IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ,VOL. 8, NO. 1, JAN-FEB 2011

The Geometric Efficient Matching Algorithm for
Firewalls

Dmitry Rovniagin and Avishai Wool, Senior Member, IEEE

Abstract —Since firewalls need to filter all the traffic crossing the network perimeter, they should be able to sustain a very high
throughput, or risk becoming a bottleneck. Firewall packet matching can be viewed as a point location problem: Each packet (point) has
5 fields (dimensions), which need to be checked against every firewall rule in order to find the first matching rule. Thus, algorithms from
computational geometry can be applied. In this paper we consider a classical algorithm that we adapted to the firewall domain. We call
the resulting algorithm “Geometric Efficient Matching” (GEM). The GEM algorithm enjoys a logarithmic matching time performance.
However, the algorithm’s theoretical worst-case space complexity is O(n*) for a rule-base with n rules. Because of this perceived high
space complexity, GEM-like algorithms were rejected as impractical by earlier works. Contrary to this conclusion, this paper shows that
GEM is actually an excellent choice.

Based on statistics from real firewall rule-bases, we created a Perimeter rules model that generates random, but non-uniform, rule-
bases. We evaluated GEM via extensive simulation using the Perimeter rules model. Our simulations show that on such rule-bases,
GEM uses near linear space, and only needs approximately 13MB of space for rule-bases of 5,000 rules. Moreover, with use of
additional space improving heuristics, we have been able to reduce the space requirement to 2-3MB for 5,000 rules.

But most importantly, we integrated GEM into the code of the Linux i pt abl es open-source firewall, and tested it on real traffic loads.
Our GEM i pt abl es implementation managed to filter over 30,000 packets-per-second on a standard PC, even with 10,000 rules.
Therefore, we believe that GEM is an efficient, and practical, algorithm for firewall packet matching.

Index Terms —Network Communication, Network-level security and protection
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1 INTRODUCTION addressranges in addition to subnets or CIDR blocRsthis
is the case for Check Point and Juniper—the main exception
is Cisco, that only supports individual IP addresses or stghn
The firewall is one of the central technologies allowing highTherefore, firewalls require their own special algorithms.
level access control to organization networks. Packet iniragc
in firewalls involves matching on many fields from the TCP1 2 Statefull Firewall Matching
and IP packet header. At least five fields (protocol number,
source and destination IP addresses, and ports) are involost modern firewalls are stateful. This means that after the
in the decision which rule applies to a given packet. Witfirst packet in a network flow is allowed to cross the firewall,
available bandwidth increasing rapidly, very efficient oang  all subsequent packets belonging to that flow, and espgciall
algorithms need to be deployed in modern firewalls to ensuifee return traffic, is also allowed through the firewall. This
that the firewall does not become a bottleneck. statefulness has two advantages. First, the administdates
Modern firewalls all use “first match” semantics [5], [40]not need to write explicit rules for return traffic—and such
[43]: The firewall rules are numbered from 1 tg and the return-traffic rules are inherently insecure since they e
firewall applies the policy (e.g., pass or drop) associatéd wsource-port filtering (see discussion in [43] and Check Pin
the first rule that matches a given packet. See Fig 1 for gatent [29]). So stateful firewalls are fundamentally more
illustrated example. secure than simpler, stateless, packet filters. Secontk sta
Firewall packet matching is reminiscent of the well studietPokup algorithms are typically simpler and faster tharerul
router packet matching problem. However, there are sevefaftch algorithms, so statefulness potentially offers irtepu
crucial differences which make the problems quite différenPerformance advantages.
First, unlike firewalls, routers use “longest prefix match” Firewall statefulness is commonly implemented by two
semantics. Next, the firewall matching problem is 4- or 53€eparate search mechanisms: (i) a slow algorithm that im-
dimensional, whereas router matching is usually 1- or Plements the “first match” semantics and compares a packet
dimensional: A router typically matches only on IP addresse© all the rules, and (i) a fast state lookup mechanism that
and does not look deeper, into the TCP or UDP packet headéfiecks whether a packet belongs to an existing open flow. In

Finally, major firewall vendors support rules that utilize | many firewalls, the slow algorithm is a naive linear search
of the rule-base, while the state lookup mechanism uses a

1.1 Motivation

Part of this work has appeared, in extended abstract formthe 23rd

convention of IEEE Israel. 1. Itis possible to convert an arbitrary range of IP address® a collection

