www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

SEMINAR REPORT

ON

The Object Oriented Features Of C++

 INTRODUCTION

OBJECT

Object is a concept, abstraction, or thing with crisp boundaries and meaning for the problem at hand .Objects serves two purposes: they promote understanding of the real world and provide a practical basis for computer implementation. Decomposition of a problem in to objects depends on judgment and nature of the problem. All objects have identity and are distinguishable .Two apples with the same colour, shape, and texture are still individual apples.

CLASS

An object class describes a group of objects with similar properties, common behavior, common relationships to the other objects and common semantics. Person, company animal, process and window are all object classes. Object in a class have the same attributes and behavior pattern.

The major motivating factor in the invention of object oriented approach is to remove some of the flaws encountered in the procedural approach .oop treats data as a critical element in the program development and does not allow it to flow freely around the system .It ties the data more closely by the functions that operate on it.OOP allows decomposition of a problem in to number of entities called objects and then builds data and functions around these objects.

Some of the striking feature of object oriented programming is

· Emphasis is on data rather than procedure

· Programs are divided in to what are known as objects

· Data structures are design such that they characterize the objects

· Functions that operate on the data of an object are tied together in the data structure.

· Data is hidden and cannot be accessed by external functions.

· Objects may communicate with each other through functions.

· New data and functions can be easily added whenever necessary.

DATA ABSTRACTION AND ENCAPSULATION

The wrapping up of data and functions in to a single unit is known as encapsulation.

Encapsulation is the most striking feature of a class. The data is not accessible to the outside world and only those functions that are wrapped in the class can access Abstraction refers to the act of representing essential features without including background details or explainations.Classes use the concept of abstraction and are defined as a list of abstract attributes such as size, weight and cost, and functions to operate on these attributes. They encapsulate all the essential properties of the objects that are to be created. Abstraction is the selective examination of certain aspects of a problem. The goal of abstraction is to isolate those aspects that are important for some purpose and suppress those aspects that are unimportant. Abstraction must be always be for some purpose, because the purpose determines what is and is not important. Many different abstractions of the same thing are possible, depending on the purpose for which they are made.

 INHERITANCE

 Reusability is yet another feature of OOP.It is always nice if we could reuse something that already exists rather than trying to create the same all over again. It would not only save time and money but also reduce frustration and increase reliability.
 Inheritance is the process by which objects of one class acquire the properties of another class. It supports the concept of hierarchical classification. For example, the bird 'robin' is the part of flying bird which again is part of the class 'bird’. In OOP the concept of inheritance provides the idea of reusability. This means that we can add additional features of an existing class without modifying it. This is possible by deriving a new class from the existing one. The new class will have combined features of both the classes.

POLYMORPHISM

 Polymorphism means ability to make more than one form. An operation may exhibit different behaviors in different instances. The behavior depends upon the types of data used in the operation. For two numbers, the operation will generate a sum. If the operands are strings, then the operation would produce a third string by concatenation. The process of making an operator to exhibit different behaviors in different instances is known as operator overloading. Polymorphism is basically of two types:-
 1) Compile time Polymorphism:-Here binding is done "early”. The information is known to compiler at compile time. It is of two types:

 a) Function overloading

 b) Operator overloading.

 2) Run time Polymorphism:-It is also known as dynamic binding because the selection of appropriate function is done dynamically at runtime. It is of one type:

a) Virtual functions.

 Procedural Programming vs. Object Oriented Programming

There are primarily two methods of programming in use today :procedural and object oriented .The earliest programming languages were procedural. This means that program is made of one or more procedures. Procedure is a set of programming language statements that are executed by the computer one after the other .The statements might gather input from the user ,manipulate information stored in the computer’s memory ,perform calculations, or any other operation necessary to complete it’s task. For example ,suppose we want the computer to calculate someone’s gross pay. The given is a list of what a computer should do in the above case:

1)Display the message on the screen asking “How many hours did you work?”

2)Allow the user to enter the number of hours worked. Once the user enters a number ,store it in a memory.

3)Display a message on the screen asking “How much do you get paid per hour?”

