also, if any sensor was missed to wear in the human body, it generates an alarm indicating that the specific sensor was missed.
First Level Analyzer
The first level analyzer is used to analyze the data from the sensor gateway. Checks whether the value will be in specific range or not. If it is in specific range, it will analyze the data, else it generates an alarm stating that the value will be out of range, so we can avoid the false alarm triggering and also it checks whether the value will be in critical range or not. If it is in critical range it generates a critical alarm in the hand held as well as in the system. Then the data will be processed and stored in the log file.
Server implementation and monitoring

A central server, designed with service oriented architecture principles, processes sensor data from multiple sensor networks and disseminates it to clients data display software. Features of these web services include sensor history retrieval, sensor reconfiguration, user authentication, alarm monitoring, and alert generation.
Server contains a variety of features useful to medical sensor network applications, including built-in security, broadcast messaging, and data management when connectivity to the server is interrupted.
Feasibility Report
Introduction:

A feasibility study is a high-level capsule version of the entire System analysis and Design Process. The study begins by classifying the problem definition. Feasibility is to determine if it’s worth doing. Once an acceptance problem definition has been generated, the analyst develops a logical model of the system. A search for alternatives is analyzed carefully. There are 3 parts in feasibility study.
Technical Feasibility:

Evaluating the technical feasibility is the trickiest part of a feasibility study. This is because, at this point in time, not too many detailed design of the system, making it difficult to access issues like performance, costs on (on account of the kind of technology to be deployed) etc. A number of issues have to be considered while doing a technical analysis.Understand the different technologies involved in the proposed system before commencing the project we have to be very clear about what are the technologies that are to be required for the development of the new system. Find out whether the organization currently possesses the required technologies. Is the required technology available with the organization?.

Operational Feasibility:
Proposed project is beneficial only if it can be turned into information systems that will meet the organizations operating requirements. Simply stated, this test of feasibility asks if the system will work when it is developed and installed. Are there major barriers to Implementation? Here are questions that will help test the operational feasibility of a project:

Is there sufficient support for the project from management from users? If the current system is well liked and used to the extent that persons will not be able to see reasons for change, there may be resistance.

Are the current business methods acceptable to the user? If they are not, Users may welcome a change that will bring about a more operational and useful systems.
Have the user been involved in the planning and development of the project?

Early involvement reduces the chances of resistance to the system and in general and increases the likelihood of successful project.

Since the proposed system was to help reduce the hardships encountered. In the existing manual system, the new system was considered to be operational feasible.
Economic Feasibility:

Economic feasibility attempts 2 weigh the costs of developing and implementing a new system, against the benefits that would accrue from having the new system in place. This feasibility study gives the top management the economic justification for the new system.A simple economic analysis which gives the actual comparison of costs and benefits are much more meaningful in this case. In addition, this proves to be a useful point of reference to compare actual costs as the project progresses. There could be various types of intangible benefits on account of automation. These could include increased customer satisfaction, improvement in product quality better decision making timeliness of information, expediting activities, improved accuracy of operations, better documentation and record keeping, faster retrieval of information, better employee morale.
Requirements

SDLC Methodology:

This document play a vital role in the development of life cycle (SDLC) as it describes the complete requirement of the system. It means for use by developers and will be the basic during testing phase. Any changes made to the requirements in the future will have to go through formal change approval process.

SPIRAL MODEL was defined by Barry Boehm in his 1988 article, “A spiral Model of Software Development and Enhancement. This model was not the first model to discuss iterative development, but it was the first model to explain why the iteration models.

As originally envisioned, the iterations were typically 6 months to 2 years long. Each phase starts with a design goal and ends with a client reviewing the progress thus far. Analysis and engineering efforts are applied at each phase of the project, with an eye toward the end goal of the project.

The steps for Spiral Model can be generalized as follows:

· The new system requirements are defined in as much details as possible. This usually involves interviewing a number of users representing all the external or internal users and other aspects of the existing system.

· A preliminary design is created for the new system.

· A first prototype of the new system is constructed from the preliminary design. This is usually a scaled-down system, and represents an approximation of the characteristics of the final product.

· A second prototype is evolved by a fourfold procedure:

1. Evaluating the first prototype in terms of its strengths, weakness, and risks.

2. Defining the requirements of the second prototype.

3. Planning an designing the second prototype.

4. Constructing and testing the second prototype.

· At the customer option, the entire project can be aborted if the risk is deemed too great. Risk factors might involved development cost overruns, operating-cost miscalculation, or any other factor that could, in the customer’s judgment, result in a less-than-satisfactory final product.

· The existing prototype is evaluated in the same manner as was the previous prototype, and if necessary, another prototype is developed from it according to the fourfold procedure outlined above.

· The preceding steps are iterated until the customer is satisfied that the refined prototype represents the final product desired.

· The final system is constructed, based on the refined prototype.

· The final system is thoroughly evaluated and tested. Routine maintenance is carried on a continuing basis to prevent large scale failures and to minimize down time.

The following diagram shows how a spiral model acts like:
[image: image19.png]N Cumulative cost

Progress
| S 2. Identify and
resolve risks

"\ Risk anayse

N Riskanaysis \
Risk analysis "\

Reaqure-
Review [monis pan 5 Operational
g / oo pronpe 2| AL
} ¥
\ conceptof | conceptor / Require- |
Cordin | e/ ments /) orat | |
\ ments / Detailed
design |
oovtment | vaticten /
o | & ¥aidaton
” S /" Code /
— P
Yofeair, " Integration
e g
4. Plan the next Test -~

iteration Release | Implementation
le—

Development and Test

Fig 1.0-Spiral Model

ADVANTAGES:

· Estimates(i.e. budget, schedule etc .) become more relistic as work progresses, because important issues discoved earlier.

· It is more able to cope with the changes that are software development generally entails.

· Software engineers can get their hands in and start woring on the core of a project earlier.

Functional Requirements:
1. Generate the Public key for network

2. Generate the group certificate for network

3. Save public key and group certificate

4. Execute N number of nodes

5. Find neighbor nodes for all running nodes

6. Enter the destination node name

7. Send Route request(RREQ) to all their neighbor

8. Get route reply (RREP) from all neighbor nodes

9. Find possible paths from our neighbors

10. Select shortest path from all received path

11. Send MACT message to destination via our shortest path

12. Destination receive MACT message and verify the route

13. Then destination activate the route

14. Enter the message from sender

15. Encrypt the message

16. Send message to destination via shortest path

17. Destination receive the message and decrypt the message

Non- Functional Requirements:
The major non-functional Requirements of the system are as follows

1. Usability

The system is designed with completely automated process hence there is no or less user intervention.

2. Reliability

The system is more reliable because of the qualities that are inherited from the chosen platform java. The code built by using java is more reliable.

3. Performance

 This system is developing in the high level languages and using the advanced front-end and back-end technologies it will give response to the end user on client system with in very less time.

4. Supportability

The system is designed to be the cross platform supportable. The system is supported on a wide range of hardware and any software platform, which is having JVM, built into the system.

5. Implementation

The system is implemented in web environment. The apache tomcat is used as the web server and windows xp professional is used as the platform.