D. Rovniagin and A. Wool are with the School of Electrical Eneof subnets—however, as many as 62 subnets may be necessaryeto co
gineering, Tel Aviv University, Ramat Aviv 69978, Israel-mgil: a single IP address range, thus there is a great loss of efficiln the
dmitry.rovniagin@gmail.com, yash@acm.org conversion.
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access-list 101 permit tcp 12.20.51.0 255.255.255.0 host 1.2.3.4 gt O
access-list 101 deny tcp 12.20.51.0 255.255.255.0 1.2.0.0 255.255.0.0 eq 135

Fig. 1. Excerpts from a Cisco PIX firewall configuration file, showing 2 rules. Both rules refer to the TCP protocol.
The source in both rules is the same subnet. The first rule has a single IP address as a destination but a range of
destination ports (1-65535), while the second rule has a range of destination IP addresses but a single destination
port. Note that a TCP packet with source IP 12.20.51.1, destination IP 1.2.3.4, and destination port 135 matches both
rules, but because of the first-match semantics, the first rule’s decision (“permit”) is triggered.

hash-table or a search-tree: This is the case for the opépeus on the more difficult case for the algorithm, with= 4,
source firewallpf [24] andi pt abl es [23]. There are strong in which the match fields are: source IP address, destination
indications that commercial firewalls use linear searchtfier IP address, and source and destination port numbers. This
slow rule-match as well: E.g., Check Point rules are traadla fits TCP and UDP filtering, and also ICMP (using the 8-bit
into an assembly-like macro language called INSPECT [46jessage type and code instead of 16-bit port numbers).
with linear semantics, and the INSPECT language is simplyNote that the worst-case space complexity can only be
translated into bytecode. Moreover, the standard advise tsaused by an unlucky rule-base structure, and not by the
improving firewall performance, for all vendors, is to plabe packets that the firewall encounters. Furthermore, knogded
most popular rules near the top of the rule-base (cf. [14], [7 of the rule-base does not help an attacker force the firentall i
This advise doesn’t make much sense if the firewall rearmngsoor performance since the search time is determinisgicall
the rules into a complex search data structure. logarithmic in the worst case—so GEM is not subject to
Note that a stateful firewall’s two-part design provides italgorithmic complexity attacks [8], [3].
highest performance on long TCP connections, for which theTo address the worst-case space complexity, we propose two
fast state lookup mechanism handles most of the packeifproaches. One approach involves optimization heusistic
However, connectionless UBRand ICMP traffic, and short The other is a time-space trade-off, which at the cost of tfac
TCP flows, like those produced in extremely high volume by slowdown in the search time, provides &' decrease in
Distributed Denial of Service attacks (cf. [19]), only aetie the space complexity.
the “slow” algorithm, making it a significant bottleneck. Ou  The next step in our evaluation of the GEM algorithm was
main result is that the “slow” algorithm doe®t need to be an extensive simulation study. Our simulations showed that
slow, even in a software-only implementation running on @olation, the algorithm required undepdec per packet, on a
general-purpose operating system. We show that the GEM &landard PC, even for rule-bases of 10,000 rules. Furthermo
gorithm has a matching speed that is comparable to that of {je found that the worst case space complexity manifest§ itse
state lookups: In isolation the algorithm required undeséc \hen the rule-base consists of uniformly-random rules.
per packet, and our LinuGEM i pt abl es implementation  However, real firewall rule-bases are far from random.

sustained a matching rate of over 30,000 packets-per-6ecef)ie-pases collected by the Lumeta (now AlgoSec) Firewall
(pps), with 10,000 rules, without losing packets, on a stathd analyzer [42], [44] show that, e.g., the source port field is

PC workstation. rarely specified, and the destination port field is usually a
single port number (not a range) taken from a set of some
1.3 Contributions 200 common values.

. - . . Based on statistics we gathered from real rule-bases, we
In this paper we revisit a classical algorithm from Compuwc'reated a non-uniform model for random rule-base generatio
tional geometry (cf. [10], [22]), and apply it to the firewall 9 A

. . . .~ which we call the Perimeter rule model. On rule-bases gener-
packet matching. In the firewall context we call this aldamit . ) .
the Geometric Efficient Matching (GEM) algorithm, Thi ated by this model, we found that the order of field evaluation

. A ; MShas a strong impact on the data structure size (severalsorder
algorithm performs matching i®(dlogn) time, wheren is . .
. . ' of magnitude difference between best and worst). We found
the number of rules in the firewall rule-base addis the

. tpat the evaluation order which results in the minimal space
number of fields to match. The worst-case space complexhxm lexity is: destination port source port. destinatien
of GEM is O(n?). For instance, for TCP and UDP we have plexity 1s. port, port,