4)Allow the user to enter their hourly pay rate. Once the user enters a number , store it in a memory.

5)Once both the number of hours worked, and the hourly pay rate are entered ,multiply the two numbers and store the result in a memory.

6)Display a message on the screen that tells the amount of money earned. The message must include the result of the calculation performed in step 5.

 INHERITANCE

Inheritance is powerful abstraction for sharing similarities among classes while preserving their differences.For example we would like to model the following situation:

Each piece of a equipment has a manufacturer,weight,and cost.Pumps also have suction pressure and flow rate.Tanks also have volume and pressure.We would like to equipment features just once and then add details pump,tank,and other equipment types.

Inheritance is the relationship between a class and one or more refined versions of it.The class being refined is called superclass and refined version is called a subclass.For example,Equipment is the superclass of Pump and Tank. Attributes and operations common to a group of subclasses are attached to the superclass and shared by each subclass.Each subclass is said to inherit the features of its superclass.For example Pump inherits attributes manufacturer,weight and cost from Equipment. Inheritance has become synonymous with code reuse within the object oriented programming community

 Types of inheritance are as follows:-

 a) Single Inheritance.

 b) Multiple Inheritance.

 c) Heirarchical Inheritance.

 d) Multilevel Inheritance.

 e) Hybrid Inheritance.

 TYPES OF INHERITANCE

[image: image1]
 Single Inheritance

[image: image2]
 Hierarchical Inheritance

[image: image3]
 MULTIPLE INHERITANCE

 A class be derived from more than one class. This is called multiple inheritance.The syntax of multiple inheritance is simple is similar to that of single inheritance.
Class A //base class A

{

 };

Class B //base class B

{

 };

Class C: public A, public B //C is derived from A and B

{

 };

 Suppose that we needed to record the educational experience of some of the EMPLOY program.Let’s suppose we had already developed a class called student that models students with different educational backgrounds. We decide that instead of modifying the employee class to incorporate educational data, we will add this data by multiple inheritances from the student class.

 The student class stores the name of the school or university last attended and the highest degree received. Both these data items are stored as strings. Two member functions, getedu () and putedu (), ask the user for this information and display it.

 Educational information is not relevant to every class of employee. Let’s suppose, somewhat undemocratically, that we don’t need to record the educational experience of laborers; it’s only relevant for managers and scientist’s .We therefore modify manager and scientist so that they inherit from both the employee and student classes.

 Here’s the relation:

 class student

 {};

 class employee

 {};

 class manager:private employee,private student

 {};

 class scientist: private employee,private student

 {};

 class laborer: public employee

 {};

 AMBIGUITY IN MULTIPLE INHERITANCES

 Odd sorts of problems may surface in certain situations involving multiple inheritances. Here’s a common one. Two base classes have functions with the same name, while a class derived from base classes has no function with this name. How do objects of the derived class access the correct base class function? The name of the function alone is insufficient ,since the compiler can’t figure out which of the two function is meant.

 Public and Private Inheritance

C++ provides a wealth of ways to fine tune access to class members. One such access control mechanism is the way derived classes are declared . Our example so for have used publicly declared classes , with specifiers like

Class manager : public employee

Which appeared in the employee example

What is the effect of the public keyword in this statement , and what are the alternative?

The keyword public specifiers the objects of the derived class are able to access public member of the base class. The alternative is the keyword private .When the is used , objective of the derived class cannot access private or protected members of class, the result is that no member of the base class is accessible to objects of the derived class.

Access combinations

 There are so many possibilities for access that it’s instruction to look at an example program that shows what works what doesn’t . Here is the listing for PUBPRI:

include <iostreamio.h>

class A

{

 private :

 int privdata A;

 protected:

 int protdata A;

 public:

 int pubdata;

};

classB: public A

{

 public:

 void funct()

 {

 int a;

 a = privdataA;

 a = protdataA;

 a= pubdataA;

 }

 };

 class c: private A

 {

 public:

 void funct()

 {

 int a;

 a = privdataA;

 a = protdataA;

 a= pubdataA;

 }

 };

 void main ()

{

 int a ;

 B = objB;

 a = objB.privdataA;

 a = objB.protdataA;

 a = objB.pubdataA;

 C obj C;

 a = objC.privdataA;

 a = objC.protdataA;

 a = objC.pubdataA;

 }

The program specifies a base class, A, with private , protected and public data items.