6. Interface The user interface is based on HTML and XHTML.
Hardware Requirements:
· Pentium 4 processor

· 1 GB RAM
· 80 GB Hard Disk Space

Software Requirements:
· Microsoft Windows XP Professional
· JDK 6.0
System Architecture:

Design Engineering
General:

Design is a meaningful engineering representation of something that is to be built. Software design is a process through which the requirements are translated into a representation of the software. Design is the place where quality is fostered in software engineering. Design is the perfect way to accurately translate a customer’s requirement in to a finished software product. Design creates a representation or model, provides detail about software data structure, architecture, interfaces and components that are necessary to implement a system. This chapter discusses about the design part of the project. Here in this document the various UML diagrams that are used for the implementation of the project are discussed.
Activity Diagram:
The purpose of activity diagram is to provide a view of flows and what is going on inside a use case or among several classes. Activity diagram can also be used to represent a class’s method implementation. A token represents an operation. An activity is shown as a round box containing the name of the operation. An outgoing solid arrow attached to the end of activity symbol indicates a transition triggered by the completion.
Use Case Diagram:
A use case diagram is a graph of actors, a set of use cases enclosed by a system boundary, communication (participation) associations between the actors and users and generalization among use cases. The use case model defines the outside (actors) and inside (use case) of the system’s behavior.
[image: image20.emf]patient Sensor

First Level Analyzer

Doctor monitoring

Get Values From Patient

status verified(Gate Way)

update status to FA

critical status

Sequence Diagram:
Sequence diagram are an easy and intuitive way of describing the behavior Of a system by viewing the interaction between the system and its environment. A Sequence diagram shows an interaction arranged in a time sequence. A sequence diagram has two dimensions: vertical dimension represents time; the horizontal Dimension represents different objects. The vertical line is called is the object’s life line. The lifeline represents the object’s existence during the interaction
[image: image21.emf]patient Gate Way First_Analizer update status Doctor Mobile

1 : get the values from patient()

2 : verified vale to FA()

3 : status to server()

4 : if critical status msg to doctor()

Collaboration Diagram:
The collaboration diagram represents a collaboration, which is a set of objects Related in a particular context, and interaction, which is a set of messages exchanged among the objects within the collaboration to achieve a designed Outcome.
Technology Description
General

 A programming tool or software tool is a program or application that software developers use to create, debug, maintain, or otherwise support other programs and applications. The term usually refers to relatively simple programs that can be combined together to accomplish a task. The Chapter describes about the software tool that is used in our project.

Java Technology
 Initially the language was called as “oak” but it was renamed as “Java” in 1995. The primary motivation of this language was the need for a platform-independent (i.e., architecture neutral) language that could be used to create software to be embedded in various consumer electronic devices.

· Java is a programmer’s language.

· Java is cohesive and consistent.

· Except for those constraints imposed by the Internet environment, Java gives the programmer, full control.

· Finally, Java is to Internet programming where C was to system programming.

Importance of Java to the Internet

Java has had a profound effect on the Internet. This is because; Java expands the Universe of objects that can move about freely in Cyberspace. In a network, two categories of objects are transmitted between the Server and the Personal computer. They are: Passive information and Dynamic active programs. The Dynamic, Self-executing programs cause serious problems in the areas of Security and probability. But, Java addresses those concerns and by doing so, has opened the door to an exciting new form of program called the Applet.

Java can be used to create two types of programs

Applications and Applets: An application is a program that runs on our Computer under the operating system of that computer. It is more or less like one creating using C or C++. Java’s ability to create Applets makes it important. An Applet is an application designed to be transmitted over the Internet and executed by a Java –compatible web browser. An applet is actually a tiny Java program, dynamically downloaded across the network, just like an image. But the difference is, it is an intelligent program, not just a media file. It can react to the user input and dynamically change.

Features of Java Security

Every time you that you download a “normal” program, you are risking a viral infection. Prior to Java, most users did not download executable programs frequently, and those who did scan them for viruses prior to execution. Most users still worried about the possibility of infecting their systems with a virus. In addition, another type of malicious program exists that must be guarded against. This type of program can gather private information, such as credit card numbers, bank account balances, and passwords. Java answers both these concerns by providing a “firewall” between a network application and your computer.

When you use a Java-compatible Web browser, you can safely download Java applets without fear of virus infection or malicious intent.

Portability

For programs to be dynamically downloaded to all the various types of platforms connected to the Internet, some means of generating portable executable code is needed .As you will see, the same mechanism that helps ensure security also helps create portability. Indeed, Java’s solution to these two problems is both elegant and efficient.

The Byte code

The key that allows the Java to solve the security and portability problems is that the output of Java compiler is Byte code. Byte code is a highly optimized set of instructions designed to be executed by the Java run-time system, which is called the Java Virtual Machine (JVM). That is, in its standard form, the JVM is an interpreter for byte code.

Translating a Java program into byte code helps makes it much easier to run a program in a wide variety of environments. The reason is, once the run-time package exists for a given system, any Java program can run on it.

Although Java was designed for interpretation, there is technically nothing about Java that prevents on-the-fly compilation of byte code into native code. Sun has just completed its Just In Time (JIT) compiler for byte code. When the JIT compiler is a part of JVM, it compiles byte code into executable code in real time, on a piece-by-piece, demand basis. It is not possible to compile an entire Java program into executable code all at once, because Java performs various run-time checks that can be done only at run time. The JIT compiles code, as it is needed, during execution.

Java Virtual Machine (JVM)

Beyond the language, there is the Java virtual machine. The Java virtual machine is an important element of the Java technology. The virtual machine can be embedded within a web browser or an operating system. Once a piece of Java code is loaded onto a machine, it is verified. As part of the loading process, a class loader is invoked and does byte code verification makes sure that the code that’s has been generated by the compiler will not corrupt the machine that it’s loaded on. Byte code verification takes place at the end of the compilation process to make sure that is all accurate and correct. So byte code verification is integral to the compiling and executing of Java code.

Overall Description

Picture showing the development process of JAVA Program

Java programming uses to produce byte codes and executes them. The first box indicates that the Java source code is located in a. Java file that is processed with a Java compiler called javac. The Java compiler produces a file called a. class file, which contains the byte code. The .Class file is then loaded across the network or loaded locally on your machine into the execution environment is the Java virtual machine, which interprets and executes the byte code.

Java Architecture

Java architecture provides a portable, robust, high performing environment for development. Java provides portability by compiling the byte codes for the Java Virtual Machine, which is then interpreted on each platform by the run-time environment. Java is a dynamic system, able to load code when needed from a machine in the same room or across the planet.

Compilation of code

When you compile the code, the Java compiler creates machine code (called byte code) for a hypothetical machine called Java Virtual Machine (JVM). The JVM is supposed to execute the byte code. The JVM is created for overcoming the issue of portability. The code is written and compiled for one machine and interpreted on all machines. This machine is called Java Virtual Machine.

Compiling and interpreting Java Source Code

During run-time the Java interpreter tricks the byte code file into thinking that it is running on a Java Virtual Machine. In reality this could be a Intel Pentium Windows 95 or SunSARC station running Solaris or Apple Macintosh running system and all could receive code from any computer through Internet and run the Applets.