- X address, source IP address. With this evaluation order, the
d = 4, giving a search time of(logn) and worst case space . . :

. 4 growth rate of the data structure is nearly linear with the
complexity of O(n*).

number of rules. The data structure size for rule bases &0,0
The GEM data structure allows easy control over the Ordﬁﬁles is ~ 130 B. which is entirely practical. Using more
of fields to be matched. The data structure can be used for an - ' yp ' 9

. . . . ressiv imizations allow: reatly r
number of dimensiong, but typical values for firewall packet ag}/g essive space optimizations allows us to greatly rethee

matching are eithetl — 2 for opaque protocols like IPsec.data structure at a cost of a factor of 2 or 3 slowdown. For

- instance, using 3-part heuristic division, we get a datacsire
(protocol 50 or 51) ord = 4 for TCP, UDP, and ICMP. We size of 2MB for 10,000 rules.

2. Some firewalls treat UDP traffic as connection-orientedertbrm state Beyond S'.mmat'lonls' we Cr.eat?d a fully functional GEM
lookups on UDP packets as well. implementation within the Linuxi pt abl es open-source
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TABLE 1

. . e We use %’ to denote wildcard: An ' in field s means
Header field numbering.

any value in[0, U;].
e We are ignoring the action part of the rule (e.g., pass

number description space . d . ”
0 source 1P address 32Dit or drop), since we are only interested in the matching
1 destination IP address | 32bit algorithm.
2 source port number 16bit
3 destination port numbef 16bit .
4 protocol 8bit 2.2 The Sub-Division of Space

In one dimension, each rule defines one range, which divides

] ) ) space into at most 3 parts. It is easy to see thatossibly
firewall [23], and tested its performance in a laboratorgyeriapping rules define a subdivision of one-dimensional
testbed. OurGEM i ptabl es Linux implementation sus- space into at most2n — 1) simple rangesTo each simple
tained a matching rate of over 30,000 pps, with 10,000 rulegnge we can assign the number of tumner rule. This is
without losing packets. In comparison, the non-optimizeghe first rule which covers the simple range.
| ptabl es could only sustain a rate ok 2500 pps with | g.dimensions, we pick one of the axes and project all the
the same rule-base. o rules onto that axis, which gives us a reduction to the previo

Thus, we conclude that the GEM algorithm is an excellentne_dgimension case, with a subdivision of the one dimension
practical, algorithm for firewall packet matching: Its maitty o at most(2n — 1) simple ranges. The difference is that
speed is far better than the naive linear search, and itsespgagch simple range corresponds to a set of rulegdin- 1)
complexity is well within the capabilities of modern hardea gimensions, calledctive rules We continue to subdivide the

even for very large rule-bases. . (d—1) dimensional space recursively. We call each projection
Parts of this work have appeared, in extended abstract forfpg a new axis aevel of the algorithm, thus for ad-

in [28]. dimensional space algorithm we havéevels of subdivisions.

Organization: Section 2 formally defines the matchingrpe |ast level is exactly a one-dimensional case—among all
problem and describes the GEM algorithm along with it§,e active rules only the winner rule matters.

data s_tructure. Section 3 de_scribe_s the statistics we @he At this point we have a subdivision @tdimensional space
fron_1 firewall rule-bases. Sectlon4|ntroduc§s the .nonculmf into simple hyper-rectangles, each corresponding to sing|
Perimeter rule model, and describes the simulation results inning rule. In Section 2.4 we shall see how to efficiently
this model. Section 5 describes oupt abl es implemen- .roate this subdivision ofi-dimensional space, and how it
tatlon_ and the performance it achleved._ S_ectl_on 6 desqu slates into an efficient search structure.
the time-space trade-off and space optimizations. Sedction
describes related work, and we conclude with Section 8.
2.3 Dealing with the Protocol Field

2 THE ALGORITHM Before delving into the details of the search data strugture
21 Definitions we first consider the protocol header field. The protocol
field is different from the other four fields: very few of the

56 possible values are in use, and it makes little sense to
§fine a numerical “range” of protocol values. This intuitio
is validated by the data gathered from real firewalls (see
Section 3): The only values we saw in the protocol field in

ggzzadelr. fTh?Pf'el(;j dvalues ari ?5%3%’? < Utl whebre Ui = d actual firewall rules were those of specific protocols, phes t
— 1 for IP addressed)); = Or port numbers, ana ,;4carg “«’, but never a non-trivial range.

