www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

A

Paper Presentation

On

Software Engineering Through UML

ABSTRACT

Over the past ten years software plays a key role of the enter world. The software will be developed in incremental process. Now a day’s software will grow like a RAD(rapid application development) and spiral model. The software will always Reusable and it doesn’t WEAR OUT. By using UML features we can express software in more realistic way with Association, Generalization, Dependency relationships and Graphical symbols. The relationship between software and UML can expressed through Links. Software will always in a changing state, which it means it maintains Forward engineering and Reverse engineering. By using this software technology we can save, Time, Money and Energy. In future software will available at less cost and everyone is at good state to handle software.

SOFTWARE ENGINEERING THROUGH UML

Software:

 S/W is a collection of different programs, that when executed it provides a desired features, functions, &performance. Today s/w takes on a dual role, it is both a product and a vechile for delivering a product.

 (S/W is a logical rather than physical element, by using s/w we can handle different complex works in easy and efficiently.

Software Engineering:

 Software engineering (SE) is the profession of people who create and maintain software systems by applying technologies and practices from computer science, project management, engineering, application domains and other fields. The term software engineering was used occasionally in the late 1950s and early 1960s. It was popularized during the 1968 NATO Software Engineering.

Software Uses:

 Most software engineers work as employees or contractors. Software engineers work with businesses, government agencies (civilian or military), and non-profit organizations. Some software engineers work for themselves as freelancers. Some organizations have specialists to perform each of the tasks in the software development process.

What is UML?

 UML stands for Unified Modeling Language. This object-oriented system of notation has evolved from the work of Grady Booch, James Rumbaugh, Ivar Jacobson, and the Rational Software Corporation. These renowned computer scientists fused their respective technologies into a single, standardized model. Today, UML is accepted by the Object Management Group (OMG) as the standard for modeling object oriented programs.

 UML has nine types of diagrams, by using these diagrams we can easily simplify the given s/w project.

ClassDiagrams:
Class diagrams are the backbone of almost every object oriented method, including UML. They describe the static structure of a system.

 [image: image1.png]Class Name

attrbute:Type = intilValue

loperationfarg ist)zetum type

 Graphical symbol
ObjectDiagrams:
Object diagrams describe the static structure of a system at a particular time. They can be used to test class diagrams for accuracy.

UseCaseDiagrams:
Use case diagrams model the functionality of system using actors and use cases.

SequenceDiagrams:
Sequence diagrams describe interactions among classes in terms of an exchange of messages over time.

CollaborationDiagrams:
Collaboration diagrams represent interactions between objects as a series of sequenced messages. Collaboration diagrams describe both the static structure and the dynamic behavior of a system.

ComponentDiagrams:
Component diagrams describe the organization of physical software components, including source code, run-time (binary) code, and executables.

DeploymentDiagrams:
Deployment diagrams depict the physical resources in a system, including nodes, components, and connections

ActivityDiagrams:
Activity diagrams illustrate the dynamic nature of a system by modeling the flow of control from activity to activity. An activity represents an operation on some class in the system that results in a change in the state of the system. Typically, activity diagrams are used to model workflow or business processes and internal operation.

 [image: image9.png]

 Graphical symbol

 In UML there are some types of relationships, By using these relationships we can describe the link’s between different things.

Associations:
Associations represent static relationships between classes. Place association names above, on, or below the association line. Use a filled arrow to indicate the direction of the relationship. Place roles near the end of an association. Roles represent the way the two classes see each other.

[image: image10.png]Class &

Class B

Class &

role

role

Class B

Note: It’s uncommon to name both the association and the class roles.

Generalization:
Generalization is another name for inheritance or an “is a” relationship. It refers to a relationship between two classes where one class is a specialized version of another. For example, Honda is a type of car. So the class Honda would have a generalization relationship with the class car.

[image: image11.png]Supertype

Subtype 1

Subtype 2

Dependency:
Dependency defines a relationship in which changes to one package will affect another package. Importing is a type of dependency that grants one package access to the contents of another package.

[image: image12.png]Package Nexe

+httiute 1
~Attrbute 2

T<<imporo

| Package Nae

e

~Attrbute 2

Soft ware has different characteristics:

 (Soft ware is developed or engineered ‘it is not manufactured in the classical sense.

