www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

Table of contents

1. Introduction

2. The File

. Ordinary files

. Directory files

. Device files

. Basic file attributes

3. Implementation of files

3.1. I-node table

 4. Implementation of directories

 5. Mapping of path

 6. File system layout

 6.1. Boot block

 6.2. Super block

 6.3. Bit maps

 6.4. I-node blocks

 6.5. Data blocks

 7. File system reliability

 7.1. Bad blocks

 7.2. File system consistency

 8. Conclusion

 9. References
1. Introduction
A file's purpose is to ease access to nonvolatile storage through a simple, commonly understood interface. Using a file system for access to all system resources is intrinsic to the UNIX programming paradigm. A File is a very important abstraction in the computing programming field. Files serve for storing data permanently; they offer a few simple but powerful primitives to the programmers. The file system is the way the operating system organizes, manages and maintains the file hierarchy into mass-storage devices, normally hard disks. Every modern operating system supports several different, disparate, file systems.
 In UNIX. almost everything can be thought of as a file, even physical devices and processes. As long as information can be read from or written to them they are treated the same in many ways. The UNIX file system is hierarchical. Every file is in a directory. Every directory is contained within some other directory except for the highest-level directory (the root directory) whose designation is the forward slash / .When describing the location of a file within the directory structure, the names of directories are separated with slashes. Files are owned by users. A user can determine what access she and others will have to files and directories that she owns. File systems have historically been constrained to one hardware device or have been dependent upon underlying volume managers for file system capacities differing from the foundational hardware. A simple file is a named series of bytes that is addressable to byte granularity, and functions as a non-volatile storage location for the computer user's data. UNIX file name space consists of hierarchically nested directories, with files as leaves within this tree structure. Files can be accessed through command line utilities or standard library interfaces accessible to application software. In addition to simple files, UNIX represents many of its other resources as files for ease of access. Everything that is executed on the system is a process, and all process input and output (I/O) is done to a file. Some resources represented as files include hardware components, raw devices, operating system information, communication facilities, links to other files, and the directories that comprise the file system's name space itself. The utility of the file paradigm is evidenced by its continued popularity and ubiquity in modern operating systems.
 Application developers have the option of writing to raw devices which themselves are represented as files, but the extra application sophistication required to write to raw devices and manage the data thereon, rarely justifies the benefits of marginally better performance and added control over data layout, storage, and retrieval. Database management systems often offer the option of storing data on raw devices, but most administrators still prefer to construct even these higher-level storage abstractions over file systems for ease of data management and backup. File systems provide a beneficial degree of abstraction from the hardware so storage resources can be allocated appropriately to various users. For voracious consumers of storage, numerous devices can be aggregated together to present a single file system, and for modest consumers large devices can be carved into small chunks for sharing amongst multiple file systems. With proper file system design, files can exceed the size of a single device, and even provide sparse record storage to meet the most exotic and challenging application storage requirements. Ultimately, the design goal of any file system should be to ease access to and management of large amounts of nonvolatile data without reducing performance or restricting the intended use of the system.
2. The File
A UNIX file is a storehouse of information; it is simply a sequence of characters (not wholly true). A file contains exactly those bytes that we put into it, be it a source program, executable code or anything else. It neither contains its own size nor its attributes, including the end-of-mark. It doesn’t even contain its own name.
Although everything is treated as a file by UNIX, it’s still necessary to divide these files into three categories:
· Ordinary files

· Directory files

· Device files

The reason behind making above distinction is that the significance of a file’s attributes depends on its type.

2.1. Ordinary File:
This is the traditional definition of file. It consist of a stream of data resident on some permanent magic media. We can put anything we want to put into this type of file. This includes all data, source programs, object and executable code, all UNIX commands as well as any files created by user. This file also referred as regular file.

The most common type of ordinary file is the text file. This is just a regular file containing printable characters. The characteristic feature of text files is that the data inside them are divided into groups of lines, with each line terminated by the newline character. This character isn’t visible, and doesn’t appear in hard copy output.

2.2. Directory File:
A directory contains no external data, but keeps some details of the files and sub-directories that it contains. The UNIX file system is organized with a number of such directories and sub-directories. This allows two or more files in separate directories to have the same filename.

A directory file contains two fields for each file- the name of the file, and its identification number (the inode). If a directory house, say, ten files, there will be ten such entries in the directory file. We can’t, however, write directly into a directory file; that power rests only with the kernel. When an ordinary file is created or removed, its corresponding directory file is automatically updated by the kernel.
2.3. Device File:
The definition of a file has been broadened by UNIX to consider even physical devices as files. The definition includes printers, tapes, floppy drives, CD-ROMs, hard disks and terminals.