Simple
Java was designed to be easy for the Professional programmer to learn and to use effectively. If you are an experienced C++ programmer, learning Java will be even easier. Because Java inherits the C/C++ syntax and many of the object oriented features of C++. Most of the confusing concepts from C++ are either left out of Java or implemented in a cleaner, more approachable manner. In Java there are a small number of clearly defined ways to accomplish a given task.

Object-Oriented

Java was not designed to be source-code compatible with any other language. This allowed the Java team the freedom to design with a blank slate. One outcome of this was a clean usable, pragmatic approach to objects. The object model in Java is simple and easy to extend, while simple types, such as integers, are kept as high-performance non-objects.

Robust

The multi-platform environment of the Web places extraordinary demands on a program, because the program must execute reliably in a variety of systems. The ability to create robust programs was given a high priority in the design of Java. Java is strictly typed language; it checks your code at compile time and run time.

Java virtually eliminates the problems of memory management and de-allocation, which is completely automatic. In a well-written Java program, all run time errors can –and should –be managed by your program.

JAVA SWING
Swing is a widget toolkit for java. The main characteristics of the Swing toolkit are platform independent, customizable, extensible, configurable and lightweight.. It has a rich set of widgets. From basic widgets like Buttons, Labels, Scrollbars to advanced widgets like Trees and Tables.

Swing is a part of JFC, Java Foundation Classes. It is a collection of packages for creating full featured desktop applications. JFC consists of AWT, Swing, Accessibility, Java 2D, and Drag and Drop.

JComponent

All Swing components whose names begin with "J" descend from the jcomponent API class. For example, JPanel, JScrollPane, JButton, and JTable all inherit from JComponent. However, JFrame doesn't because it implements a top-level container. The JComponent class extends the Container api class, which itself extends Component api . The Component class includes everything from providing layout hints to supporting painting and events. The Container class has support for adding components to the container and laying them out.

JPanel

The JPanel class provides general-purpose containers for lightweight components. By default, panels do not add colors to anything except their own background; however, you can easily add borders to them and otherwise customize their painting.

JFrame

JFrame is Swing's version of Frame and is descended directly from that class. It is used to create Windows in a Swing program. The components added to the frame are referred to as its contents; these are managed by the contentPane. To add a component to a JFrame, we must use its contentPane instead.

JButton

The JButton object generally consists of a text label and/or image icon that describes the purpose of the button , an empty area around the text/icon and border.

JLabel

JLabel, descended from JComponent, is used to create text labels. It can display text but images as well.

JTextArea

JTextArea component is used to accept several lines of text from user. JTextArea can be used in conjunction with class JScrollPane to achieve scrolling. The underlying JScrollPane can be forced to always or never have either the vertical or horizontal scrollbar.

JList

JList provides a scrollable set of items from which one or more may be selected. JList can be populated from an Array or Vector. JsList does not support scrolling directly, instead, the list must be associated with a scrollpane. The view port used by the scroll pane can also have a user-defined border. JList actions are handled using ListSelectionListener.

The Swing Message Box

Windowing environments commonly contain a standard set of message boxes that allow you to quickly post information to the user or to capture information from the user. In Swing, these message boxes are contained in JOptionPane sophisticated), but the ones most commonly used are probably the message dialog and confirmation dialog, invoked using the static JOptionPane.showMessageDialog() and JOptionPane. showConfirmDialog().
Package Javax.Imageio Description

The main package of the Java Image I/O API. Many common image I/O operations may be performed using the static methods of the ImageIO class.This package contains the basic classes and interfaces for describing the contents of image files, including metadata and thumbnails (IIOImage); for controlling the image reading process (ImageReader, ImageReadParam, and ImageTypeSpecifier) and image writing process (ImageWriter and ImageWriteParam); for performing transcoding between formats (ImageTranscoder), and for reporting errors (IIOException).

JFileChooser

File choosers provide a GUI for navigating the file system, and then either choosing a file or directory from a list, or entering the name of a file or directory. To display a file chooser, you usually use the JFileChooser API to show a modal dialog containing the file chooser.A JFileChooser is a dialog to select a file or files.
The return value of the three methods is one of the following:

1. JFileChooser.CANCEL_OPTION, if the user clicks Cancel.
2. JFileChooser.APPROVE_OPTION, if the user click an OK/Open/Save button.

3. JFileChooser.ERROR_OPTION, if the user closes the dialog

A return value of JFileChooser.APPROVE_OPTION, indicates that you can call its getSelectedFile or getSelectedFiles methods:

	
public java.io.File getSelectedFile ()
public java.io.File[] getSelectedFiles ()

JFileChooser has supporting classes: FileFilter class, FileSystemView class, FileView.

FileFilter class is for restricting files and directories to be listed in the FileView of the JFileChooser. The FileView controls how the directories and files are listed within the JFileChooser. The FileSystemView is an abstract class that tries to hide file system-related operating system specifics from the file chooser.

JScrollPane

JScrollPane is a jquery plugin which allows you to replace the browsers default vertical scrollbars on any block level element with an overflow:auto style. jScrollPane is crossbrowser, working on all browsers that support jquery and it also degrades gracefully. If a user's browser doesn't support jQuery or has JavaScript turned off then they will see the browsers default scrollbars. If the mouse wheel plugin is included in the page then the scroll panes will respond to mouse wheel events as well. jScrollPane is built on top of the awesome jQuery library and utilises the dimensions plugin and (optionally) the mouse wheel plugin.

To place a component in one of the corners of the JScrollPane, call setCorner(String key, Component corner) key is

1. JScrollPane.LOWER_LEFT_CORNER,

2. JScrollPane.LOWER_RIGHT_CORNER,

3. JScrollPane.UPPER_LEFT_CORNER, or

4. JScrollPane.UPPER_RIGHT_CORNER

Class BufferedImage

java.lang.Object

[image: image22.png]

java.awt.Image

 [image: image23.png]

java.awt.image.BufferedImage
All Implemented Interfaces:

 RenderedImage, WritableRenderedImage

public class BufferedImage
extends Image

implements WritableRenderedImage

The BufferedImage subclass describes an Image with an accessible buffer of image data. A BufferedImage is comprised of a ColorModel and a Raster of image data. The number and types of bands in the SampleModel of the Raster must match the number and types required by the ColorModel to represent its color and alpha components. All BufferedImage objects have an upper left corner coordinate of (0, 0). Any Raster used to construct a BufferedImage must therefore have minX=0 and minY=0.

JCreator

JCreator is a powerful IDE for java. JCreator is the best development tool for programming. It is faster, more efficient and more reliable than other IDE’s. Therefore it is the perfect tool for programmers of every level, from learning programmer to Java-specialist.

JCreator provides the user with a wide range of functionality such as Project management, project templates, code-completion, debugger interface, editor with syntax highlighting, wizards and a fully customizable user interface

With JCreator you can directly compile or run your Java program without activating the main document first. JCreator will automatically find the file with the main method or the html file holding the java applet, then it will start the appropriate tool.

JCreator is written entirely in C++, which makes it fast and efficient compared to the Java based editors/IDE's.

