EE126 Lab 1, Fall 2006

VHDL, Verilog, and the Altera environment Tutorial

Table of Contents

1.

2
3
4
5
6.
7
8
9.
A

Create a new Project

. Example Project 1: Full Adder in VHDL
. Code Compilation

. Pin Assignment

. Simulating the Designed Circuit

Programming and Configuring the FPGA Device

. Example Project 2: Full Adder in Verilog
. Lab 1 Assignment

Lab Report Guidelines

ppendix A: VHDL and Verilog Standard Formats

This tutorial is intended to familiarize you with the Altera environment and

introduce the hardware description languages VHDL and Verilog. The tutorial will step
you through the implementation and simulations of a full-adder in both languages. Using
this background you will implement a four-bit adder in both VHDL and Verilog. In the
future, HDL labs can be done in either language.

You may want to refer to Appendix A to review the standard structures of VHDL

and Verilog modules.

1. Create a new Project
On starting Altera Quartus 11, you should be faced with a screen like this:

| . Quartus 11

[SEIE]

Fle Edit View Project Assignments Processing Tools Window Help

[EECIEIEE T IR e 82 1 LAY
Project Mavigator —————————————————————a[x]
Entity |
/iy Compilation Hierarchy |

QUARTUS'I1

Version 6.0

"~ dhyHiersrchy [B Fies | 8 Desian Urits

Status x|
Madule [Froqress Z [Tme ® |

@ Documentation

=
o
% System { Processing J\ Estialnfo J\ Info }, Waming), Cilical Waring } Enor i Suppressed [

£[Messaze 2| ¥ [tocaten =] Locae
1 L3 L W Idie [nom |

!
Figure 1. The main Quartus Il display.

Go to "File -> New Project Wizard". A introduction Dialog will appear (Fig 2), It
indicates the capability of this wizard. You can skip this window in subsequent projects
by checking the box Don’t show me this introduction again.

New Project Wizard: Introduction

The Mew Project “Wizard helpz you create a new project and preliminany project settings, including the

following:

] Froject name and directony

] Mame af the top-level design entity
* Project files and libraries

* T arget device family and device

L] E DAy bool zettings

'ou can change the settings for an existing project and specify addiional project-wide settings with

the Settings command [Azsignmentz menu). You can uze the varous pages of the Settings dialog box
to add functionality to the project.

[Don't show me thiz introduction again

| et = | Cancel

Figure. 2 Tasks performed by the wizard.

Press Next to get the window shown in Figure 3. Choose the location of your working
directory and type in the name of your project (let’s use fulladder) as shown in Fig. 3.

Mew Project Wizard: Directory, Name, Top-Lewvel Entity [page 1 of 5] [E|

What iz the warking directory for thiz project’?
|'H'xnetapp[l1 WYOUR_ACCOUMTYEET 264 ab1| .

YWw'hat iz the name of thiz project?

[fulladder J

YWhat iz the name of the top-level design entity for thiz project? Thiz name iz caze sensitive and must
exactly match the entity name in the design file.

[fullacider J

Ilze Existing Project Settings ...

< Back | et = | Finizh Cancel

Figure. 3 Creation of a new project.

Press Next. Since we have not yet created the directory labl, Quartus Il software
displays the pop-up box in Figure 4 asking if it should create the desired directory.

L

Quartus Il A

' ": Directary "ffnetapp0l HYOURACCOUNTEE1Z6/1ab1" does not exist, Do wou wank bo create it?
L4

Yes Mo J

Figure. 4 Quartus Il software can create a new directory for the project.

Click Yes, which leads to the windows in Figure 5.

New Project Wizard: Add Files [page 2 of 5]

Select the dezign files pou want to include in the project. Click Add All to add all design files in the
project directory to the project. Mote: pou can alwayps add design filez to the project later.
File narne: || | |
File name Tvpe Add All
Specify the path names of any non-default libraries. User Libraries... |
¢ Back | Meut > | Firizh | Canizel

Figure 5. The wizard can include user-specified design files.

The wizard makes it easy to specify which existing files (if any) should be included in the
project. Assuming that we do not have any existing files, click Next, which leads to the
window in Figure 6

New Project Wizard: Family & Device Settings [page 3 of 5]

Select the family and device pou want to target for compilation.

