www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

SEMINAR REPORT ON

“VOICE XML”
INDEX

	SR No.
	TOPICS
	PAGE No.

	1
	INTRODUCTION
	 5

	2
	HISTORY
	 7

	3
	GOALS OF VOICE XML
	 9

	4
	SCOPE OF VOICE XML
	 10

	5
	CREATING A VOICE XML DOCUMENT
	 11

	6
	VOICE XML ELEMENTS
	 12

	7
	ARCHITECTURAL MODEL
	 14

	8
	PRINCIPLES OF DESIGN
	 16

	9
	IMPLEMENTATION PLATFORM REQUIREMENT
	 17

	10
	CONCEPTS
	18

	
	10.1 DIALOGS AND SUBDIALOGS

10.2 SESSIONS

10.3 APPLICATIONS

10.4 GRAMMAR

10.5 EVENTS

10.6 LINKS
	18

19

19

20

20

21

	11
	SUPPORTED AUDIO FORMATS
	 21

	12
	EXAMPLE
	 22

	13
	APPLICATIONS
	 23

	14
	CONCLUSION
	 24

	15
	REFERENCES
	 25

INTRODUCTION

VoiceXML is a language for creating voice-user interfaces, particularly for the telephone. It uses speech recognition and touchtone (DTMF keypad) for input, and pre-recorded audio and text-to-speech synthesis (TTS) for output. It is based on the Worldwide Web Consortium's (W3C's) Extensible Markup Language (XML), and leverages the web paradigm for application development and deployment. By having a common language, application developers, platform vendors, and tool providers all can benefit from code portability and reuse.
With VoiceXML, speech recognition application development is greatly simplified by using familiar web infrastructure, including tools and Web servers. Instead of using a PC with a Web browser, any telephone can access VoiceXML applications via a VoiceXML "interpreter" (also known as a "browser") running on a telephony server. Whereas HTML is commonly used for creating graphical Web applications, VoiceXML can be used for voice-enabled Web applications.
There are two schools of thought regarding the use of VoiceXML:
1. As a way to voice-enable a Web site, or
2. As an open-architecture solution for building next-generation interactive voice response telephone services.
One popular type of application is the voice portal, a telephone service where callers dial a phone number to retrieve information such as stock quotes, sports scores, and weather reports. Voice portals have received considerable attention lately, and demonstrate the power of speech recognition-based telephone services. These, however, are certainly not the only application for VoiceXML. Other application areas, including voice-enabled intranets and contact centers, notification services, and innovative telephony services, can all be built with VoiceXML.
By separating application logic (running on a standard Web server) from the voice dialogs (running on a telephony server), VoiceXML and the voice-enabled Web allow for a new business model for telephony applications known as the Voice Service Provider. This permits developers to build phone services without having to buy or run equipment.
While originally designed for building telephone services, other applications of VoiceXML, such as speech-controlled home appliances, are starting to be developed.