U; = 255 for ICMP message type or code. Table 1 lists the Thus, the GEM algorithm only deals with single values in

header fields we use (the port fields can doub!e as the mgssl%%eprotocol field, with special treatment for rules with as
type and code for ICMP packets). For notation convenience

later on, we assign each of these fields a number, which |§rOtOCOI' We preprocess the firewall rules into categohigs
C 9 ' protocol, and build a separate search data structure fdr eac
also listed in the table.

protocol (including a data structure for th€ protocol). The
Remarks: . . .
, . . actual geometric search algorithm only deals witfields.
e Most firewalls allow matching on additional header i
Now, a packet can only belong to one protocol—but it is

fields, such as IP options, TCP flags, or even the packet 2
" . o also affected by protocol =" rules. Thus every packet needs
payload (so called “deep packet inspection”). However L o ,
0 be searched twice: once in its own protocol’s data strectu
real rule-bases [44] very rarely use such futures. Near] ; o : .
i nd once in thex’ structure. Each search yields a candidate
all the firewall rules that we have seen only refer to the. 3 . . :
o . . winner rule® We take the action determined by the candidate
five fields listed in Table 1. :
e The description above, and the GEM algorithm ig\”th the lower number.
P . 9 ' In the remainder of this paper, we focus on the TCP

mostly suitable to firewalls _whose rule_:s _use_mtlguous eprotocol, which hasd = 4 dimensions, although the same
ranges of IP addresses. This is not a limitation for enter-

prise firewalls—we have never encountered an enterpris ¢ o ryle matches, we assume that the packet matches an indfailt
firewall that uses non-contiguous masks. catch-all rule with a maximal rule-number.

The firewall packet matching problem finds the first rule th
matches a given packet on one or more fields from its hea
Every rule consists of set of rangéls, ;] for i = 1,...,d,

where each range corresponds to thih field in a packet
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Fig. 2. Overall GEM data structure overview. Fig. 3. The last two levels of building the search data
structure. At this point the rules are two-dimensional, e.g.,

) ) ) _ the X axis may represent the destination IP and the Y axis
discussion applies for UDP and ICMP. In Section 3 we shall {he destination port. We can see three rules, shown
see that TCP alone accounts for 75% of rules on real firewalls; shaded overlapping rectangles, plus the default rule in

and collectively, TCP, UDP, and ICMP account for 93% of thite. The critical points and simple ranges are projected
rules. onto the X axis. Three blocks in rule 1 are optimized.

6 7

2.4 The Data Structure

The GEM search data structure consists of three parts. Tte fir

part is an array of pointers, one for each protocol numbetata structure, to select the corresponding protocol dagb

along with a cell for the # protocol (as mentioned in header. From this point, we apply a binary search with the

Section 2.3). We build the second and third parts of the seamorresponding field value on every level, in order to find the

data structure for each protocol separately. matching simple range and continue to the next level. The las
The second part is grotocol database heademwhich level will supply us with the desired result—the matchingerul

contains information about therder of data structure levels. number.

The order in which the fields of packet header are checked isF | h . ing TCP ket
encoded as d-tuple of field numbers, using the numbering or examplé, Suppose we have an incoming PaCKEL.

of Table 1. The protocol database header also contains {E%sume that the GEM protocol header for TCP shows that

pointer to the first level and the number of simple ranges € ordgr OT levels is 1203. The first Ie\{el - 1 - denotes
that level the destination address. We execute a binary search of the

The third part represents the levels of data structure the gstination address value from packet header against lhes/a

selves. Every level is a set of nodes, where each node is% Ahe array in the first I(_avel. The simple range as_,sociatetu -

array. Each array cell specifies a simple range, and congain e found array item points us to the_ corresponding node from
pointer to the next level node. In the last level the simplegea the second level. The second_level, in our example (2) denote
information contains the number of the winner rule instefd 6he source port number. By binary search on the second level

the pointer to the next level. See Fig 2 for an illustration. array we find a new simple range, which contains the packet
ource port number. Similarly, we search for the sourceesfir

The basic cell in our data structure (i.e., an entry in the: S :
sorted array which is a node in the structure) has a size of% Id 0) and destination port (field 3). In the last level node
we find the winner rule information.

bytes: 4 for the value of the left boundary of the range, 4 fo
the pointer to the next level, and 4 for the number of cells in We repeat the search procedure for protocd] and get
the next-level node. The nodes at the deepest level ardlgliglanother “winner” rule. From the two candidates we choose
different, consisting of only 8 bytes: 4 for the left bounglarthe one with the lower rule number.
of the range and 4 for the number of winner rule.