Show in ‘Awvalable device' st

F arnily: Cyclone || Package: Ay -
T arget device

" Auto device selected by the Fitker
i+ Specific device selected in ‘tuvailable devices' list Speed grade: |Any hl
Core wolkage: 1.2V
v Show Advanced Devices

Fin count: A -

Axalable devices:

Marme | LEz | Mernar... | Embed... | FLL | A
EF2C20F43418 18752 239616 B2 4

EP2C200240C3 18752 239616 &2 4

EF2C35F434CE 33216 433540 70 4

EF2C35F434CT 33216 433840 70 4

EF2C35F434C8 33216 433840 70 4

EF2C35F42413 33216 433840 70 4

EF2C35F672CE 33216 433540 70 4

EF2C35FE72CY 33216 433840 70 4 h

[
-

¢ Back | M et » | Finizh Cancel

Figure 6. Choose the device family and a specific device.

We have to specify the type of device in which the designed circuit will be implemented.
Choose Cyclone™ 11 as the target device family. We can let Quartus Il software select a
specific device in the family, or we can choose the device explicitly. We will take the
latter approach. From the list of available devices, choose the device called
EP2C35F672C6 which is the FPGA used on Altera’s DE2 board. Press Next, which
opens the window in Figure 7.

Mew Project Wizard: EDA Tool Settings [page 4 of 5]

Specify the ather EDA tools - in addition ta the Quartus || software -- used with the project.

[ED& design enty/synthesis toal | J
I
-
[EDé simulation tool: | J
B
-
[EDA timing analysis tool: | J
|
-

< Back | MHext > | Finizh Cancel

Figure 7. Other EDA tools can be specified.

The user can specify any third-party tools that should be used. A commonly used term for
CAD software for electronic circuits is EDA tools, where the acronym stands for
Electronic Design Automation. This term is used in Quartus Il messages that refer to
third-party tools, which are the tools developed and marketed by companies other than
Altera. Since we will rely solely on Quartus 11 tools, we will not choose any other tools.
Press Next.

A summary of the chosen settings appears in the screen shown in Figure 8. Press Finish,
which returns to the main Quartus Il window, but with labl YOURNAME specified as
the new project, in the display title bar.

New Project Wizard: Summary [page 5 of 5]

YWhen pou click Finizh, the project will be created with the following settings:

Project directany:
o falterAwark.lab

Project name: fulladder
Top-level design entiby: fulladder
Humber of files added:]

MHumber of user libraries added: 0

Device assignments:

Family narne: Cyclane |

Device: EPZC3IEFET2CE
EDA tools:

Dezign entry/synthesis: <Mones

Simnulatiorn: <Mones

Timing analysiz: <Mones

< Back | Finizh |

Cancel

Figure 8. Summary of the project settings.

2. Example Project 1: Full Adder in VHDL

Select “File > New” to get the window in Figure 9, choose VHDL File, and click OK.
This opens the Text Editor window. The first step is to specify a name for the file that
will be created. Select File > Save As to open the pop-up box depicted in Figure 10. In
the box labeled Save as type choose VHDL File. In the box labeled File name enter
fulladder. Put a checkmark in the box Add file to current project. Click Save, which
puts the file into the directory labl. Maximize the Text Editor window and enter the
VHDL code as shown in Figure 11. Save the file by typing File > Save, or by typing the

shortcut Ctrl-s.

New

Device Design Files l Other Filez]

AHOL File

Block DiagramsSchematic File
EDIF File

SOPC Builder System

"v"erilni HOL File

Ok

Cancel

Figure 9. Choose to prepare a VHDL file.

Save in

E

ty Recent
Documents

’:

.
—

Deszktop

Fdy M etworl:,
Flaces

59 lab1 =l ¥ -
S db

File name: |fu||au:h:|er Save |
Save as lype: |VHDL File [* whd;® whd(] Cancel |

[v Add file to current project

Figure 10. Name the file

library IEEE:

use IEEE.3TD LOGIC 1164.ALL:

use IEEE.3TD LOGIC ARITH. ALL:
use IEEE.3TD LOGIC UNSIGHNED.ALL:

entity fulladder is
port [a: in std logic:
b: in std logic:
cin: in std logic:
Sum: out std logic:
cout: out std logic):
end fulladder;

architecture Behawvioral of fulladder is
Signal =1,s2,s53: std ulogic:
constant gate delay: Time :=100 ps;

begin
gl<={a xor b)) after gate delay:
gZ<={cin and =1) after gate delay:
g3i<=(a and b) after gate delay:
Sum<= ({51 xor cin) after gate delay:
cout<=(sZ or =3) after gate delay:

end Behaviuralﬂ

Figure 11. fulladder VHDL code.