Two classes B and C are derived from A. B is publicly derived, and C is privately derived.
As we have seen before , function in the derived class can access protected and public data in the base class . Also, objective of the derived classes can not access private or protected members of the base class .
What is the new in the difference between publicly derived privately derived classes . objective of the public derived class B can access public member of the base class A, while object of privately derived class c cannot.
 LEVEL OF INHERITANCE

 Classes can be derived from classes that are them selves derived . Here’s mini program that show s the ideas ;

 Class A

 { };

 class B: public A

 { };

 class C : public B

 { };

 here B is derived from B. The process can be extended to an arbitrary nuber can be extended to an arbitrary number of levels –D could be derived from C, and so on.

As a more concrete example , suppose that we decided to add a special kind of laborer called a foreman to the EMPLOYEE program. WE will care a new program m, EMPLOYEE 2 that incorporate s objectives of class foreman.

 Since foreman are a kind of laborer , the fore man class is derived from the laborer class, as shown in figure .

 Foreman oversee the widget-stamping operation, super vision group of laborers. They are responsible for the widget production quota for their group . A foreman’s ability is measured by the percentage of production quotas successfully met. The quotas data item

In the foreman class represents this percentage . Here’s listing for EMPLOY2.

 #include<iostream.h>

 const int LEN = 80;

 class employee

 {

 private :

 char name [len];

 unsigned long number;

 public:

 void getdata ()

 {

 cout << ”\n enter last name :” cin >>name;

 cout << ”\n Enter number: “;

 }

 void putdata ()

 {

 cout<<”\n Name :”<< name;

 cout <<“\n Number: <<number:

 }

 };

 class number: public employee

 {

 private:

 char title [len];

 double dues;

 public:

 void getdata ()

 {

 employee: : getdata();

 cout<< “enter title”; cin >>title;

 cout <<“\n enter golf club dues:”; cin>>dues;

 }

 void putdata()

 {

 employee:: putdata();

 cout<< “\n title:” <<title;

 cout << “\n Golg club dues: <<dues;

 }

 };

class scientist : public employee

 {

 private :

 int pubs;

 public:

 void getdata ()

 {

 employee :: getdata();

 cout<< “Enter number of pubs : “; cin>>pubs;

 }

 void putdata()

 {

 employee::putdata();

 cout<,”\n Number of publications : “ << pubs;

 }

 };

 class laborer: public employee

 {

 };

 Class foreman : public laborer

 {

 private:

 float quotas;

 public:

 void getdata ()

 {

 laborer:: getdata();

 cout <<”Enter quotas: “ ; cin >>quotas;

 }

 void putdata()

 {

 laborer ::put data();

 cout << “\n quotas:

 }

 };

 void main ()

 {
 laborer L1;

 foreman f1;

 cout << endL;

 cout <<”\n Enter data for laborer 1”;

 L1.gatdata ();

 cout <<”\n Enter data for foreman 1” ;

 f1.getdata();

 cout << end L;

 cout << “\n Data on laborer 1”;

 L1.putdata ();

 cout << “\n data on foreman 1”;

 f1.putdata();

 }

 Notice that a class hierarchy is not that same as an organization chart. An organization chart shows lines of command. A class hierarchy results from generalizing common characteristics .The more general the class, the higher it is on the chart .Thus a laborer

is more general than foreman, who is a specialized kind of laborer, so laborer is shown foreman in the class hierarchy.

 FUNCTION OVERLOADING

Overloading refers to the use of the same thing for different purposes . C++

also permits overloading of functions. This means that we can use the same

function that perform a variety of different tasks. This is known as function polymorphism in OOP.