 (Software does not “wear out”:

 (Wear: wasted by the use.

The hard ware will be wear out, but software will not be wear out. When the hardware component wears out, it is replaced by a spare part, but there are no software spare parts to replace even software failure. So we can simply we can say has maintaining of software is more complex than the maintaining of hardware.

The changing nature of software:

The main aim of software is its re usability, after delivering a software product into market the users does not satisfy with this software functions then he proposes new functions that are extended to the existed functions. By considering the customer myth we can change the existed software then it gives more flexibility to the user.

Process models:

In software evolution there are different models are proposed basing on this models now a days the software become more popular.

The water fall model:

The water fall model is called the life cycle of software project. It suggests systematic sequential approach to software development that begins with customer specification of requirement and progresses.

Opponents:

 (In this model the customer must have patience because he wants to wait for other members of thirteen to complete dependent tasks, so the time spend event is more exceed than the time spent on productive work. In his model we make changes on continuously so there may be a chance to the customer to confuse.
Today software work is fast –paced on subject to never ending stream of changes. So this model is unfit. How ever this model is useful for the where the requirements are fixed.

Incremental model:

In this model we combine the elements of water fall model in an iterative fashion. The incremental model applies in a linear sequence of staged fashion as calendar time progress.

The first incremental model is known as core product. By using this product we can develop a plan for next increment model.

Early increments are “stripped down “version of final product these increments are planed to managed technical risks.

RAD model: (Rapid application development)

(This model is a incremental software process model that emphasizes a short development cycle. (The RAD model is a “high-speed “adoption of the water fall model .The time constraints imposed on a RAD project demand” scalable scope”.

Draw backs of rapid model:

(RAD may not be a appropriate when technical risks are high.

(If a system cannot be properly modularized building, the components necessary for RAD will be problematic

Spiral model:

 (The spiral model was proposed by Boehm in an evolution of software process model. It provides the potential for rapid development of increasingly more complex versions of the software.

(The spiral development model is risk driven process. It has two main features.

Cyclic approach for incrementally growing systems degree of definition and implementation while decreasing its degree of risk.

(Anchor point milestone for ensuring stakeholders commitment to feasible and mutually satisfactory system solutions.

Spiral model for software development:

The spiral model demands a direct consideration of technical risks at all stages of project and if properly applied should reduced risk before they become problematic.

 In UML diagrams plays major role in describing of s/w project:

Object diagram:
(An object diagram is a diagram that shows a set of objects and their relationships at a point in time.

Object diagram commonly contains:

1 .objects

2 .links

 Links:
 A link is a semantic connection among objects. Links are instances of associations. A link specify a path along which one object can dispatch a message to another object .You can draw a link using the lines used in class diagrams.

[image: image14.png]

Self-linked:
Objects that fulfill more than one role can be self-linked. For example, if Mark, an administrative assistant, also fulfilled the role of a marketing assistant, and the two positions are linked, Mark's instance of the two classes

[image: image15.png]N

Object name : Class

Messages:
Messages are arrows that represent communication between objects. Use half-arrowed lines to represent asynchronous messages. Asynchronous messages are sent from an object that will not wait for a response from the receiver before continuing its tasks.

[image: image16.png]Arrow

Message type

e Simple,
— | synchronaus
— = | Asynchronous

) Balking

[¢] Time out

In software engineering the most important technologies are listed below:

(1)Forwarding engineering

(2)Reverse engineering

(Forward engineering:

 It is the process of transforming a model into code through a mapping to an implementation language.

(Reverse engineering:

 It is the process of transforming code into a model through a mapping from a specific implementation language.

These two technologies are achieved in UML through object diagrams, sequence diagrams, collaboration diagrams, use case diagrams, deployment diagrams.

 Conclusion:

By using these UML features we can easily simplify the given project in more advanced way .By using this UML diagrams we can represent the software in more realistic way. In future we can design the projects of software in easy manner with UML features.

References:

(www.googlesearch.com
(www.answers.com
(www.sciencedairy.com
(www.smartdraw.com

(UML user guide by GRADY BOOCH

(Software Engineering by ROGERS.PRESSMAN
www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