NOTE:

-- Constant can be used to declare a constant of a particular type. In this case, Time.
-- The functional relation between the input and output signals is described by the
architecture body.

-- Only one architecture body should be bound to an entity, although many
architecture bodies can be defined.

The syntax of VHDL code is sometimes difficult for a designer to remember. To
help with this issue, the Text Editor provides a collection of VHDL templates. The
templates provide examples of various types of VHDL statements, such as an ENTITY
declaration, a CASE statement, and assignment statements. It is worthwhile to browse
through the templates by selecting Edit > Insert Template > VHDL to become familiar
with this resource.

3. Code Compilation

The code in the file fulladder is processed by several Quartus 11 tools that
analyze the code, synthesize the circuit, and generate an implementation of it for the
target chip. These tools are controlled by the application program called the Compiler.
Run the Compiler by selecting Processing > Start Compilation, or by clicking on the

toolbar icon ™ that looks like a purple triangle. As the compilation moves through
various stages, its progress is reported in a window on the left side of the Quartus Il
display. Successful (or unsuccessful) compilation is indicated in a pop-up box.
Acknowledge it by clicking OK, which leads to the Quartus Il display in Figure 12. In
the message window, at the bottom of the figure, various messages are displayed. In case
of errors, there will be appropriate messages given. When the compilation is finished, a
compilation report is produced. A window showing this report is opened automatically,
as seen in Figure 12. The window can be resized, maximized, or closed in the normal
way, and it can be opened at any time either by selecting Processing > Compilation

Report or by clicking on the icon &

% Quartus Il - c:/alterfworkflab1/fulladder - fulladder

File Edit Wiew Project Assignments Processing Tools Window Help
0= =] K2 | [fulladder Bl Qe L~ O SRR DR
e 2l b2 fulladder.vhd] @ Compilation Report - Flow 5___ l
E ity [Logic Celis [LC Combinati| p=— —
Cyclone 1: EP2C35FE72CE E
b fulladder 202 202 | =
+ Compilation Report - Flow Summary
S B Legal Notice
SR Flow Summary
¢ 5 S F:ow Settingsf ¢ bl
e Flow Mon-Default Global Settir
yHierarchy J i3 J T Unils] gé Flows Elapsed Time Flaw Status Successhul - Tue Sep 19 00:3C
e =zl é F'O*\Iﬂ Log o Quartus |l Version 6.0 Build 202 06/20/2006 5P
Hodule | Progress % | Time & | : gm ;::;:gs e Revision Nan?e fulladder
Full Compilation 000035 41 &) Assembler Top-level Entity Name fulladder
Analysiz & Synthesis 000003 +1- &H Timing Analyzer Famiy Cyclane Il
Fitter 00:00:15 Device EPZC35FET2CE
Azsembler 00:00:14 Timing Models Final
Timing Analyzer 000003 et timing requirements ez
Total logic elements 2/3326(<1%)
Total iegisters a
Taotal pins /AR %)
Total vitual ping a
Tatal memary bits 0/453840(0%)
Embedded Multiplier 3-bit elements 0/ 70[0%)
Tatal PLLs 0/4(0%)
v
4 b
x| '5,) Info: Quartus IT Assembler was successful. 0 errors, 0 warnings el
4 Info:

‘% Info: Rwming Quartus II Tining Analyzer 3
IiP S . . . R [, T . e
“g’ Systern)\Pmcexsing A Extra Info)\ Info)\ Warhing)\ Critical Warhing)\ Erar)\ Suppressed /

I
g Meszage: 0of 93 J ﬂ | J Q
For Help, press F1 | | Idle NUM

Figure 12. Display after a successful compilation.