 Using the concept of function overloading ; we can design a family of function with one function name but with different argument lists. The correct function to be invoked is determined by checking the number and type of the argument but not on the function type. For example, an overloaded add () function handles different type of data as shown below:

// Declarations

int add (int a , int b) ; //prototype 1
int add (int a , int b , int c); //prototype 2
double add (double x , double q); //prototype 3

double add (double p , double q) ; //prototype 4
double add (double p , int q) ; //prototype 5
A function call first matches the prototype having the same number and type of arguments and then calls the appropriate function for execution .A best match must be unique .The function selection involves the following steps:

1. The compiler first tries to find an exact match in which the type of actual arguments are he same, and use that function.

2. If an exact match is not found, the compiler uses the integral promotion to the

actual argument, such as,

char to int

float to double

to find a match.

3. When either of them fails the compiler tries to use the built-in conversations (the implicit assignment conversations) to the actual arguments and then uses the function whose match is unique. If the conversation is possible to have multiple matches, then the compiler will generate an error message. Suppose we use the following two function:

long square (long n)

double square (double x)

Function call such as

square (10)

will case an error because int argument can be converted to either long or double, thereby creating an ambiguous situation as to which version of square() should be used.

4. If all of step fail, then the compiler will try the user-defined conversions in combination with integral promotions and build-in conversions to find a unique match. User defined conversion are often used in handling class objects.

Program for function overloading :

// Function volume () is overloaded three times

include < iostream >

using space std;

// Declarations (prototypes)

int volume (int) ;

double volume (double, int);

long volume (long, int, int);

int main ()

{

 cout << volume (10) << “ \n” ;

 cout << volume (2.5 , 8) << “ \n” ;

 cout << volume (100l , 75 ,15) << “ \n” ;

 return 0;

}

// Function definitions

int volume (int s) // cube

{

return (s*s*s) ;

}

double volume (double r , int h) // cylinder

{

return (3.14 * r * r * h);

}

double volume (double l , int b , int h) //rectangular box

{

return (l * b * h);

}

The output of Program is :

 1000

 157.26

 112500

Overloading of a function should be done with caution. We should not overload unrelated functions and should reserve function overloading for function that perform closely related tasks. Sometimes, the default arguments may be used instead of overloading .This may reduce the number of functions to be defined.

 Operator Overloading

C++ provides many operators to manipulate data of the primitive data types.However, what if you wish to use an operator to manipulate class objects?

For example, assume that a class named Data exists, and objects of the Data class hold the month, day, and year in member variables. Suppose the Date class holds a month, day, and year in member variables. Suppose the Date class has a function named add. The add member function adds number of days to the date, and adjusts the member variables if the date goes to another month or year. For example, the following statement adds 5 days to the date stored in the today object:

today.add(5);

Although, it might be obvious that the statement adds 5 days to the date stored in today, the use of an operator might be more intuitive. For example look at the following statement:

today+=5;

The statement above uses the standard += operator to add 5 to today. This behavior does not happen automatically,however.The += operator must be overloaded for this action to occur .

Actually we have experienced the behavior of an overloaded operator.The / operator performs two type of division :floating point and integer.If one of the / operator’s operands is a floating type,the result will be a floating point value.If both the / operators are integers,however a different behavior occurs:the result is an integer and any fractional parties thrown away.

 Creating a Member Operator Function
A member operator function takes this general form:

 ret-type class-name::operator#(arg-list)

 {

 //operations

 }

Often,operator functions return an object of the class they operate on,but ret-type can be any valid type.The # is a placeholder.When you create an operator function,substitute the operator for the #.For example,if you are overloading the / operator,use operator/.When you are overloading a unary operator,arg-list will be empty.When you are overloading binary operators,arg-list will contain one parameter.(The reasons for this seemingly unusual situation will be made clear in a moment.)