Java Database Connectivity

What Is JDBC?

JDBC is a Java API for executing SQL statements. (As a point of interest, JDBC is a trademarked name and is not an acronym; nevertheless, JDBC is often thought of as standing for Java Database Connectivity. It consists of a set of classes and interfaces written in the Java programming language. JDBC provides a standard API for tool/database developers and makes it possible to write database applications using a pure Java API.

Using JDBC, it is easy to send SQL statements to virtually any relational database. One can write a single program using the JDBC API, and the program will be able to send SQL statements to the appropriate database. The combinations of Java and JDBC lets a programmer write it once and run it anywhere.

What Does JDBC Do?

Simply put, JDBC makes it possible to do three things:

· Establish a connection with a database

· Send SQL statements

· Process the results.

JDBC versus ODBC and other APIs

At this point, Microsoft's ODBC (Open Database Connectivity) API is that probably the most widely used programming interface for accessing relational databases. It offers the ability to connect to almost all databases on almost all platforms.

So why not just use ODBC from Java? The answer is that you can use ODBC from Java, but this is best done with the help of JDBC in the form of the JDBC-ODBC Bridge, which we will cover shortly. The question now becomes "Why do you need JDBC?" There are several answers to this question:

1. ODBC is not appropriate for direct use from Java because it uses a C interface. Calls from Java to native C code have a number of drawbacks in the security, implementation, robustness, and automatic portability of applications.

2. A literal translation of the ODBC C API into a Java API would not be desirable. For example, Java has no pointers, and ODBC makes copious use of them, including the notoriously error-prone generic pointer "void *". You can think of JDBC as ODBC translated into an object-oriented interface that is natural for Java programmers.

3. ODBC is hard to learn. It mixes simple and advanced features together, and it has complex options even for simple queries. JDBC, on the other hand, was designed to keep simple things simple while allowing more advanced capabilities where required.

4. A Java API like JDBC is needed in order to enable a "pure Java" solution. When ODBC is used, the ODBC driver manager and drivers must be manually installed on every client machine. When the JDBC driver is written completely in Java, however, JDBC code is automatically installable, portable, and secure on all Java platforms from network computers to mainframes.

Two-tier and Three-tier Models

The JDBC API supports both two-tier and three-tier models for database access.

In the two-tier model, a Java applet or application talks directly to the database. This requires a JDBC driver that can communicate with the particular database management system being accessed. A user's SQL statements are delivered to the database, and the results of those statements are sent back to the user. The database may be located on another machine to which the user is connected via a network. This is referred to as a client/server configuration, with the user's machine as the client, and the machine housing the database as the server. The network can be an Intranet, which, for example, connects employees within a corporation, or it can be the Internet.

In the three-tier model, commands are sent to a "middle tier" of services, which then send SQL statements to the database. The database processes the SQL statements and sends the results back to the middle tier, which then sends them to the user. MIS directors find the three-tier model very attractive because the middle tier makes it possible to maintain control over access and the kinds of updates that can be made to corporate data. Another advantage is that when there is a middle tier, the user can employ an easy-to-use higher-level API which is translated by the middle tier into the appropriate low-level calls. Finally, in many cases the three-tier architecture can provide performance advantages.

Until now the middle tier has typically been written in languages such as C or C++, which offer fast performance. However, with the introduction of optimizing compilers that translate Java byte code into efficient machine-specific code, it is becoming practical to implement the middle tier in Java. This is a big plus, making it possible to take advantage of Java's robustness, multithreading, and security features. JDBC is important to allow database access from a Java middle tier.

[image: image24.png]Database Specific APls

Workstation

Presentation, business and data model processing logic into client
application

Server is typically a database server

Client sends SQL statements, retrieves raw data

JDBC Driver Types

The JDBC drivers that we are aware of at this time fit into one of four categories:

· JDBC-ODBC bridge plus ODBC driver

· Native-API partly-Java driver

· JDBC-Net pure Java driver

· Native-protocol pure Java driver

JDBC-ODBC Bridge

If possible, use a Pure Java JDBC driver instead of the Bridge and an ODBC driver. This completely eliminates the client configuration required by ODBC. It also eliminates the potential that the Java VM could be corrupted by an error in the native code brought in by the Bridge (that is, the Bridge native library, the ODBC driver manager library, the ODBC driver library, and the database client library).

What Is the JDBC- ODBC Bridge?

The JDBC-ODBC Bridge is a JDBC driver, which implements JDBC operations by translating them into ODBC operations. To ODBC it appears as a normal application program. The Bridge implements JDBC for any database for which an ODBC driver is available. The Bridge is implemented as the

Sun.jdbc.odbc Java package and contains a native library used to access ODBC. The Bridge is a joint development of Innersole and Java Soft.

JDBC connectivity

The JDBC provides database-independent connectivity between the J2EE platform and a wide range of tabular data sources. JDBC technology allows an Application Component Provider to:

· Perform connection and authentication to a database server

· Manager transactions

· Move SQL statements to a database engine for preprocessing and execution

· Execute stored procedures

· Inspect and modify the results from Select statements
Database:

A database management system (DBMS) is computer software designed for the purpose of managing databases, a large set of structured data, and run operations on the data requested by numerous users. Typical examples of DBMSs include Oracle, DB2, Microsoft Access, Microsoft SQL Server, Firebird, PostgreSQL, MySQL, SQLite, FileMaker and Sybase Adaptive Server Enterprise. DBMSs are typically used by Database administrators in the creation of Database systems. Typical examples of DBMS use include accounting, human resources and customer support systems.

Originally found only in large companies with the computer hardware needed to support large data sets, DBMSs have more recently emerged as a fairly standard part of any company back office.

Description

A DBMS is a complex set of software programs that controls the organization, storage, management, and retrieval of data in a database. A DBMS includes:

· A modeling language to define the schema of each database hosted in the DBMS, according to the DBMS data model.

· The four most common types of organizations are the hierarchical, network, relational and object models. Inverted lists and other methods are also used. A given database management system may provide one or more of the four models. The optimal structure depends on the natural organization of the application's data, and on the application's requirements (which include transaction rate (speed), reliability, maintainability, scalability, and cost).

· The dominant model in use today is the ad hoc one embedded in SQL, despite the objections of purists who believe this model is a corruption of the relational model, since it violates several of its fundamental principles for the sake of practicality and performance. Many DBMSs also support the Open Database Connectivity API that supports a standard way for programmers to access the DBMS.

· Data structures (fields, records, files and objects) optimized to deal with very large amounts of data stored on a permanent data storage device (which implies relatively slow access compared to volatile main memory).

· A database query language and report writer to allow users to interactively interrogate the database, analyze its data and update it according to the users privileges on data.

· It also controls the security of the database.

· Data security prevents unauthorized users from viewing or updating the database. Using passwords, users are allowed access to the entire database or subsets of it called subschemas. For example, an employee database can contain all the data about an individual employee, but one group of users may be authorized to view only payroll data, while others are allowed access to only work history and medical data.

· If the DBMS provides a way to interactively enter and update the database, as well as interrogate it, this capability allows for managing personal databases. However, it may not leave an audit trail of actions or provide the kinds of controls necessary in a multi-user organization. These controls are only available when a set of application programs are customized for each data entry and updating function.