Note that the order of levels is encoded in the protocol Search time: In each level we execute a binary search on

database header, which gives us convenient control over f{garray of at mosin entries, where is the maximal number
field evaluation order. of active rules. We process two searches: one with the packet

protocol and one in thex' data structure. Thus, fod levels,
, the search time i®(dlogn). For a constant = 4, we get an
2.5 The Search Algorithm O(logn) search time. Note that the’*search data structure
The packet header contains the protocol humber, source amdly has 2 levels (for IP addresses), thus the search time is
destination address and port numbers fields. First, we cheatiminated by the time to search the 4 levels of the TCP search
the protocol field and go to the protocol array of the searatata structure.
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TABLE 2
Protocol and port numbers distribution in rule-bases.
SOURCE PORT DISTRIBUTION DESTINATION PORT DISTRIBUTION
* 98% * 0%
ranges 1% ranges 4%
single port 1% average range size 27030
single ports 96%
average # single ports per rule-base 50
PROTOCOL DISTRIBUTION 80 | 6.89%
* 6% 21 5.65%
TCP 5% most referred-to ports in rules 23 | 487%
UbP 14% 443 | 3.90%
ICMP 4% 8080 | 2.25%
Other 1% 139 | 2.16%
2.6 The Build Algorithm of rules [44], conserving space is crucial. Here we intraduc

The build algorithm is executed once for each protocol. THYO OPtimization heuristics, which significantly reduce K88
input to the build algorithm consists of the rule-base, jhes SPace requirement.
field order to use. The order dictates the contents of each dat ' "¢ first optimization works on the last level of the data
structure level, and also, the order in which the headergfielgructure. If we take a closer look at last level ranges, vee se
will be tested by the search algorithm. There ale— 24 that occgsmnally two or more adjacent ranges point to the
possible orders we can choose from, to check 4 fields. TRgMe Winner ”_Jle' This means tha_‘t we can replac_e all th_ese
data structure is built using a geometric sweep-line algori ranges with a single range which is their geometrical union
(cf. [9]). (see Fig 3). S

All four levels of the search data structure are built in the, 1€ Second optimization works on the one-before-_last _Ievel
same manner. We start with the setamftive rules from the of the search data structure. Occasionally, there exisplsim
previous level. For the first level all the rules with the sfied "aN9€S that point to equivalent last level stru.cture.s.em.‘tt
protocol (e.g., TCP) are active of storing the same last level structure multiple times, we

We then construct the set fitical points of this level— keep a single last level structure, and replace the duplcat

these are the endpoints of the ranges, which are the prajecti by dp(élnters to _thT mtam ICOPZ' ?'): Zr egtar\]mbple, :jn Elg 3 ;ﬁnges 2
of the active rules onto the axis that corresponds to t are equivalent (rules 4-3-4, with boundaries in theesam

currently checked field (See Fig 3). For example, if the firé’telrbt\ic""I ptosiftit?]ns) imulati wud tested the effecti
field is “1” (destination IP address), then the critical geiare S part of the simulation study, we tested the eflectiveness

all the IP addresses that start or end a destination IP wdr%q‘fstheggoo?UnIg%té%ns.hOurtilrr:utlr?tlonst.or} rutl_e basez @ss[[zh
range in any rule. We sort the list of critical points in inasing rom 0 19, show that the optimizalions reduce the

i 0
order, and run the sweep-line over them. Note that there %(?arch data structure size by 3080% on average, and that

two implicit critical points: 0, and the maximal value foreth the effect grows with rule-base size (See Section 4.4.2).

level. Every critical point corresponds to a start of onedian hi V;]/eratls\;) Itrle(: to ragptly trt]:S ?prt'm'éa;“(\); Tet:zldtr? nt mle
range, which in turn relates to a subset of active rules. gher evels ot our-qata structure, but we fou at this

For each simple range we calculate its set of active rule%reatIy increases the preprocessing time, and only givesmi

b . . improvements to the space complexity. We omit the detalils.
y choosing all the rules that overlap the simple range ome space/time optimization tradeoffs are discussedan se
the current field. For example, in Fig 3, rules 2, 3 and 4 a%l P P

e " S i
relevant for the third simple range on the X axis. With thisvne éogMG_'"\k/Ze drStZa;Engtr:sdda:trlgnlfr: ozs);lTéza'(el?fgrﬁCCvtﬁuiﬁBt;e
set of active rules we continue to the next level for each one P

of the simple ranges. In the deepest level we only need to Ics&mputational geometry literature, so it would be intargst
the numbef)r of thg “Winner rule”'Ft)he rule with Ioszt numbe{o test their effectiveness in the firewall matching domain.
amona the active rules associéted with the current range E’ossibilities include: not using the same field orderingverg
Bui?d time and soace complexity: In the worst case GgEM branch of the search tree; switching to the next branch befor
» piexity: L completing the search along an axis; or even replacing 8te la
perfqrmg a sort Oﬂ(n.) values for each of .thé levels, giving two levels of binary search tree with a data structure optédi
a build time complexity oD ((nlogn)?). It is easy to see that

the space complexity i©(n?) in the worst case, an@(n?) for two-dimensional queries such as that of [11] or [4].