 Here is a simple first example of operator overloading.This program creates a class called loc,which stores longitude and latitude values.It overloads the + operator relative to this class.Examine this program carefully,paying special attention to the definition of operator+():

#include<iostream>

using namespace std;

class loc {

 int longitude,latitude;

public:

 loc() { }

 cout<<latitude <<"\n";

 }

 loc operator+(loc op2);

};

//Overload + for loc.

loc loc::operator+(loc op2)

{

 loc temp;

 temp.longitude =op2.longitude + longitude;

 temp.latitude =op2.latitude + latitude;

 return temp;

}

int main()

{

 loc ob1(10,20), ob2(5,30);

 ob1.show(); // displays 10 20

 ob2.show(); // displays 5 30

 ob1 = ob1 + ob2;

 ob1.show(); // displays 15 50

 return 0;

}

 AS you can see,operator+() has only one parameter even though it overloads the binary + operator.(You might except two parameters corresponding to the two operands of a binary operator.) The reason that operator+() takes only one parameter is that the operand on the left side of the + is passed implicitly to the function through the this pointer. The operand on the right is passed in the parameter op2.The fact that the left operand is passed using this also implies one important point:When binary operators are overloaded,it is the object on the left that generatesthe call to the operator function.

 As mentioned,it is common for an overloaded operator function to return an object of the class it operates upon.By doing so,it allows the operator to be used in larger expressions.For example,if the operator+() function returned some other type,this expression wold not have been valid:

 ob1 = ob1 + ob2;

In order for the sum of ob1 and ob2 to be assigned to ob1,the outcome of that operation must be an object of type loc.

 Further,having operator+() return an object of type loc makes possible the following statement:

 (ob1+ob2).show(); // displays outcome of ob1+ob2

in this situation,ob1+ob2 generates a temporary object that ceases to exist after the call to show() terminates.
 It is important to understand that an operator function can return any type and that the type returned depends solely upon your specific application.It is just that,often,an operator function will return an object of the class upon which it operates.

 One last point about the operator+() function: It does not modify either operand.Because the traditional use of the + operator does not modify either operand,it makes sense for the overloaded version not to do so either .(For example,5+7 yields 12,but neither 5 nor 7 is changed.) Although you are to perform any operation you want inside an operator fucnton,it is usually best to stay within the context of the normal use of the operator.

The next programs adds three additional overloaded operators to the loc class: the-,the=,and the unary ++.Pay special attention to how these functions are defined.

#include<iostream.h>

using namespace std;

class loc {

int longitude,latitude;

public:

loc() {}

loc(int lg,int lt) {

longitude =lg:

loc operator=(loc op2);

loc operator++();

};

 loc loc:: operator+(loc op2)

{

loc temp;

temp.longitude = op2.longitude+longitude;

temp.latitude = op2.latitude+latitude;

return temp;

}

loc loc:: operator-(loc op2)

{

loc temp;

temp.longitude=longitude-op2.logitude;

temp.latitude=latitude-op2.latitude;

return temp;

}

loc loc::operator=(loc op2)

{

operator=op2.longitude;

operator=op2.latitude;

return*this;

}

loc loc:: operator++()

{

longitude ++;

latitude++;

return*this;

}

int main ()

{

loc op1(10,20), ob2(5,30), ob3(90,90);

ob1.show();

ob2.show();

++ob1;

ob1.show();

ob2.show();

ob1=ob2=ob3;

ob1.show();

ob2.show();

return 0;

}

OVERLOADING SOME SPECIAL OPERATORS

C++ defines array subscripting, function calling, and class member access as operations. The operators that performs these functions are the [],{ },->,respectively.

One important restriction applies to overloading these operators: They must be nonstatic member functions. They cannot be friends.

OVERLOADING []

#include<iostream.h>

 class atype{

 int a[3];

 public:

 atype(int i, int j,int k){

 a[0]=i;

 a[1]=j;

 a[2]=k;

 }

int operator[](int i){return a[i];}

 };

int main()

{

 atype ob (1,2,3);

 cout<<ob[i]; // displays 2

 return 0;

 }

OVERLOADING()

 #include<iostream.h>

 class loc{

 int longitude, latitude;

 public:

 loc(){}

 loc(int lg,int lt){

 longitude=lg;

 latitude=lt;}

 }

 void show(){

 cout<<longitude<<” “;

 cout<<latitude<<” \n“;}

 loc operator+(loc op2);

 loc operator()(int i,int j);

 };

 loc loc::operator+(loc op2)