[image: image1.png]L 5

o
Audio &%
B0

Voice XL
gatoway with
Voica browser

Fig 1.1

HISTORY
VoiceXML has its roots in a research project called Phone Web at AT&T Bell Laboratories. After the AT&T/Lucent split, both companies pursued development of independent versions of a phone markup language.
Lucent's Bell Labs continued work on the project, now known as TelePortal. The recent research focus has been on service creation and natural language applications.
AT&T Labs has built a mature phone markup language and platform that have been used to construct many different types of applications, ranging from call center-style services to consumer telephone services that use a visual Web site for customers to configure and administer their telephone features. AT&T's intent has been twofold. First, it wanted to forge a new way for its business clients to construct call center applications with AT&T-provided network call handling. Second, AT&T wanted a new way to build and quickly deploy advanced consumer telephone services, and in particular define new ways in which third parties could participate in the creation of new consumer services.
Motorola embraced the markup approach as a way to provide mobile users with up-to-the-minute information and interactions. Given the corporate focus on mobile productivity, Motorola's efforts focused on hands-free access. This led to an emphasis on speech recognition rather than touch-tones as an input mechanism. Also, by starting later, Motorola was able to base its language on the recently-developed XML framework. These efforts led to the October 1998 announcement of the VoxML™ technology. Since the announcement, thousands of developers have downloaded the VoxML language specification and software development kit.
There has been growing interest in this general concept of using a markup language to define voice access to Web-based applications. For several years Netphonic has had a product known as Web-on-Call that used an extended HTML and software server to provide telephone access to Web services; in 1998, General Magic acquired Netphonic to support Web access for phone customers. In October 1998, the World Wide Web Consortium (W3C) sponsored a workshop on Voice Browsers. A number of leading companies, including AT&T, IBM, Lucent, Microsoft, Motorola, and Sun, participated.
Some systems, such as Vocalis' SpeecHTML, use a subset of HTML, together with a fixed set of interaction policies, to provide interactive voice services.
Most recently, IBM has announced SpeechML, which provides a markup language for speech interfaces to Web pages; the current version provides a speech interface for desktop PC browsers.
The VoiceXML Forum will explore public domain ideas from existing work in the voice browser arena, and where appropriate include these in its final proposal. As the standardization process for voice browsers develops, the VoiceXML Forum will work with others to find common ground and the right solution for business needs.
GOALS OF VOICEXML

VoiceXML’s main goal is to bring the full power of web development and content delivery to voice response applications, and to free the authors of such applications from low-level programming and resource management. It enables integration of voice services with data services using the familiar client-server paradigm. A voice service is viewed as a sequence of interaction dialogs between a user and an implementation platform. The dialogs are provided by document servers, which may be external to the implementation platform. Document servers maintain overall service logic, perform database and legacy system operations, and produce dialogs. A VoiceXML document specifies each interaction dialog to be conducted by a VoiceXML interpreter. User input affects dialog interpretation and is collected into requests submitted to a document server. The document server may reply with another VoiceXML document to continue the user’s session with other dialogs.

VoiceXML is a markup language that:

· Minimizes client/server interactions by specifying multiple interactions per document.

· Shields application authors from low-level, and platform-specific details.

Separates user interaction code (in VoiceXML) from service logic (CGI scripts).

· Promotes service portability across implementation platforms. VoiceXML is a common language for content providers, tool providers, and platform providers.

· Is easy to use for simple interactions, and yet provides language features to support complex dialogs.

While VoiceXML strives to accommodate the requirements of a majority of voice response services, services with stringent requirements may best be served by dedicated applications that employ a finer level of control.

SCOPE OF VOICEXML

The language describes the human-machine interaction provided by voice response systems, which includes:

· Output of synthesized speech (text-to-speech).

· Output of audio files.

· Recognition of spoken input.

· Recognition of DTMF input.

· Recording of spoken input.

· Telephony features such as call transfer and disconnect.

The language provides means for collecting character and/or spoken input, assigning the input to document-defined request variables, and making decisions that affect the interpretation of documents written in the language. A document may be linked to other documents through Universal Resource Identifiers (URIs).

CREATING A BASIC VOICE XML DOCUMENT

VoiceXML is an extensible markup language (XML) for the creation of automated speech recognition (ASR) and interactive voice response (IVR) applications. Based on the XML tag/attribute format, the VoiceXML syntax involves enclosing instructions (items) within a tag structure in the following manner:
< element_name attribute_name="attribute_value">
......contained items......
< /element_name>
A VoiceXML application consists of one or more text files called documents. These document files are denoted by a ".vxml" file extension and contain the various VoiceXML instructions for the application. It is recommended that the first instruction in any document to be seen by the interpreter be the XML version tag:

< ?xml version="1.0"?>
The remainder of the document's instructions should be enclosed by the vxml tag with the version attribute set equal to the version of VoiceXML being used ("1.0" in the present case) as follows:
< vxml version="1.0">
VOICEXML ELEMENTS

	Element
	Purpose

	<assign>
	Assign a variable a value.

	<audio>
	Play an audio clip within a prompt.

	<block>
	A container of (non-interactive) executable code.

	<break>
	JSML element to insert a pause in output.

	<catch>
	Catch an event.

	<choice>
	Define a menu item.