for TCP or UDP.
3 FIREWALL RULE-BASE STATISTICS

. . o To get a better understanding of what real-life firewall fule
2.7 Reducing The Space Usage: Basic Optimiza- bases look like, we gathered statistics from firewall rueéds
tions that were analyzed by the Lumeta (now AlgoSec) Firewall An-
A space complexity oD (n*) may be theoretically acceptablealyzer [42], [44]. The statistics are based on 19 rule-b&ses
since it is polynomial. However, witm reaching thousands enterprise firewalls (Cisco PIX and Check Point FireWall-1)
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collected during 2001 and 2002. The rule-bases came frord.2 The Perimeter Rules Model

variety of corporations from the financial, telecommuriwas, A \ve saw in Section 3, real firewall rule-bases have a large
automotive, and pharmaceutical industries. We analyzethh t degree of structure. Thus, we hypothesized that realigtis r

of 8434 rules. o _ bases rarely cause worst-case behavior for the GEM algorith
Table 2 shows the distribution of protocols in the rulegthermore, we wanted to test the effects of the field order o

we analyzed. The data shows &t of rules from typical (he performance of GEM on such rule-bases. For this purpose,

firewall rule-bases match TCP, and a total of 93% match TCRe pyilt the Perimeter firewall rules model, and simulategl th

UDP or ICMP. Of these the most important is clearly TCRyehavior of GEM on rule-bases generated in this model.

Therefore, we concentrate on these protocols in the rest of

paper. In our problem context, these protocols are the msb 1  The Modeled Topology

difficult for evaluation since they imply &dimensional space. The model assumes a perimeter firewall with two “sides™
The same table shows the distribution of TCP source ang P '

destination port numbers. We can clearly see that the sou?c%)mteded network on the inside, and the Intemet on the

port number is rarely specified: 98% of the rules have %u side. The inside network consists of 10 class B networks,

. o § ; z%nd the Internet consists of all other IP addresses. Thes, th
wildcard ' in the source port. This makes sense becaush bomternal network contain$0 - 65536 possible IP addresses. In
PIX and FireWall-1 are stateful firewalls that do not need to P '

perform source-port filtering to allow return traffic thrduthe regllty, organizations that actually own 10 class B netwate

it is usually under the control of the attacker. 1) Many organizations use private (RFC 1918) IP addresses
On the other hand, the TCP destination port is usually internally, and export them via network address transla-
specified precisely. The vast majority of rules specifiechglsi tion (NAT) on outbound traffic. Such organizations often

port number, but 4% allowed a range of ports, and the ranges ~ US€ large subnets liberally, e.g., assign a 172.x.*.* class
tended to be quite large. Common ranges are “all high ports” B subnet to each department.

(1024-65535) and “X11 ports” (6000-6003). The single port 2) Havmg.a large mﬁernal subnet stresses the GEM algo-
numbers we encountered were distributed among some 200 'ithm since we pick random ranges from the internal
numbers, the most popular of which are shown in Table 2:  fanges.

these correspond to the HTTP, FTP, Telnet, HTTPS, HTTP-

Proxy, and NetBIOS services. 4.2.2 The Rules

The Perimeter rules model produces rules of two types:
Inbound rules, that allow traffic from the Internet into the

i . protected network, and Outbound rules, that allow traffierfr
4.1 The Random Rules Simulation the protected network out to the Internet. Each rule in the
As the first step of our performance evaluation of GEM waule-base is constructed randomly according to the digiob
implemented and tested it in isolation. The GEM build andetailed in Table 3 for its type (Inbound or Outbound).
search algorithms were implemented in C using Microsoft Inbound rules. When we are modeling rules for inbound
VC++ 6.0. The simulations were performed on a 733MHiuaffic, the source IP addresses are rarely specified in kes,ru
Pentium 11l PC with 256MB of RAM running the Windows and 95% of the rules have’as their source address. The re-
XP operating system. maining 5% have a range in their source address field, chosen