 {

 loc temp;

 temp.longitude=op2.longitude+longitude;

 temp.latitude=op2.latitude+latitude;

 return temp;}

 loc loc::operator()(int i,int j)

 {

 longitude=i;

 latitude=j;

 return *this;}

 int main()

{

loc ob1(10,20),ob2(1,1);

ob1.show();

ob1=ob2+ob1(10,10);

 ob1.show();

 return 0;

 }

OUTPUT :

 10 20

 7 8

 11 11

OVERLOADING->

The -> pointer operator,also called the class member access operator,is considered a unary operator when overloading.Its usage are:

object ->element;

//

#include<iostream.h>

 class myclass{

 public:

 int i;

 myclass *operator->{return this;}

 };

 int main()

 {

 myclass ob;

 ob->i=10;//same as ob.i

 cout<<ob.i<<” “<<ob->i;

 return 0;

 }

 We cannot overload the following operators:-

· Class member access operators(.,.*);

· Scope resolution operator(::);

· Size operator (sizeof).

· Conditional operator(?,:);

The excluded operators are very few when compared to large number of operators which qualify for the operator overloading definition.

 VIRTUAL FUNCTIONS:

 Polymorphism refers to the property by which objects belonging to different classes are able to respond to the same message, but in different forms. An essential requirement of polymorphism is therefore is ability to refer to the objects without any regard to their classes. This necessitates the use of single pointer to base class to refer all the derived objects. But we just discovered that a base pointer, even when it is made to contain the address of derived class. The compiler simply ignores the content of pointer and classes the pointer and chooses the member function that matches the type of the pointer. How we then achieve polymorphism? It is achieved using what is known as ‘virtual, functions.

When we use the same function name in both the base and derived classes, the function in base class is declared as virtual by using keyword virtual preceding its normal declaration. When a function made virtual, C++ determines which function to use at run time based on the type of object pointed to by the base pointer, rather than the type of the pointer. Thus, by making the base pointer to point to different objects, we can execute different versions of the virtual function.

The given below program illustrates this point:-

PROGRAM:-

 #include<iostream.h>

using namespace std;

class Base

{

public:

 void display ()

 {

 cout<<”\n Display base”;

 }

 virtual void show ()

 {

 cout<<”\n show base”;

 }

 };

class Derived : public Base

{

 public:

 void display() {

 cout<<”\n Display derived”;

 }

void show() {

 cout<<”\n show derived”;

}

 };

int main()

{

Base B;

Derived D;

Base *bptr;

cout<<”\n bptr points to base\n”;

bptr = &B;

bptr-> display();

bptr-> show();

cout<<”\n\n bptr points to derived \n”;

bptr = &D;

bptr -> display();

bptr -> show();

return 0;

}

The output of the given program would be :

bptr points to Base

Display base

Show base

bptr points to Derived

Display base

Show derived

When bptr is made to point to the object D, the statement

bptr -> display();

calls only the function associated with the Base (i.e. Base: display()),whereas the statement

bptr ->show ();

calls the Derived version of show (). This is because the function display () has not been made virtual in the Base class.

 One important point to remember is that, we must access virtual functions through the use of a pointer declared as a pointer to the base class. Why can’t we use the object name (with the dot operator) the same way as any other member function to call the virtual

function? We can, but remember, run time polymorphism is achieved only when a virtual function is accessed through a pointer to the base class.

Let us take an example where virtual functions are implemented in practice. Consider a book shop which sells both books and video-tapes. We can create class known as media that stores the title and price of a publication. We can then create two derived classes, one for storing the number of pages in a book and another for storing the playing time of a tape. Given figure shows the class of hierarchy for the book shop.

The classes are implemented in program 9.6. A function display() is used in all the classes to display the contents. Notice that the function display() has been declared virtual in media, the base class.

In the main program we create a heterogeneous list of pointers of type media as shown below:

media *list[2]; = { &book1; [1], &tape1};

The base pointers list[0] and list[1] are initialized with the addresses of objects book1 and tape1 respectively.