	<clear>
	Clear one or more form item variables.

	<disconnect>
	Disconnect a session.

	<div>
	JSML element to classify a region of text as a particular type.

	<dtmf>
	Specify a touch-tone key grammar.

	<else>
	Used in <if> elements.

	<elseif>
	Used in <if> elements.

	<emp>
	JSML element to change the emphasis of speech output.

	<enumerate>
	Shorthand for enumerating the choices in a menu.

	<error>
	Catch an error event.

	<exit>
	Exit a session.

	<field>
	Declares an input field in a form.

	<filled>
	An action executed when fields are filled.

	<form>
	A dialog for presenting information and collecting data.

	<goto>
	Go to another dialog in the same or different document.

	<grammar>
	Specify a speech recognition grammar.

	<help>
	Catch a help event.

	<if>
	Simple conditional logic.

	<initial>
	Declares initial logic upon entry into a (mixed-initiative) form.

	<link>
	Specify a transition common to all dialogs in the link’s scope.

	<menu>
	A dialog for choosing amongst alternative destinations.

	<meta>
	Define a meta data item as a name/value pair.

	<noinput>
	Catch a noinput event.

	<nomatch>
	Catch a nomatch event.

	<object>
	Interact with a custom extension.

	<option>
	Specify an option in a <field>

	<param>
	Parameter in <object> or <subdialog>.

	<prompt>
	Queue TTS and audio output to the user.

	<property>
	Control implementation platform settings.

	<pros>
	JSML element to change the prosody of speech output.

	<record>
	Record an audio sample.

	<reprompt>
	Play a field prompt when a field is re-visited after an event.

	<return>
	Return from a subdialog.

	<vxml>
	Top-level element in each VoiceXML document.

	<script>
	Specify a block of ECMAScript client-side scripting logic.

	<subdialog>
	Invoke another dialog as a subdialog of the current one.

	<submit>
	Submit values to a document server.

	<throw>
	Throw an event.

	<transfer>
	Transfer the caller to another destination.

	<value>
	Insert the value of a expression in a prompt.

ARCHITECTURAL MODEL

The architectural model assumed by this document has the following components:

[image: image2.png]Document Server

3

Request

Decument

VoieeXML
Interpreter L2
Context VoiceXML Interpreter
x
x
L2 L2

Implementation Platform

FIG. 7.1

 A document server (e.g. a web server) processes requests from a client application, the VoiceXML Interpreter, through the VoiceXML interpreter context. The server produces VoiceXML documents in reply, which are processed by the VoiceXML Interpreter. The VoiceXML interpreter context may monitor user inputs in parallel with the VoiceXML interpreter. For example, one VoiceXML interpreter context may always listen for a special escape phrase that takes the user to a high-level personal assistant, and another may listen for escape phrases that alter user preferences like volume or text-to-speech characteristics.

The implementation platform is controlled by the VoiceXML interpreter context and by the VoiceXML interpreter. For instance, in an interactive voice response application, the VoiceXML interpreter context may be responsible for detecting an incoming call, acquiring the initial VoiceXML document, and answering the call, while the VoiceXML interpreter conducts the dialog after answer. The implementation platform generates events in response to user actions (e.g. spoken or character input received, disconnect) and system events (e.g. timer expiration). Some of these events are acted upon by the VoiceXML interpreter itself, as specified by the VoiceXML document, while others are acted upon by the VoiceXML interpreter context.

PRINCIPLES OF DESIGN

VoiceXML is an XML schema. For details about XML, refer to the Annotated XML Reference Manual.

1. The language promotes portability of services through abstraction of platform resources.

2. The language accommodates platform diversity in supported audio file formats, speech grammar formats, and URI schemes. While platforms will respond to market pressures and support common formats, the language per se will not specify them.

3. The language supports ease of authoring for common types of interactions.

4. The language has a well-defined semantics that preserves the author's intent regarding the behavior of interactions with the user. Client heuristics are not required to determine document element interpretation.

5. The language has a control flow mechanism.

6. The language enables a separation of service logic from interaction behavior.

7. It is not intended for heavy computation, database operations, or legacy system operations. These are assumed to be handled by resources outside the document interpreter, e.g. a document server.