4. Pin Assignment

The DE2 board has hardwired connections between the FPGA pins and the other
components on the board. We will use two toggle switches, labeled SW0, SWland SW2,
to provide the external inputs, a, b and cin, to our example circuit. These switches are
connected to the FPGA pins N25, N26 and P25, respectively. We will connect the output
sum and cout to the green light-emitting diodes labeled LEDGO and LEDG1, which is
hardwired to the FPGA pin AE22 and AF22.

Pin assignments are made by using the Assignment Editor. Select Assignments >
Assignment Editor to reach the window in Figure 13. Enter the pin assignment as shown
in Figure 13. Recompile the circuit, so that it will be compiled with the correct pin
assignments.

& Assignment Editor [';_| EI P§|

&7 s Cateqgory: | Fin ﬂ ﬁ‘ All || 2 Fin é Timing | # Logic Option |
= |4 + Information: | This category displays all pin assignments For the target device Family, Pin assignments assign node and entities ko pins
kS
B [« Edit: ¥/ |a |
To Location If0 Bank. I} Standard General Function Specia
iRl FIN_MES 5 LYTTL Dedicated Clock LK,
z2 m-h FIN_MNZ6 o LYTTL Dedicated Clock CLES,
: 3 B cin PIN_PZ25 & L¥TTL Dedicated Clock, CLKE,
qH |4 0¥ cout PIN_AEZ2 7 LYTTL Calumn 10 LYDS1!
:E—_’ 5 L sum PIN_AFZ2 7 LWTTL Column 10 LVDS1!
& ST <MW
75
&
*
AT
i
&
2
< >

Figure 13 The Assignment Editor window.

You can import a pin assignment by choosing Assignments > Import Assignments.

This opens the dialogue in Figure 14 to select the file to import. Type the name of the file,
including the csv extension and the full path to the directory that holds the file, in the File
Name box and press OK. Of course, you can also browse to find the desired file.

Import Assignments §|

Specify the zource and categories of assignments to import. Click LogicLock Import File Azsignments
to zelect LogicLock [mpart File(z].

Azsignment source
| | o]

{* File namme:

" Usze LogicLock Import File &zsigrments 4

[vw Copy existing assignments into fulladder. gsf. bak. before importing

Cancel

Figure 14. Importing the pin assignment.

For convenience when using large designs, all relevant pin assignments for the DE2
board are given in the file called DE2_pin_assignments.csv. If we wanted to make the
pin assignments for our example circuit by importing this file, then we would have to use
the same names in our VHDL design file; namely, SW(0), SW(1), SW(3) and LEDG(0),
LEDG(1) for a, b, cin, sum and cout, respectively. Since these signals are specified in the

DE2_pin_assignments.csv file as elements of arrays SW and LEDG, we must refer to
them in the same way in the design file. For example, in the DE2_pin_assignments.csv
file the 18 toggle switches are called SW[17] to SW[0]; since VHDL uses parentheses
rather than square brackets, these switches are referred to as SW(17) to SW(0). They can
also be referred to as an array SW(17 downto 0).

5. Simulating the Designed Circuit

Before implementing the designed circuit in the FPGA chip on the DE2 board, it is
prudent to simulate it to ascertain its correctness. Quartus Il software includes a
simulation tool that can be used to simulate the behavior of a designed circuit. Before the
circuit can be simulated, it is necessary to create the desired waveforms, called test
vectors, to represent the input signals. It is also necessary to specify which outputs, as
well as possible internal points in the circuit, the designer wishes to observe. The
simulator applies the test vectors to a model of the implemented circuit and determines
the expected response. We will use the Quartus 1l Waveform Editor to draw the test
vectors, as follows:

Open the Waveform Editor window by selecting File > New. Click on the Other
Files tab to reach the window displayed in Figure 15. Choose Vector Waveform File
and click OK.

New &'

Device Design Files Other Files l

AHDL Include File

Block Symbol File

Chain Dezcription File
Hewradecimal [|ntel-Format] File
Logic Analyzer Interface File
kemor |nitialization File

SignalTap |l File
Tl Scpt File
Text File

Yector W aveform File

k. Cancel

Figure 15. Choose to prepare a test-vector file.

The Waveform Editor window is depicted in Figure 16. Save the file under the
name fulladder.vwf. Set the desired simulation to run from 0 to 20 ns by selecting Edit >
End Time and entering 20 ns in the dialog box that pops up. Selecting View > Fit in
Window displays the entire simulation range of 0 to 20 ns in the window.