The device file is special in the sense that any output directed to it will reflect onto the respective physical device associated with the filename. When we issue a command to print a file, we are really directing the file’s output to the file associated with the printer. The kernel takes care of this by mapping special filename to their respective devices.
2.4. Basic File Attributes:
Every file has a name and data. In addition all operating systems associate other information with each file, for example, file type, owner etc. We will call these extra items the file attributes. Some basic file attributes are:-

· File type and permissions: Shows the type of file i.e. ordinary, directory etc. and permissions as read, write etc.
· Links: It indicates the number of links associated with the file. This is actually the number of filenames maintained by the system of that file.
· Ownership: When one creates a file he automatically becomes the owner. The owner has certain privileges not normally available with others.
· Group ownership: Defines the group relating properties.
· File size: Contains the size of file in bytes, i.e., the amount of data it contains. It is only the character count of the file and not a measure of the disk space it occupies.
· File modification time: Shows last modification time of the file. A file is said to be modified only if its contents have been changed in any way. If we change only the permission or ownership, the modification time remains unchanged.
· File name: In UNIX filename can be very long(up to 255 characters), and can be framed by using practically any character.
3. Implementation of files Users are concerned with how files are named, what operations are allowed on them and similar interface issues. While an implementer is interested in how files and Directories are stored, how a disk space is managed, and how makes everything work efficiently and reliably. In UNIX every file associates a little table for keeping track of which block belongs to which file. That table is called Index-node (i-node), which lists the attributes and disk addresses of file’s blocks.
3.1. I-node table
A UNIX file is described by an information block called an i-node. There is an i-node on disc for every file on the disc and there is also a copy in kernel memory for every open file. All the information about a file, other than it's name, is stored in the i-node. This information includes

· File access and type information, collectively known as the mode.

· File ownership information.

· Time stamps for last modification, last access and last mode modification.

· Link count.

· File size in bytes.

· Addresses of physical blocks.

The layout of the components of a System i-node is shown in the following diagram. It occupies 16 32-bit words.

There are 13 physical block addresses in an i-node, each of these addresses is 3 bytes long. The first ten block addresses refer directly to data blocks, the next refers to a first level index block (which holds the addresses of further data
	 Attr-

 -ibutes

	[image: image3.png]bin etc home shin user
us<¥er2 |r7|ud/e\\l|b
priv(bin bin liby I\ocal

letter docs

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

 i-node Addresses
	

	

	

	

	

	

 Of data
	

	

	

	

	

	

 Single blocks

 indirect
	

	

	

	

	

	

 block

	

	

	

	

	

	

	

	

	

	

	

	

 Double
 indirect
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	Tripple

indirect

 block

	

	

	

	

	

	

	

 bock

	

	

	

	

	

	

	

 Fig. An i-Node

blocks), the next refers to a second level index block (which holds the addresses of further index blocks) and the last refers to a third level index block (which holds the addresses of further second level index blocks). All physical addresses associated with a file are implicitly assumed to reside on the same disc, there is no facility whereby a file could span more than one disc. There is no requirement that the physical addresses of a file should be contiguous (i.e. adjacent) and with multiple files being handled on a disc it is unlikely that contiguity would offer any advantages for performance. There is also, more surprisingly, no requirement that all logical blocks should map to physical blocks, it is quite permissible for files to have "holes".

Assuming 512 byte blocks and 3 bytes per address which is equivalent to a disc capacity of about 8 GByte. An index block of 512 bytes is capable of holding 170 3 byte addresses. The size of the largest file can be calculated thus.

1. Directly addressed blocks 10 × 512 byte = 5120 bytes

2. Blocks addressed via first level index block 170 × 512 byte = 87040 bytes

3. There will be 170 index blocks addressed via the second level index block. This will address 170 × 170 & 512 bytes = 14796800 bytes

4. Via the third level index block there will be 170 × 170 × 170 × 512 bytes of addressable data. This comes to 2515456000 bytes.

The total addressable space comes to 2530344960 bytes (approximately 2.5 Gbytes).
4. Implementation of Directories
To keep track of files, file system normally have directories, which, in UNIX are themselves files. UNIX file systems were one of the first to use the hierarchical directory structure, with a root directory and nested subdirectories. (Most of us are familiar with this from using it with the FAT file system, which works the same way). One of the key characteristics of UNIX file systems is that virtually everything is defined as being a file--regular text files are of course files, but so are executable programs, directories, and even hardware devices are mapped to file names.

Fig. User’s view- Hierarchical Directory Structure
Before a file can be read, it must be opened; the operating system uses the path name supplied by the user to locate the directory entry. This information be the i-node number and main function of directory system is to map ASCII name of the file onto the information needed to locate the data. The directory structure used in UNIX contains just a file name and its i-node number. All the information about the type, size, times, ownership, and disk blocks is contained in the i-node.