8. General service logic, state management, dialog generation, and dialog sequencing are assumed to reside outside the document interpreter.

9. The language provides ways to link documents using URIs, and also to submit data to server scripts using URIs.

10. VoiceXML provides ways to identify exactly which data to submit to the server, and which HTTP method (get or post) to use in the submittal.

11. The language does not require document authors to explicitly allocate and deallocate dialog resources, or deal with concurrency. Resource allocation and concurrent threads of control are to be handled by the implementation platform.

IMPLEMENTATION PLATFORM REQUIREMENTS

This section outlines the requirements on the hardware/software platforms that will support a VoiceXML interpreter.

Document acquisition. The interpreter context is expected to acquire documents for the VoiceXML interpreter to act on. In some cases, the document request is generated by the interpretation of a VoiceXML document, while other requests are generated by the interpreter context in response to events outside the scope of the language, for example an incoming phone call.

Audio output. An implementation platform can provide audio output using audio files and/or using text-to-speech (TTS). When both are supported, the platform must be able to freely sequence TTS and audio output. Audio files are referred to by a URI. The language does not specify a required set of audio file formats.

Audio input. An implementation platform is required to detect and report character and/or spoken input simultaneously and to control input detection interval duration with a timer whose length is specified by a VoiceXML document.

· It must report characters (for example, DTMF) entered by a user.

· It must be able to receive speech recognition grammar data dynamically. Some VoiceXML elements contain speech grammar data; others refer to speech grammar data through a URI. The speech recognizer must be able to accommodate dynamic update of the spoken input for which it is listening through either method of speech grammar data specification.

· It should be able to record audio received from the user. The implementation platform must be able to make the recording available to a request variable.
CONCEPTS

A VoiceXML document (or a set of documents called an application) forms a conversational finite state machine. The user is always in one conversational state, or dialog, at a time. Each dialog determines the next dialog to transition to. Transitions are specified using URIs, which define the next document and dialog to use. If a URI does not refer to a document, the current document is assumed. If it does not refer to a dialog, the first dialog in the document is assumed. Execution is terminated when a dialog does not specify a successor, or if it has an element that explicitly exits the conversation.

DIALOGS AND SUBDIALOGS

There are two kinds of dialogs: forms and menus. Forms define an interaction that collects values for a set of field item variables. Each field may specify a grammar that defines the allowable inputs for that field. If a form-level grammar is present, it can be used to fill several fields from one utterance. A menu presents the user with a choice of options and then transitions to another dialog based on that choice.

A subdialog is like a function call, in that it provides a mechanism for invoking a new interaction, and returning to the original form. Local data, grammars, and state information are saved and are available upon returning to the calling document. Subdialogs can be used, for example, to create a confirmation sequence that may require a database query; to create a set of components that may be shared among documents in a single application; or to create a reusable library of dialogs shared among many applications.

SESSIONS

A session begins when the user starts to interact with a VoiceXML interpreter context, continues as documents are loaded and processed, and ends when requested by the user, a document, or the interpreter context.

APPLICATIONS

An application is a set of documents sharing the same application root document. Whenever the user interacts with a document in an application, its application root document is also loaded. The application root document remains loaded while the user is transitioning between other documents in the same application, and it is unloaded when the user transitions to a document that is not in the application. While it is loaded, the application root document’s variables are available to the other documents as application variables, and its grammars can also be set to remain active for the duration of the application.

[image: image3.png]root

Dy

Dy

Figure 10.3.1: Transitioning between documents in an application.

GRAMMARS

Each dialog has one or more speech and/or DTMF grammars associated with it. In machine directed applications, each dialog’s grammars are active only when the user is in that dialog. In mixed initiative applications, where the user and the machine alternate in determining what to do next, some of the dialogs are flagged to make their grammars active (i.e., listened for) even when the user is in another dialog in the same document, or on another loaded document in the same application. In this situation, if the user says something matching another dialog’s active grammars, execution transitions to that other dialog, with the user’s utterance treated as if it were said in that dialog. Mixed initiative adds flexibility and power to voice applications.