B fulladder. ywi* =13

Mazter Time Bar: 20.0 nz 1| +| Painter: 489 he Interval: 1511 he Start: 0ps End: 200 he
) it | PP 100ns 200 nd
G Ops 200 ns

Figure 16. The Waveform Editor window.

Next, we want to include the input and output nodes of the circuit to be simulated. Click
Edit > Insert Node or Bus to open the window in Figure 17. It is possible to type the
name of a signal (pin) into the Name box, but it is easier to click on the button labeled
Node Finder to open the window in Figure 18. The Node Finder utility has a filter used
to indicate what type of nodes are to be found. Since we are interested in input and output
pins, set the filter to Pins: all. Click the List button to find the input and output nodes as
indicated on the left side of the figure. Select all signals and click the > sign to add it to
the Selected Nodes box on the right side of the figure. Click Ok to close the Node Finder
Window and then Ok in the window of Figure 17. This leaves a fully displayed
Waveform Editor window, as shown in Figure 19.

Insert Mode or Bus | |

%)

Name: | 0K

Type: [INPUT | Cancel
Valustype: | HLevel | [Node Finder... |
Fidlr [Binary a

Bus width: |1

Start index: |':'

[Dizplay gray code count as binary count

Figure 17. The Insert Node or Bus dialogue.

MNode Finder @

Named: [T | Fiter: [Pins: ol ~ Custornze.. | List | Q ok |
Laak in: |le||-E|I:||:|EI| LJJ ¥ Include subertities 1o ‘ Cancel ‘
MNodes Found: Selected Modes:
| Mame] Azsighments | Type Mame IAssignments] Type
I a FIN_NZ25 Input S 5= [fulladderla FIMN_M25 Input
b PIN_NZE Inpit I [fulladderlb PIN_N2E Inpit
£ cin FIN.F5E Input 2> | | @ rusddarcin FIN.PZ5 Input
L cout FIN_&E22 Olutput < £ [fulladder|cout FIMN_AE22 Output
£ sum PIN_AF22 Output A [fulladder|zum PIN_&F22 Output
<4
< I | > A5 ! -

Figure 18. Selecting nodes to insert into the Waveform Editor.

Figure 19. The nodes needed for simulation.

i fulladder. vwf* Q@]ﬁ__(]

Master Time Bar: 20.0 ns 4| +| Painter: 1919 nz Interval: 810 ps Start: Ops End: 20.0 s
_ vauear | EES 100ns 200
i Hame 0ps 20.0 nz
A = a BO

[b BO

= cin B0

¥ cout B

Lo UM B SRR

Select signal a by first select the icon [%, then click signal a”. Then click the icon 2 1o
bring up Figure 20 and fill in values as shown in that figure. Do the same to signal b and
cin by using period of 1000ps and 2000ps respectively. Then save the file.

Clock [

Time range
Stark tire: |EI | ps ﬂ
End time: 2.0 s -]

B aze wavefarm an
f'“

* Time period:

Period: 500 -

Offset: 0.0 s -

Dty eocle (%] (50 _I

] | Canicel |

Figure 20. Clock waveform setting for a
A designed circuit can be simulated in two ways. The simplest way is to assume that
logic elements and interconnection wires in the FPGA are perfect, thus causing no delay
in propagation of signals through the circuit. This is called functional simulation. A more
complex alternative is to take all propagation delays into account, which leads to timing
simulation. Typically, functional simulation is used to verify the functional correctness of
a circuit as it is being designed. This takes much less time, because the simulation can be
performed simply by using the logic expressions that define the circuit.

To perform the functional simulation, select Assignments > Settings to open the Settings
window. On the left side of this window click on Simulator to display the window in
Figure 21, choose Functional as the simulation mode, and click OK. The Quartus 11

simulator takes the inputs and generates the outputs defined in the fulladder.vwf file.
Before running the functional simulation it is necessary to create the required netlist,
which is done by selecting Processing > Generate Functional Simulation Netlist. A

simulation run is started by Processing > Start Simulation, or by using the icon

P At

the end of the simulation, Quartus Il software indicates its successful completion and
displays a Simulation Report illustrated in Figure 22.