[image: image1]
 I-node number

 Fig. UNIX Directory Entry
5. Mapping of path:
Here we consider how the path name is looked up. Let an example of path name /user/ast/mbox to which we have to map to find desired data. First the file system locates the root directory whose i-node number is located at a fixed place on the disk.

 Block 132
 Root Directory is /user directory
	1
	●

	1
	●●

	4
	bin

	7
	dev

	14
	lib

	9
	etc

	6
	user

	8
	tmp

	6
	●

	1
	●●

	19
	dick

	30
	erik

	51
	jim

	26
	ast

	45
	bal

 /user/ast
 looking up user Yields i-node 6 is i-node 26

 I-node 6 is for /user
 I-node 26 is for /user/ast
	Mode size times

	132

	

	Mode size times

	406

	

I-node 6 says that /user is in I-node 6 says that /user is in block 32 block 32

 Block 406 is user/ast/directory
	26
	●

	6
	●●

	64
	grants

	92
	books

	60
	mbox

	81
	minix

	17
	src

 /user/ast/mbox
 is i-node
Then it looks up the first component of the path, user, in the root directory to find the i-node number of the file /user. Locating an i-node from its number is straightforward, since each one has a fixed location on the disk. From this i-node, the system locates the directory for /user and looks up the next component, ast, in it. When it has found the entry for ast, it has the i-node for the directory /user/ast. From this file is then read into memory and kept there until the file is closed. The relative path names are looked are looked up the same way as absolute ones, only starting from the working directory instead of starting from the root directory. Every directory has entries for . and .. which are put there when the directory is created. The entry . has the i-node number for the current directory, and the entry for .. has the i-node number for the parent directory. Thus, a procedure looking up for the parent directory, and searches that directory for disk.
6. File System Layout
Since a disk can be divide in to many partitions and can be considered to be logically independent disk. A file system has to be created in each partition. There usually are multiple file systems in one machine, each one having its own directory tree headed by root. But as multiple roots can’t exist so all these multiple file systems become a single one at time of use, so we see a single file system.

UNIX File system is organized in a sequence of blocks of 512 bytes each and will have components as shown in fig. bellow.
 Boot

 block Super block

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

[image: image2]
 bit maps i-node blocks Data blocks
Fig. Disk layout of file system

6.1. Boot block
Boot block contains a small bootstrap program (Executable code). This is loaded into memory when the system is booted. I t may, in turn, load another program from disk. The bootstrapping program is read in from the boot block of the root file system. For other file system it is simply kept blank. The boot block begins the process of loading the operating system itself. Once the system has been booted, the boot block is not used any more. To prevent the hardware from trying to boot an unbootable device a magic number is placed at a known location in the boot block when and only when the executable code is written to the device.
6.2. Super-Block
Super block is called the balance sheet of every Unix file system. The super block contains global file information about disk usage and availability of data blocks and inodes.The main information contained by super block are:

· The size of file system

· The length of disk block

· Last time of updation

· The number of free data blocks available

· A partial list of immediately allocable free data blocks

· Number of free i-nodes available

· A partial list of immediately usable i-nodes

· Pointer to i-node for root of mounted file system

· Pointer to i-node mounted upon

When a file is created, the operating system doesn’t have to scan the i-node blocks; it looks up the list available in the super-block instead. When Unix is booted, the super block for the root device is read into a table in memory. Similarly, as other file systems are mounted, their super-blocks are also brought into memory.
6.3. Bit Maps
Unix keep track of which blocks are free by using bit maps .When a file is removed, it is then a simple matter to calculate which block of the bit map contains the bit for the block being freed and set the bit corresponding to it to 0.

Similarly a block which is free contains bit maps bit to 1.