· A transaction mechanism, that ideally would guarantee the ACID properties, in order to ensure data integrity, despite concurrent user accesses (concurrency control), and faults (fault tolerance).

· It also maintains the integrity of the data in the database.

· The DBMS can maintain the integrity of the database by not allowing more than one user to update the same record at the same time. The DBMS can help prevent duplicate records via unique index constraints; for example, no two customers with the same customer numbers (key fields) can be entered into the database. See ACID properties for more information (Redundancy avoidance).

The DBMS accepts requests for data from the application program and instructs the operating system to transfer the appropriate data.

When a DBMS is used, information systems can be changed much more easily as the organization's information requirements change. New categories of data can be added to the database without disruption to the existing system.

Organizations may use one kind of DBMS for daily transaction processing and then move the detail onto another computer that uses another DBMS better suited for random inquiries and analysis. Overall systems design decisions are performed by data administrators and systems analysts. Detailed database design is performed by database administrators.

Database servers are specially designed computers that hold the actual databases and run only the DBMS and related software. Database servers are usually multiprocessor computers, with RAID disk arrays used for stable storage. Connected to one or more servers via a high-speed channel, hardware database accelerators are also used in large volume transaction processing environments.

DBMSs are found at the heart of most database applications. Sometimes DBMSs are built around a private multitasking kernel with built-in networking support although nowadays these functions are left to the operating system.
Screen shot:

Doctor Mobile

[image: image25.png]B +5550000 - DefaultColorPhone (=]01)[X]
Mt yew sy

° @Sun

T

elst one to launch:

Patient One:

[image: image26.png]" W
Patientzs7 Goteway

Temprature o7 Terp s o < ed Status

107 123 & 7 7 Vertied
BP-s 135 | 103 131 & 7 5] Verfied
Saturation 02 s
2] s

erd o7

Patient Two:

[image: image27.png]" W

Patient302 Gateway

Temprature b Tep | B 02 | EG | md | s

s w s e vatied
s i e o w @ e aied
T R S vaied
sauraion o2 ke | e e w m e aied
T R S vaied
ECG 8o 99 145 9 72 76 erified
w i s e vaied
5 ke W e wm vatod [y

Patient Three :

[image: image28.png]" W

Patient287 Gateway

Temprature B Tep | B 02 | EG | md | s

T T AR R vatied
s i I R R — aied

= E . vaied
sauraion o2 5 [T R B aied

s W w w vaied
ECG 8o 101 110 3 78 77 erified

- woow e mw vaied
5 e W s w s w vatod [y

[image: image29.png]Ringe (%)

150

100

E

S
<8¢

Patient Analizer

o
P
<8

Category

m Temprature ® BP-s @ 02 ® ECG ® BP-d

-0 x|

[image: image30.png] Rrstlevel@nalyeer

LA
Patient Name Tine Terp s o EG Bd st
Patienta06 7:58:26 PM_ 100 o & & Criical
Patienta0z 7158123 P 106 9 @ G Criical
Patientzs7 7158128 PM 97 e e @ i3 Criical

[image: image31.png]8
0\, Doctor Mobile ot Reachabe

E3

[image: image32.png]" W

Main Table

analyzer Patient Name Tine Terp s o < ed Status
tantra-agetedie Patient306 7i9:18 PN 55 146 ® 0 3 Criical
tantra-agegedie Patient302 7isile M 102 1490 @ % @ Criical
tantra-agegedie Patient2s7 TSz eM w03 126 & 2 ot Criical

Sample code:

package com.wmsn.Design;

import java.awt.Rectangle;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JPanel;

import javax.swing.JScrollPane;

import javax.swing.JTable;

import javax.swing.UIManager;

import javax.swing.table.DefaultTableModel;

import javax.swing.table.TableColumnModel;

import org.jvnet.substance.SubstanceLookAndFeel;

import com.wmsn.Implimentations.ServerReceive;

public class Server_Design extends JFrame{

/**

 *

 */

private static final long serialVersionUID = 1L;

public DefaultTableModel dftSerTbl;

JTable tblServer;

TableColumnModel columnModel;

JScrollPane jsp;

public Server_Design() {

add(getDesign());

setSize(800,600);

setVisible(true);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

new ServerReceive(this);

}

private JPanel getDesign() {

JPanel panel =new JPanel(null);

Rectangle r=new Rectangle();

r.x=30;

r.y=50;

r.height=20;

r.width=100;

JLabel lblServer=new JLabel("Main Table");

lblServer.setBounds(r);

panel.add(lblServer);

r.x=30;

r.y=r.y+30;

r.height=400;

r.width=700;

dftSerTbl=new DefaultTableModel();

tblServer=new JTable(dftSerTbl);

jsp=new JScrollPane(tblServer);

jsp.setBounds(r);

panel.add(jsp);

addColumn();

return panel;

}

private void addColumn() {

// TODO Auto-generated method stub

dftSerTbl.addColumn("Analyzer");

dftSerTbl.addColumn("Patient Name");

dftSerTbl.addColumn("Time");

dftSerTbl.addColumn("Temp");

dftSerTbl.addColumn("BP-s");

dftSerTbl.addColumn("O2");

dftSerTbl.addColumn("ECG");

dftSerTbl.addColumn("BP-d");

dftSerTbl.addColumn("Status");

columnModel=tblServer.getColumnModel();

columnModel.getColumn(0).setPreferredWidth(130);

columnModel.getColumn(1).setPreferredWidth(130);

columnModel.getColumn(2).setPreferredWidth(125);

columnModel.getColumn(3).setPreferredWidth(70);

columnModel.getColumn(4).setPreferredWidth(120);

columnModel.getColumn(5).setPreferredWidth(80);

columnModel.getColumn(6).setPreferredWidth(80);

columnModel.getColumn(7).setPreferredWidth(110);

}

public static void main(String[] args) {

try {

SubstanceLookAndFeel.setCurrentTheme("org.jvnet.substance.theme.SubstanceLightAquaTheme");

SubstanceLookAndFeel.setCurrentWatermark("org.jvnet.substance.watermark.SubstanceNullWatermark");

SubstanceLookAndFeel.setCurrentGradientPainter("org.jvnet.substance.painter.WaveGradientPainter");

 UIManager.setLookAndFeel(new SubstanceLookAndFeel());

 } catch (Exception e) {e.printStackTrace();

 }

 JFrame.setDefaultLookAndFeelDecorated(true);

new Server_Design();

}

}
package com.wmsn.Design;

import java.awt.Rectangle;

import java.util.Date;

import javax.swing.BorderFactory;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JPanel;

import javax.swing.JScrollPane;

import javax.swing.JTable;

import javax.swing.JTextField;

import javax.swing.UIManager;

import javax.swing.table.DefaultTableModel;

import org.jvnet.substance.SubstanceLookAndFeel;

import com.wmsn.Implimentations.OPerations;

import com.wmsn.Implimentations.PatientEntries;

public class Patient_Design extends JFrame {

private static final long serialVersionUID = 1L;

String time;

OPerations operations;