We started by testing GEM using uniformly-generated ruleaniformly at random from the Internet's IP addresses. The
for every rule, each endpoint of each of the 4 fields (IP addredestination addresses for inbound rules are always irferna
ranges and port ranges) was selected uniformly at randam frelonging to the 10 internal class B subnets. 45% of the rules
its domain. We built the GEM data structure for increasingave a randomly chosen individual internal IP address as a
numbers of such rules and then used the resulting structdestination, modeling server machines. Another 15% have a
to match randomly generated packets. We omit the details fmall random rangea range which completely lies inside one
lack of space, and instead refer the reader to [27]. of the internal class C networks. These ranges model chister

On one hand, these early simulations showed us that thfeservers and small classless subnets such as '/27's aid.’/2
search itself was indeed very fast: a single packet matck tobhen, 30% of the rules have a complete class C as a destination
around lLsec, since it only required 4 executions of a binari.e., a range of the forna.b.c.0 — a.b.c.255). Finally, 10%
search in memory. allow access to a full class B.

On the other hand, we learned that the data structure sizéNote that Inbound rules produce many “collisions” in the
grew rapidly—and that the order of fields had little or nalestination field. E.g., consider the 30% of rules with a full
effect on this size. The problem was that since the rangesdiass C destination. The Birthday paradox [13] shows that th
the rules were chosen uniformly, almost every pair of rang@sobability of findingsomeclass C destinations that collide is
(in every dimension) had a non-empty intersection. All theslose to 1 when the number of rules excead®560 ~ 50.
intersections produced a very fragmented space subdivisi&ssentially the same is true for collisions of a single-fimé-
and effectively exhibited the worst-case behavior in theadalP-destination and an internal class C subnet, since every
structure size. We concluded that a more realistic rule hodeternal IP address has exactly a 1:2560 chance of falling
is needed. inside a patrticular internal class C.

4 THE SIMULATION STUDY
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Fig. 4. Finding the best field order: GEM data structure size as a function of field order. The bars also show the 90%
confidence intervals.

Outbound rules. When we are modeling the outbound TABLE 3

rules, 90% of the rules have a destination IP address:of * ;il'hle itafls’t_lcalhd|str|but|olrll)fo;;ules 'P tkg Psrlm(cajterl
10% of the rules have either a specific address or a range in fagdel. An "< in the source IP address for Outbound rules

destination field, modeling a rule that restricts or allowsess 'cPresents all IP addresses inside the internal network.

to some particular server or network. The source addresses f nbound T Outbound
outbound rules are selected from the internal addressés wit ” 95% 50
the frequencies shown in Table 3. source range 5% 15%
Services. The service field in the rules is selected similarly IP Class B 10%
for both Inbound and Outbound rules. The service is selected Class C 25%
uniformly at random from a collection of 100 services, whose single IP ggg)
definitions were taken from _real firewa_ll r_u_le-bases (rec_all dest raﬁge 15% 5%0
Table 2). Most of these services have individual destimatio P Class B 10%
port numbers, however a few include port ranges, and ong Class C 30%
service is the ' service. We allow a small rate of growth in _ single IP__ 45% 5%
the number of services by adding 2% of randomly generateq Service | from 100 services list | = 96% 96%
. o . . dst port is random range 2% 2%
getr(;nggzé\évhere the destination port is randomly pickednfro dst port is single port 2% 2%

One concern we had was that, occasionally, the model gen-
erated a rule of the form “from, to %, with servicex”.# When insecure to allow many TCP services into large parts of the
such a rule shows up in the rule-base, it acts as the defadternal networks [44]. Both considerations would causeeno
rule, and all subsequent rules become redundant, becauseepktitions in IP addresses, and hence, reduce the number
the “first match” semantics. This effectively shortens thler of simple ranges, which would lead to smaller search data
base, and prevents us from simulating GEM's behavior @ftructures. Therefore, we believe our Perimeter modessee
large rule-bases. Thus, our model checks for, and discargse GEM algorithm more than real firewall rule-bases would.
such randomly-generated catch-all rules.

The rule-bases generated by the model are still much legg Selecting the Best Field Order
structured than actua}l firewall rule—ba}ses. In real firewalk- Our first goal in the Perimeter model is to determine if any
bases the number of internal servers is usually r.at.her sargil efficiency can be achieved by selecting the GEM data strectur
they have many rules that refer to them. Also, it is c0n3|derq.>|e|d order.