If block size and number of blocks is given, it is easy to calculate the size of bit map. For example, for a 1K block, each block of bit map has 1K bytes, and thus can keep track of up to 8192 i-nodes.
6.4. I-node Blocks
This area of every file system is always set aside to store the attributes of all files in the file system. It contains a table for every file of the file system. All attributes of a file and directory are stored in this area except the name of the file or directory. Every file has one inode, and list of such i-nodes is laid out contiguously in this area. I-node blocks are not directly accessible by any user. Each i-node is accessed by a number, called the i-number (or inode number) that simply references the position of the inode in the list.
6.5. Data Blocks
Pure data is stored in data blocks, which commence from the point the inode blocks terminate. There is no mark at the end of data to indicate that reading or writing should stop at that point; a file doesn’t contain the end-of-file mark. Apart from these direct block, there are also indirect blocks which contain the addresses of the direct blocks addresses.
7. File System Reliability
Destruction of a file system is often a far greater disaster than destruction of a computer. If a computer’s file system is irrevocably lost, whether due to hardware, software, restoring all information will be difficult, time consuming, and in many cases impossible. While file system can’t offer any protection against physical destruction of the equipment and media, it can help protect the information.
7.1. Bad blocks: Disk may have bad blocks. The solution to remove the bad blocks is to carefully construct a file containing all the bad blocks. Now this file is set not to be accessible. This technique removes them from the free block list, so they will never occur in data files. As long as the bad block file is never read or written, no problems arise.
7.2. File System Consistency: Another area where the reliability is an issue is file system consistency. Many file systems read blocks, modify them, and write them out later. If the system crashes before all the modified blocks have been written out, the file system can be left in an inconsistent state. This problem is especially critical when some of the blocks that have not been written out are i-node blocks, directory blocks, or blocks containing the free list.
Two kinds of consistency checks can be made: blocks and files. To check for block consistency, the program builds two tables, each one containing a counter for each block, initially set to 0. The counters in the first table keep track of how many times each block is present in a file; the counters in the second table record how often each block is present in the free list (or the bit map of free blocks).
The program then reads all the block numbers. Starting from an i-node, it is possible to build a list of the entire block numbers used in corresponding file. As each each block number is read, its counter in the first table is incremented. The program then examines the free list or bit map, to find all block that are not in used. Each occurrence of a block in the free list result in its counter in the second table being incremented.
If the file system is consistent, each block will have a 1 either in the first table or in the second table, as in fig. however, as a result of a crash, the table might look like second fig. in which block 2 does not occur in either table. It will be reported as being a missing block. While missing blocks do not real harm, they do waste space and thus reduce the capacity of the disk. The solution to this is straight forward: The file system checker just adds them to the free list.

Block number
	1
	1
	0
	1
	0
	1
	1
	1
	1
	0
	0
	1
	1
	1
	0
	0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Block in use
	0
	0
	1
	0
	1
	0
	0
	0
	0
	1
	1
	0
	0
	0
	1
	1

Free Block
Fig. Consistent File System
Block number
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

	1
	1
	0
	1
	0
	1
	1
	1
	1
	0
	0
	1
	1
	1
	0
	0

Blocks in use
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	1
	0
	0
	0
	1
	1

Free blocks
Fig. Missing block File System State
Another situation that might occur is that in fig. below. Here we see a block, number 4, that occurs twice in the free list. The solution is to rebuild the free list.
Block number
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

	1
	1
	0
	1
	0
	1
	1
	1
	1
	0
	0
	1
	1
	1
	0
	0

Blocks in use

	0
	0
	1
	0
	2
	0
	0
	0
	0
	1
	1
	0
	0
	0
	1
	1

Free blocks

Fig. Duplicate block in free list
The worst thing that can happen is that the same data block is present in two or more files, as in fig. below with block 5. If either of these files is removed, block 5 will put on the free list, leading to a situation in which the same block is both in use and the free list. If both files are removed, the block will be put onto the free list twice.
The appropriate action for the file System checker is to allocate a free block, copy the contents of block 5 into it, and insert the copy into one of the files. In this way, the information content of the files is unchanged (although assuredly garbled), but the structure is at least made consistent.
Block number
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
	1
	1
	0
	1
	0
	2
	1
	1
	1
	0
	0
	1
	1
	1
	0
	0

Blocks in use

	0
	0
	1
	0
	1
	0
	0
	0
	0
	1
	1
	0
	0
	0
	1
	1

Free blocks

Fig. Duplicate Data block

Conclusion

The file system maintains all information pertaining to files at a number of places, with suitable links between them. If system is not shut down properly, or power failure causes a system crash, inconsistencies tend to crop up in the information maintained at these places.
Knowledge of file system is necessary for the system administrator in order to be able to fix inconsistencies that tend to crop up. Since UNIX treats every thing as file and it also not make distinction between various types of file so it is easy to handle all kinds of files with similar manner. I-node structure of UNIX also provided good handling by point of view of administrator. UNIX file system is the first file system which provides the hierarchical structure. The utility of the file paradigm is evidenced by its continued popularity and ubiquity in modern operating systems.
References

1. http://www.mhpcc.edu/training/vitecbids/UnixIntro/Filesystem.html

2. http://unixhelp.ed.ac.uk/CGI/unixhelp_search

3. http://www.cs.sfu.ca/CC/760/tiko/lecnotes/5.ooFS.pdf.

4. http://www.scit.wlv.ac.uk/~jphb/notes.css
5. Operating Systems (design and implementation)

 By Andrew S. Tanenbaum & Albert S. Woodhull

6. UNIX Concepts & Application

 By Sumitabha Das

 File Name

www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