/** Patient Design **/

public JTextField txtTemp;

public JTextField txtBP;

public JTextField txtO2;

public JTextField txtECG;

public JTextField txt;

public JLabel lblTime;

/** Gateway Design **/

public DefaultTableModel dftGate;

JTable tblGate;

JScrollPane jsp;

public String myName;

public Patient_Design() {

new time();

operations=new OPerations();

myName=operations.getPatientName();

add(addDesign());

setSize(800,300);

setVisible(true);

setValues();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

private JPanel addDesign() {

JPanel panel=new JPanel(null);

JPanel temp=designPanel();

temp.setBounds(5, 5, 300, 350);

panel.add(temp);

temp=gatewayPanel();

temp.setBounds(310, 5, 450, 350);

panel.add(temp);

return panel;

}

private JPanel gatewayPanel() {

JPanel panel=new JPanel(null);

panel.setBorder(BorderFactory.createTitledBorder(" Gateway "));

dftGate=new DefaultTableModel();

tblGate=new JTable(dftGate);

jsp=new JScrollPane(tblGate);

jsp.setBounds(10, 50, 400, 150);

panel.add(jsp);

dftGate.addColumn("Temp");

dftGate.addColumn("BP-s");

dftGate.addColumn("O2");

dftGate.addColumn("ECG");

dftGate.addColumn("BP-d");

dftGate.addColumn("Status");

return panel;

}

private void setValues() {

new PatientEntries(this);

}

private JPanel designPanel() {

JPanel panel=new JPanel(null);

panel.setBorder(BorderFactory.createTitledBorder(" "+myName+" "));

Rectangle r=new Rectangle();

r.height=20;

r.width=100;

r.x=50;

r.y=50;

int incy=30;

int incx=20;

lblTime=new JLabel("");

lblTime.setBounds(170,20,100,20);

//panel.add(lblTime);

JLabel lblTemp=new JLabel("Temprature");

lblTemp.setBounds(r);

panel.add(lblTemp);

r.y=r.y+incy;

JLabel lblBP=new JLabel("BP-s");

lblBP.setBounds(r);

panel.add(lblBP);

r.y=r.y+incy;

JLabel lblO2=new JLabel("Saturation O2");

lblO2.setBounds(r);

panel.add(lblO2);

r.y=r.y+incy;

JLabel lblECG=new JLabel("ECG");

lblECG.setBounds(r);

panel.add(lblECG);

r.y=r.y+incy;

JLabel lbl=new JLabel("BP-d");

lbl.setBounds(r);

panel.add(lbl);

r.y=r.y+incy;

r.x=r.x+r.width+incx;

r.y=50;

txtTemp=new JTextField();

txtTemp.setBounds(r);

panel.add(txtTemp);

r.y=r.y+incy;

txtBP=new JTextField();

txtBP.setBounds(r);

panel.add(txtBP);

r.y=r.y+incy;

txtO2=new JTextField();

txtO2.setBounds(r);

panel.add(txtO2);

r.y=r.y+incy;

txtECG=new JTextField();

txtECG.setBounds(r);

panel.add(txtECG);

r.y=r.y+incy;

txt=new JTextField();

txt.setBounds(r);

panel.add(txt);

return panel;

}

public static void main(String[] args) {

try {

SubstanceLookAndFeel.setCurrentTheme("org.jvnet.substance.theme.SubstanceLightAquaTheme");

SubstanceLookAndFeel.setCurrentWatermark("org.jvnet.substance.watermark.SubstanceNullWatermark");

SubstanceLookAndFeel.setCurrentGradientPainter("org.jvnet.substance.painter.WaveGradientPainter");

 UIManager.setLookAndFeel(new SubstanceLookAndFeel());

 } catch (Exception e) {e.printStackTrace();

 }

 JFrame.setDefaultLookAndFeelDecorated(true);

new Patient_Design();

}

class time extends Thread

{

Date d;

int hr,mn,sc;

String st="AM";

time()

{

start();

}

public void run()

{

while(true)

{

d=new Date();

 hr=d.getHours();

 mn=d.getMinutes();

 sc=d.getSeconds();

if(hr>=12)

{

hr=hr-12;

st="PM";

}

time=hr+" . "+mn+" . "+sc;

lblTime.setText(hr+" : "+mn+" : "+sc+" "+st);

st="AM";

try {

sleep(1000);

} catch (InterruptedException e) {

e.printStackTrace();

}

}

}

}

}

package com.wmsn.Implimentations;

import java.io.FileInputStream;

import java.io.ObjectInputStream;

import java.net.ServerSocket;

import java.net.Socket;

import java.util.Properties;

import java.util.StringTokenizer;

import java.util.Vector;

import com.wmsn.Design.Server_Design;

public class ServerReceive extends Thread{

Object receive;

Vector<String> valuesVec;

int[] critical;

Server_Design serverD;

Socket s;

ServerSocket ss;

ObjectInputStream ois;

String critiStr="";

public ServerReceive(Server_Design serverD) {

// TODO Auto-generated constructor stub

this.serverD=serverD;

critical=getCritical();

start();

}

public int[] getCritical() {

int[] cVal=new int[5];

String retStr;

Properties properties=new Properties();

StringTokenizer tokenizer;

FileInputStream fis;

String[] arrStr={"Temprature","BP","O2","ECG","Value"};

try {

fis = new FileInputStream("Values.properties");

properties.load(fis);

for(int i=0;i<arrStr.length;i++)

{

retStr=properties.getProperty(arrStr[i]);

tokenizer=new StringTokenizer(retStr,",");

tokenizer.nextToken();tokenizer.nextToken();

cVal[i]=Integer.parseInt(tokenizer.nextToken());

}

properties.clear();

fis.close();

} catch (Exception e) {

e.printStackTrace();

}

return cVal;

}

public void run()

{

receive();

}

private void receive() {

// TODO Auto-generated method stub

try {

ss=new ServerSocket(1290);

while(true)

{

s=ss.accept();

ois=new ObjectInputStream(s.getInputStream());

String flnme=(String)ois.readObject();

Object obj=(Object)ois.readObject();

checkStatus(obj,flnme);

}

} catch (Exception e) {

// TODO: handle exception

}

}

private void checkStatus(Object receive,String flnme) {

boolean flag=true;

try {

valuesVec=new Vector<String>();

if(receive instanceof Vector)

{

Vector<String> tempV=(Vector<String>)receive;

valuesVec=tempV;

//System.out.println("tempV:"+tempV);

String pNme=tempV.get(0);

//System.out.println("pNme:"+pNme);

int i=0;

for(;i<serverD.dftSerTbl.getRowCount();i++)

{

if(pNme.equals(serverD.dftSerTbl.getValueAt(i, 1)))

{

flag=false;

break;

}

}

if(flag)

{

valuesVec=tempV=checkCritical(tempV);

valuesVec.insertElementAt(flnme, 0);

serverD.dftSerTbl.addRow(valuesVec);

Thread.sleep(2000);

/**new Client("[FLA:"+valuesVec.get(0)+",Name:"+valuesVec.get(1)+"] "

+"[T:"+valuesVec.get(3)

+",BPs:"+valuesVec.get(4)

+",O2:"+valuesVec.get(5)