EVENTS

VoiceXML provides a form-filling mechanism for handling "normal" user input. In addition, VoiceXML defines a mechanism for handling events not covered by the form mechanism.

Events are thrown by the platform under a variety of circumstances, such as when the user does not respond, doesn't respond intelligibly, requests help, etc. The interpreter also throws events if it finds a semantic error in a VoiceXML document. Events are caught by catch elements or their syntactic shorthand. Each element in which an event can occur may specify catch elements. Catch elements are also inherited from enclosing elements "as if by copy". In this way, common event handling behavior can be specified at any level, and it applies to all lower levels.
LINKS

A link supports mixed initiative. It specifies a grammar that is active whenever the user is in the scope of the link. If user input matches the link’s grammar, control transfers to the link’s destination URI. A <link> can be used to throw an event to go to a destination URI.

SUPPORTED AUDIO FILE FORMATS

VoiceXML recommends that a platform support the playing and recording audio formats specified below. Note: a platform need not support both A-law and μ-law simultaneously.

	Audio Format
	MIME Type

	Raw (headerless) 8kHz 8-bit mu-law [PCM] single channel.
	audio/basic

	Raw (headerless) 8kHz 8 bit A-law [PCM] single channel.
	audio/x-alaw-basic

	WAV (RIFF header) 8kHz 8-bit mu-law [PCM] single channel.
	audio/wav

	WAV (RIFF header) 8kHz 8-bit A-law [PCM] single channel.
	audio/wav

EXAMPLE

The top-level element is <vxml>, which is mainly a container for dialogs. There are two types of dialogs: forms and menus. Forms present information and gather input; menus offer choices of what to do next. This example has a single form, which contains a block that synthesizes and presents “Hello World!” to the user. Since the form does not specify a successor dialog, the conversation ends.

Our second example asks the user for a choice of drink and then submits it to a server script:

<?xml version="1.0"?>

<vxml version="1.0">

<form>

<field name="drink">

<prompt>Would you like coffee, tea, milk, or nothing?</prompt>

<grammar src="drink.gram" type="application/x-jsgf"/>

</field>

<block> <submit next="http://www.drink.example/drink2.asp"/> </block>

</form>

</vxml>
A field is an input field. The user must provide a value for the field before proceeding to the next element in the form. A sample interaction is:

C (computer): Would you like coffee, tea, milk, or nothing?

H (human): Orange juice.

C: I did not understand what you said.

C: Would you like coffee, tea, milk, or nothing?

H: Tea

C: (continues in document drink2.asp)

	APPLICATIONS OF VOICE XML
	

Below are a few examples in which VoiceXML applications can be used:

· Voice portals: Just like Web portals, voice portals can be used to provide personalized services to access information like stock quotes, weather, restaurant listings, news, etc.

· Location-based services: You can receive targeted information specific to the location you are dialing from. Applications use the telephone number you are dialing from.

· Voice alerts (such as for advertising): VoiceXML can be used to send targeted alerts to a user. The user would sign up to receive special alerts informing him of upcoming events.

· Commerce: VoiceXML can be used to implement applications that allow users to purchase over the phone. Because voice gives you less information than graphics, specific products that don't need a lot of description (such as tickets, CDs, office supplies, etc.) work well.
CONCLUSION

VoiceXML is designed for creating audio dialogs that feature synthesized speech, digitized audio, recognition of spoken and DTMF key input, recording of spoken input, telephony, and mixed-initiative conversations. Its major goal is to bring the advantages of web-based development and content delivery to intera. With this we can conclude VoiceXML development in speech recognition application is greatly simplified by using familiar web infrastructure, including tools and Web servers. Instead of using a PC with a Web browser, any telephone can access VoiceXML applications via a VoiceXML "interpreter" (also known as a "browser") running on a telephony serverctive voice response applications.

REFERENCES

XML UNLEASHED By Michael Morrison, et al

http://www.w3.org/TR/2000/NOTE-voicexml-20000505

http://www.w3.org/TR/voicexml

http://www.voicexmlreview.org

www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com
PAGE
13