RUNTIME POLYMORPHISM

#include<iostream>

#include<cstring>

using namespace std;

class media

{

protected:

 char title[50];

 float price;

public:

 media (char *s, float a)

 {

 strcpy(title, s);

 price=a;

 }

 virtual void display()

};

class book : public media

{

 int pages;

 public:

 book(char *s, float a, int p): media(s,a)

 {

 pages=p;

 }

 void display();

};

class tape : public media

{

 int time;

 public:

 tape(char *s, float a, float t) : media(s,a)

 {

 time=t;

 }

 void display();

};

void book :: display()

{

cout<<”\n Title: “<<title;

cout<<”\n Pages: “<<pages;

cout<<”\n Price: “<<price;

}

void tape :: display()

{

cout<<”\n Title: “<<title;

cout<<”\n Plat time: “<<time <<”mins”;

cout<<”\n Price: “<<price;

}

int main()

{

char *title = new char[30];

float price, time;

int pages;

// Book details

cout<< “\n ENTER TAPE DETAILS \n”;

cout<<"Title: "; cin>>title;

cout<<"Price: "; cin>>price;

cout<<"Pages : "; cin>>pages;

book book1(title,price,pages);

// Tape Details

cout<<"Title: "; cin>>title;

cout<<"Price: "; cin>>price;

cout<<"Play time (mins) : "; cin>>time;

tape tape1(title,price,time);

media* list[2];

list[0] = &book1;

list[1] = &tape1;

cout<<" \n MEDIA DETAILS" ;

cout<<"\nBOOK.";

list[0] -> display();

cout<<"\nTAPE.";

list[1] -> display();

}

The output of Program 9.6 would be

ENTER BOOK DETAILS

Tilte : Programming_in_ANSI_C

Price : 88

Pages : 400

ENTER TAPE DETAILS

Tilte : Computing_Concepts

Price : 90

Play time (mins) : 55

MEDIA DETAILS

.BOOK.

Tilte : Programming_in_ANSI_C

Pages : 400

Price : 88

.TAPE.

Tilte : Computing_Concepts

Play time (mins) : 55

Price : 90

Rules for Virtual Functions

When virtual functions are created for implemented late binding, we should observe some basic rules that satisfy the compiler requirements :

· The virtual functions must be members of some class.

· They cannot be static members.

· They are accessed by using object pointers.

· A virtual function can be a friend of another class.

· A virtual function in a base class must be defined, even though it may not be used.

· The prototypes of the base class version of a virtual functionand all the derived class versions must be identical. If two functions with the same name have different protptypes, C++ considers them as overloaded functions, and the virtual function mechanism is ignored.

· We cannot have virtual constructors, but we can have virtual destructors.

· While a base pointer cannot can point to any type of derived object, the reverse is not true. That is to say, we cannat use a pointer to a derived class to access an object of base type.

· When a base pointer points to a derived class, incrementing or decrementing it will not make it to point to the next object of the derived class. It is incremented or decremented only relative to the base class. Therefore, we should not use this method to move the pointer to the next object.

· If a virtual function is defined in the base class, it need not be necessarily redefined in the derived class. In such cases, calls will invoke the base function.

 PURE VIRTUAL FUNCTIONS

It is normal practice to declare a function virtual inside the base class and redefine it in the derived class. The function inside the base class is seldom used for performing any task. It only serves as a placeholder. For example, we have not defined any object of class media and therefore the function display() in the base class has been defined 'empty'. Such functions are called "do-nothing" functions.

A "do-nothing" function may be defined as

virtual void display() = 0;

Such functions are called pure virtual functions. A pure virtual function is a function declared in a base class that has no definition relative to the base class. In such cases, the compiler requires each derived class to define the function or redeclare it as a pure virtual function. Remember that a class containing pure virtual functions cannot be used to declare any objects of its own. As stated earlier, such classes are called abstract base classes. The main objective of an abstract base class is to provide some traits to the derived class and to create a base pointer required for achieving run time polymorphism.

A

B

A

B

C

D

C

A

B

A

B

B

C

D

C

A

 Multiple Inheritance

Multilevel Inheritance

 Hybrid Inheritance

www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