+",ECG:"+valuesVec.get(6)

+",BPd:"+valuesVec.get(7)+"]");*/

new Client("[FLA:"+valuesVec.get(0)+",Name:"+valuesVec.get(1)+"] ["+critiStr+"]");

}

else

{

ValuesVec=tempV=checkCritical (tempV);

valuesVec.insertElementAt (flnme, 0);

for(int j=0;j<serverD.dftSerTbl.getColumnCount();j++)

{

serverD.dftSerTbl.setValueAt(valuesVec.get(j), i, j);

}

}

}

} catch (Exception e) {

e.printStackTrace();

}

}

private Vector<String> checkCritical(Vector<String> tempV) {

Vector<String> vv=new Vector<String>();

int j=2;

String[] arrStr={"Temprature","BP-s","O2","ECG","BP-d"};

vv.add(tempV.get(0));

vv.add(tempV.get(1));

String sta="Normal";

critiStr="";

for(int i=0;i<5;i++)

{

if(critical[i]<Integer.valueOf(tempV.get(j)))

{

vv.add(tempV.get(j));

sta="Critical";

critiStr=critiStr+arrStr[i]+" : "+tempV.get(j)+" ";

}

else

{

vv.add(tempV.get(j));

}

j++;

}

vv.add(sta);

return vv;

}

/**

 * @param args

 */

public static void main(String[] args) {

// TODO Auto-generated method stub

}

}

package hello;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import javax.microedition.io.Connector;

import javax.microedition.io.ServerSocketConnection;

import javax.microedition.io.SocketConnection;

public class HelloMIDlet extends MIDlet implements Runnable,CommandListener {

 private Command exitCommand; // The exit command

 private Display display; // The display for this MIDlet

 TextBox t;

 int listint=0;

 List list = new List("Critical Patients Reports:", List.IMPLICIT);

 InputStream is;

 OutputStream os;

 SocketConnection sc;

 ServerSocketConnection scn;

 private boolean stop;

 public HelloMIDlet() {

 display = Display.getDisplay(this);

 exitCommand = new Command("Exit", Command.EXIT, 0);

 }

 public void start() {

Thread tt = new Thread(this);

tt.start();

 }

 public void run() {

 System.out.println("Mobile Server Waiting...");

String portString = String.valueOf("5000");

try {

 scn = (ServerSocketConnection) Connector.open("socket://:"

 + portString);

 // Wait for a connection.

 while (true) {

 sc = (SocketConnection) scn.acceptAndOpen();

 //si.setText("Connection accepted");

 is = sc.openInputStream();

 // os = sc.openOutputStream();

 // sender = new Sender(os);

 // Allow sending of messages only after Sender is created

 // f.addCommand(sendCommand);

StringBuffer sb = new StringBuffer();

int c = 0;

while (((c = is.read()) != '\n') && (c != -1)) {

 sb.append((char) c);

}

if (c == -1) {

 break;

}

t.setString(t.getString()+"\n"+sb.toString());

 //list.set(listint, sb.toString(), null);

 list.append(sb.toString(), null);

 Ticker ticker = new Ticker(sb.toString());

 list.setTicker(ticker);

 System.out.println("list.getSelectedIndex()::::::"+list.getSelectedIndex());

 if(list.size()>1){

 list.setSelectedIndex(list.getSelectedIndex()+1, true);}

 //listint++;

 }

 stop();

 // si.setText("Connection is closed");

} catch (IOException ioe) {

 if (ioe.getMessage().equals("ServerSocket Open")) {

Alert a = new Alert("Server", "Port " + portString

+ " is already taken.", null, AlertType.ERROR);

a.setTimeout(Alert.FOREVER);

a.setCommandListener(this);

display.setCurrent(a);

 } else {

if (!stop) {

 ioe.printStackTrace();

}

 }

} catch (Exception e) {

 e.printStackTrace();

}

 }

 public void startApp() {

 t = new TextBox("Critical Patients Reports:", "", 4096, 0);

 list.addCommand(exitCommand);

 list.setCommandListener(this);

 t.setCommandListener(this);

 //display.setCurrent(t);

 display.setCurrent(list);

 setStrings();

 }

 public void setStrings()

 {

 start();

 }

 public void pauseApp() {

 }

 public void destroyApp(boolean unconditional) {

 }

 public void commandAction(Command c, Displayable s) {

 if (c == exitCommand) {

 destroyApp(false);

 notifyDestroyed();

 }

 }

 public void stop() {

try {

 stop = true;

 if (is != null) {

is.close();

 }

 if (sc != null) {

sc.close();

 }

 if (scn != null) {

scn.close();

 }

} catch (IOException ioe) {

 ioe.printStackTrace();

}

 }

}

Software Testing

 General

Software Testing is the process used to help identify the correctness, completeness, security and quality of developed computer software. Testing is a process of technical investigation, performed on behalf of stakeholders, that is intended to reveal quality-related information about the product with respect to the context in which it is intended to operate. In general, software engineers distinguish software faults from software failures. Our project" Visual cryptography For Cheating Prevention” is tested with the following testing methodologies.

 Developing Methodologies
The test process begins by developing a comprehensive plan to test the general functionality and special features on a variety of platform combinations. Strict quality control procedures are used. The process verifies that the application meets the requirements specified in the system requirements document and is bug free. The following are the considerations used to develop the framework for developing the test methodologies.

 Acquire and study the test strategy

A team very familiar with the business risks associated with the software normally develops test strategy, the test team develops tactics. Thus the test team needs to acquire and study the test strategy. The test tactics are analyzed and studied for finding our various test factors, risks and effects. The risk involved in our project is implementing the encoding of the image. So, the proper knowledge about the testing strategies should be gained in order to avoid such high level risks.

Determine the type of development project

The type of the development refers to the platform or methodology for developing the project. As it is been a simulation project we go for the prototyping. The prototypes are simply predefined structure or model, which can be used for further modeling. By using the prototypes we can modify the existing module of the application for some other specific operations. Here the test tactics is to verify that all the tools are used properly and to test functionality.

Determine the type of software system

The type of software system relates to the type of processing which will be encountered by the system. In this project, the software system we prefer to use is Java . We have chosen Java for its portability and its support to graphics & multimedia specifically for image processing.

Determine the scope of the software system

The scope of the project refers to the overall activities or operation to be included into the system being tested. The scope of the new system varies from that of the existing one. In the existing system, a large overhead occurs in contrast and pixel expansion. Also, the verification process is not efficient in the existing system. In this project, the pixel expansion is optimal because only two sub pixels are added each and every pixel. Also, each and every participants are verified or authentication.

Identify the tactical risks

The tactical risk is the subsets at a lower level of the strategic risks. The risks related to the application and its methodologies are identified. The risk involved in our project is implementing the encoding of the image.

Determine when the testing should occur

In the above processes we have identified the type of processing, scope and risks associated with our project. The testing can occur throughout all the phases of the project. During the analysis phase, the testing strategy and requirements are determined. In design phase, the complexities in design with respect to the requirements are determined and structural and functional test conditions are also tested. During implementation, the design consistency is determined. In test phase, the overall testing of the application is being done and previously the adequacy of the testing plan is also determined. In maintenance phase, the testing for modifying and reusing the system is done.