Settings - fulladder

Category:

- [[F- [

General

Filzz

|Jzer Libraries [Current Praject]
Device

|- Timing Analysis Settings

|- EDA Tool Settings

|- Compilation Process Settings
|- Analyziz & Synthesiz Settings
| Fitter Settings

- bzzembler

Design Assistant
SignalT ap Il Logic Analyzer
Logic Analyzer Interface
SignalProbe Settings

[=]- Simulator Settings

Simulation Power

|- PowerPlay Power Analyzer Settings

Select simulation options.

Simulation mode: | [FHETE

Simulation input; qulladder.vwf

Simulation perind

{* Run simulation until all vector stimuli are uzed

™ End simulation at: :

v Automatically add pins to simulation output waveforms
[~ Check outputs panson Setting ‘
W Simulation coverage reparting Report Settings...

[Owenwrite simulation input file with simulation results

[~ Disabl

Mare Settings. ..

Description:

Specifies the type of gimulation to perform for the current Simulation focus,

o]

Caticel

Figure 21. Specifying the simulation mode.

Simulation Waveforms

Figure 22. The result of functional simulation.

Simulation mode: Functional

Mazter Time Bar: 0pz 4| v Pointer; 1.03 nz Interval: 1.03 ns Start;

| vatea g ps 100ns 200

0ps Pz
I

= a B0 UUUTTUUUUUUU T U U Ui U U U e
= b A I e I A e e e I e e e s O I O O
[} cin Bo 11T r°Tr Tt 1 1T 11T 1
|| cout A I I Y I s s O o O N
@| wm o LU UL T L U L T U T i LU

Having ascertained that the designed circuit is functionally correct, we should now
perform the timing simulation to see how it will behave when it is actually implemented
in the chosen FPGA device. Select Assignments > Settings > Simulator to get to the
window in Figure 21, choose Timing as the simulation mode, and click OK. Run the
simulator, which should produce the waveforms in Figure 23.

Simulation Waveforms

Simulation made: Timing

Maszter Time Bar: Opz 4| v Pointer; Interval; Start; End:
) vaea | PP 100ns 200nd
ame Ds ? ps

[4 5 BD ipipigipigipipipiptgipipipipigipipipipipgipigipipigipipipigipinigipiyinipipinipgin
B b BO EpEpEpEpEpEpEREpEpEpEEEpEREpEEEpEEEpEREY
| cin B -1+t r—
| cout BO 1 1 1 1 1 1

| sum] g S S D I Y By O I |

Figure 23. The result of timing simulation.

6. Programming and Configuring the FPGA Device

The programming and configuration task is performed as follows. Flip the RUN/PROG
switch (on DE2 Board) into the RUN position. Select Tools > Programmer to reach the
window in Figure 24. Here it is necessary to specify the programming hardware and the
mode that should be used. If not already chosen by default, select JTAG in the Mode box.
Also, if the USB-Blaster is not chosen by default, press the Hardware Setup... button and
select the USB-Blaster in the window that pops up, as shown in Figure 25.

4 fulladder.cdf*

cEa Hardware Setup... USE-Blaster [USE-0] Mode: |JTAG | Progess: 0%

™ Enable realtime ISP to allow background programming [for Mas 1| devices)

P Start File Device Checksum Usercode E[Uﬁ:gam; Werify EIP?:cl?k Examine Segﬁrity Eraze EI‘_.SA;P
fulladder. sof EPZC35FE72 002FEDES FFFFFFFF

ﬂ'ﬂ Auto Detect

¥ Delete

4 Add File...

& Change File...

Figure 24. The Programmer window.

X

Hardware Setup

Hardware Settings l._IT,&-,G Settings]

Select a programming hardware setup to use when programming devices. Thiz programming
hardware setup applies anly to the current programmer window,

Currently zelected hardware:

Ayailable hardware items:

Hardware | Server | Fart | Add Hardware. .. |
LUSE-Elazter Local UsSe-O |

Cloze

Figure 25. The updated Programmer window.

Observe that the configuration file fulladder.sof is listed in the window in Figure 24. If
the file is not already listed, then click Add File and select it. This is a binary file
produced by the Compiler’s Assembler module, which contains the data needed to
configure the FPGA device. The extension .sof stands for SRAM Object File. Note also
that the device selected is EP2C35F672, which is the FPGA device used on the DE2
board. Click on the Program/Configure check box, as shown in Figure 24. Now, press
Start in the window in Figure 24. An LED on the board will light up when the
configuration data has been downloaded successfully. If you see an error reported by
Quartus Il software indicating that programming failed, then check to ensure that the
board is properly powered on.

7. Example Project 2: Full Adder in Verilog

Follow the step 1 to create a new project but with a different name (ex:
fulladder2). Click File>New to bring up the dialog as shown in Figure 26 and select
Verilog HDL File and Click OK. Enter the code as shown in Figure 27. In Verilog, a
module’s inputs and outputs are listed at least twice — once in the 10 list following the
module name, and again inside the module where they are assigned a direction.

Verilog module outputs need to be registered. That is to say, the result of a logical
expression cannot be sent directly to an output pin, but must first be buffered by a register.
This is accomplished by declaring a register with the same name as the signal.

Since “sum” and “cout” are output pins, add registers as shown in Figure 27. Refer to
Table 1 for the Verilog syntax of common logical operators.

New

Device Design Files l Other Files]

x]

AHDL File
Black Diagram/Schematic File
EDIF File

YHOL File

SOPC Builder Sistem

Ok

Cancel

Figure 26. Create new Verilog File

module fulladder(a,b,cin,sum,cout] ;

input a;
input b
input cin;
output sum;
outcput cout;

reg sSum;
reg cout;

always @{a or b or cin)

begin
sum <= a ** b ** cing
cout <= (a && b) || (a && cin)
end
endmodule

Il (b && cin);

Figure 27 Verilog Code

Operator | Verilog Syntax
AND &&
OR |
XOR A
NOT !

Table 1. Basic Verilog Operator
Note that the expressions for “sum” and “cout” are placed in an always block. An always
block is executed any time one of the signals in the sensitivity list (“a” or b or cin” in this
case) changes. This tells the synthesizer to update the “sum” and “cout” registers only
when an input changes.

The procedure for synthesizing and simulating the fulladder module is the same as in the
VHDL section.

8. Lab 1 Assignment

In both VHDL and Verilog, use the full-adder modules created in the above tutorials to
implement four-bit adder modules with the architecture shown in figure 19. To do this,
create a new source in the project where you designed the fulladder. You will have to
declare multi-bit signals and instantiate the fulladder modules in this new source.
Connect the “cout” pin of each full-adder to the “cin” pin of the next.

Refer to Appendix A for module instantiation format, multi-bit signal declarations etc.

B[T TS] B[T T[El B[T TH B[T T[D]
FA FA FA FA 0"
sumf4] sum[3] Sum[2] sumf1] Surmn[o]
Figure 19

Once the four-bit adder is able to synthesize, run Simulator to test your design. Step the
simulation with several different input combinations and verify the adder’s functionality.
Record results and/or take some screenshots.

9. Lab Report Guidelines

Please write up a report on the HDL implementation and simulation of the four-bit adders
created in this lab. The lab report should at least include a purpose, procedure, results,
and conclusion. Please include all HDL in an appendix.

Appendix A: VHDL and Verilog Standard Formats
Standard Structure of a VHDL Design
entity entity_name is
Port(signalO : in std_logic;
signall : out std_logic;

signaln : out std_logic_vector (3 downto 0));
end entity_name;
architecture Behavioral of entity_name is
-- component declarations
component comp_name is
Port(a: in std_logic;

o)

end component;
-- signal declarations
signal wire0, wirel : std_logic;
-- main block
begin
-- behavioral and/or structural code here.
-- module instantiation
instance_name: comp_name

port map(signal0, signall, ...);
-- logical operations
signal3 <= (signal4 and signal5) xor signal8;
end

Standard Structure of a Verilog Design
module module_name(signalO,
signall,

signaln);
// module signals
input signalO;
output [15:0] signall;

output signaln;
Il internal registers
reg register0;
reg signall,;
[internal signals
wire wire0;
wire wirel;
/l behavioral and/or structural code here.
// module instantiation
module_namel instance_namel (signalO, signall);
/'logical operations
always @ (signal4 or signal5 or signal8)
begin
signal3 <= (signal4 && signal5) " signal8;
end
endmodule