Build the system test plan

The test plan of the project should provide all the information on the application that is being tested. The test plan is simply a model that has to be followed during the progression of the testing. The test plan consists of the sequential set of procedures to test the application. Initially, the selection process of both secret and verification images are tested. Then the test is carried out for encoding of image, verification process and finally decoding process.

Build the unit test plan

In this case we are dividing the system into three different components or units each having specific functions. The three different components of the system are browser window designing, browser events handling and adding speech to the browser. These units have their own test plan. The main purpose of the unit test plan is to eliminate the errors and bugs during the initial stage of the implementation. As the errors get debugged in the initial stage, the less complex the overall testing after integrating all the units of the system. The unit testing plan can be either simple or complex based on the functionality of that unit.

TESTING TECHNIQUE - TOOL SELECTION PROCESS

In this process the appropriate testing process is selected from various testing methodologies such as prototyping model, waterfall model etc and the selection is done by the means of analyzing the nature of the project. We go for Waterfall model.

Select test factor

This phase selects the appropriate test factor. The particular module of the project which is essential for the testing methodologies is sorted out first. This will help the testing process to be completed within time. The test factors for our project include encoding, verification and decoding process.

Determine SDLC phase

This phase involves the structural testing of the project which will be used for easy implementations of the functions. Though structural testing is so much associated with the coding phase, the structural testing should be carried out at all the phases of the lifecycle. These evaluates that all the structures are tested and sound.

Identify the criteria to test

In this phase the testing unit is trained with the necessary constraints and limit with which the project is to be tested. In our project the testing unit is trained to test whether the image to be encoded is in the PGM format.

Select type of test

Individual responsible for testing may prefer to select their own technique and tool based on the test situation. For selecting the appropriate testing process the project should be analyzed with the following three testing concepts:

1. Structural versus functional testing

2. Dynamic versus static testing

3. Manual versus automatic testing

After analyzing through the above testing concepts we divided to test our project in Waterfall model testing methodology.

[image: image33.png]SELECT TEST FACTOR

!

DETERMINE SDLC PHASE

-
IDENTIFY CRITERIA TO
TEST
SYSTEM SYSTEM
STRUCTURAL FUNCTIONAL
SELECT
TYPE
OF TEST
+ +
SELECT SELECT
TECHNIQUE TECHNIQUE
UNIT TEST
TECHNIQUE
Dynamic
static
SELECT SELECT
MANUAL OR MANUAL OR
AUTOMATED AUTOMATED
TooLs TooLs
Dynamic Dynamic
static static
SELECT SELECT SELECT SELECT
MANUAL OR MANUAL OR MANUAL OR MANUAL OR
AUTOMATED AUTOMATED AUTOMATED AUTOMATED
TooLs TooLs TooLs TooLs

Figure 8.1 Testing technique and tool selection process

Structural Testing

Structural analysis based test sets are tend to uncover errors that occur during coding of the program. The properties of the test set are to reflect the internal structure of the program. Structural testing is designed to verify that the developed system and programs work as specified in the requirement. The objective is to ensure that the product is designed structurally sound and will function correctly.

Functional Testing

Functional testing ensures that the requirements are properly satisfied by the application system. The functions are those tasks that the system is designed to accomplish. This is not concerned with how processing occurs but rather with the results of the processing. The functional analysis based test sets tend to uncover errors that occurred in implementing requirements or design specifications.

Select technique

After selecting the appropriate testing methodology we have to select the necessary testing technique such as stress testing, execution testing, recovery testing, operation testing, compliance testing and security testing. We are performing operation testing by testing whether all the components perform its intended operations.

Select test method

We have to select the testing method which is to be carried out throughout the lifecycle. The two different methods are static and dynamic. Dynamic testing needs the program to be executed completely before testing. This is a traditional concept where the faults detected at the end will be very hard to rectify. In static process the program is tested for each and every line and the testing process is allowed to pass through only after rectifying the occurred fault. These make this process more expensive, so a combination of both static and dynamic testing method.

Mode of testing

It is necessary to select the test mode in which the testing method to be carried out. The two different modes are manual and automated tool. The real time projects needs frequent interactions. So, it is impossible to carry out the testing process by means of automated tool. Our project uses manual testing.

Unit test technique

This phase examines the techniques, assessment and management of unit testing and analysis. Testing and analysis strategies are categorized according to whether they goal is functional or structural or combination of these. It will assist a software engineer to define, conduct and evaluate unit tests and to assess new unit test techniques.

System Testing

Once the entire system has been built then it has to be tested against the "System Specification" to check if it delivers the features required. It is still developer focused, although specialist developers known as systems testers are normally employed to do it. In essence System Testing is not about checking the individual parts of the design, but about checking the system as a whole. In effect it is one giant component. System testing can involve a number of specialist types of test to see if all the functional and non-functional requirements have been met.

Acceptance Testing

Acceptance Testing checks the system against the "Requirements". It is similar to systems testing in that the whole system is checked but the important difference is the change in focus. Systems Testing checks that the system that was specified has been delivered. Acceptance Testing checks that the system delivers what was requested. The customer, and not the developer should always do acceptance testing. The customer knows what is required from the system to achieve value in the business and is the only person qualified to make that judgment.

Regression Testing

This involves assurance that all aspects of an application system remain functional after testing. The introduction of change is the cause of problems in previously tested segments. It is retesting unchanged segments of the application system. It normally involves rerunning tests that have been previously executed to ensure that the same results can be achieved currently as achieved when the segments were last tested.
Conclusion
It is a solution for improving patient monitoring. It should be emphasized that the miTag is designed to optimize extensibility, scalability, and cost. It can be integrated with new sensor modalities to address a wide variety of problems within disaster response.
Java Source

Java byte code

JavaVM

Java

.Class

Source

Code

………..

………..

………..

…………

PC Compiler

Macintosh

Compiler

SPARC

Compiler

Java

Byte code

(Platform

Independent)

Java

Interpreter

(PC)

Java

Interpreter

(Macintosh)

Java

Interpreter

(Spare)

JAVA

Application

JDBC

DBMS

Client machine

DBMS-proprietary protocol

Database server

Java applet or

Html browser

Application

Server (Java)

JDBC

DBMS

Client machine (GUI)

HTTP, RMI, or CORBA calls

Server machine (business Logic)

DBMS-proprietary protocol

Database server

Database

Server

Mobile Device

Mobile Device

Mobile Device

Mobile Device

First Level Analyzer

Gateway

Patient n

Patient 2

Patient 1

First Level Analyzer

Gateway

Patient n

Patient 2

Patient 1

First Level Analyzer

Gateway

Patient n

Patient 2

Patient 1

First Level Analyzer

Gateway

Patient n

Patient 2

Patient 1

_1322662973

_1322662977

_1322662980

_1322662982

_1322662983

_1322662984

_1322662981.vsd

_1322662978.vsd
Component

_1322662975

_1322662976.vsd

_1322662974.vsd

_1322662969.vsd
Actor

_1322662971

_1322662972

_1322662970

_1322662967

_1322662968

_1322662966