4. This occurs with a probability of approximately 0.00026, we can  Preliminary simulations showed us that the order of fields
expect such a rule once every 4000 rules. had a very strong impact on the size of the data structure in
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Fig. 5. (A): Build time as a function of the order of fields. (B): Build time as a function of the number of rules, with and
without optimization, using the best (3210) order.

the Perimeter model (several orders of magnitude betwesn b
and worst choices). The variance was so large that we wg
unable to simulate the worst choices on large rule-basesg si
the data structure grew to hundreds of MB and took up to 2
minutes to build.

The rationale is that the usage patterns in the differerddiel
are non-uniform (as we saw in Section 3), so some choices
fields in the high levels of the hierarchy cause large amou
of subdivisions in the lower levels (many ranges are crdate

Therefore, we used a 3-stage process to identify the b
order. In the first stage we generated small (500 rules) ru
bases, and built the data structure for each of 4he= 24 ) ) _
possible orders. This simulation showed that 16 orders werd- 6. Data structure size as a function of the number of
clearly much worse than others, so we dropped them afdes:
continued to 2000-rule sets with the remaining 8 orderseHer
we found that the best 4 orders were better than the rest. T8 1 Growth Rate

top 4 candidates were evaluated on 5,000-rule sets, whi . . ) . .
identified the best and second-best orders. The process'&gF rwe identified the best field order, we investigated +ela

finding the best order for the “Perimeter” model is shown itively large rule-bases to get a more precise picture of (B¥G
Fig 4.

Fig 4 shows that the confidence intervals for the best
orders all overlap, indicating that the differences betwémm
are not statistically significant. Moreover, a closer loblows
that the position of field “2” (source port) among the best
orders is less significant: there are really only two ordet
(310 and 301) with the “2” field inserted in all 4 possible
positions. This is reasonable because the source port in g o  Build Time
Perimeter model is almost always’,’ so it's position in the
order has a limited impact. Therefore, for all subsequestiste
we somewhat arbitrarily used the “natural” order of 321
(destination port, source port, destination IP addressrcgo
IP address).

o N » O
T

Size of GEM Data Structure (Mb)
©

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of rules

Qata structure and search algorithm properties. Fig 6 sliogvs
%EM data structure size as a function of the rule-base size.
As we can see, the data structure size grows almost linearly
with the rule-base size, i.e., at a much slower rate than the
eoretical upper bound ab(n?) indicates. By plotting the
ata on dog-log scale and calculating a linear regression we
ound that the growth rate i©(n" ).

In this test we evaluated the time it takes to build the search
ata structure. Fig 5(A) shows the build time for different
ield orders. We compared all 24 orders on small-sized rule-
bases (500 rules). Again we can see the great variabilityy wi
the fastest build about 2 orders of magnitude faster than the
slowest. Luckily, our best field order also has a good build
4.4 The Search Data Structure time (4" place).
Every point on the simulation result graphs represents theFig 5(B) shows the rate of growth in the build time. The
mean value from 10 independent runs. The graphs also shiigure shows that the build time grows at a super-linear rate,
90% confidence intervals (cf. [18]). but that the time remains reasonable even for large ruleshas
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Fig. 8. Testbed system configuration.

GEM size (Mb)
W

support general ranges of IP addresses in the rules, and only

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ accepts subnets. Therefore, we modified our rule generation
0 01 02 03 04 05 06 07 08 09 1 module to only produce subnets, e.g., instead of generating
Inbound » Oubound | 3 random IP range, we generate a random IP address and

a random netmask that leaves the resulting subnet inside
one class C network (recall Section 4.2). The modified rule
generator output anpt abl es configuration script.

Fig. 7. The Inbound-Outbound Ratio vs. GEM data struc-
ture size. A ratio of 0 means that all rules are Inbound.

the search data structure for 5,000 rules took about 45 sisc0B 1 Testbed setup

to build. A linear regression of théog — 1 lot shows a : . .
9 g—log P Our testbed consisted of two computers, with one acting as

1.7 H imi i 1.5 H
gr(:;/r\:;t:;;%tgnofO(n ) with optimization andO(n"-) without the firewall, and the other acting as a packet generator. The
pThe figuré also shows that about 20-30% of the build tin{%:/ewall was a 2.4GHz Pentium 4 with 512MB RAM, with
. S X 0 100Mbps Ethernet interfaces. The packet generator was a
is taken by the optimizations (recall Section 2.7). Howeve& OMHz Pepntium 11 with 396MB RAM a?ld asinggle 100Mbps

the optimizations give us 30-60% improvement in space us . ;
of the GEM search structure. For example, if we use the bae]% emet interface. Both computers ran Red Hat Linux 9. We
i onnected the two computers by a cross-over Ethernet cable.

order and build the GEM data structure for 5,000 rules witho he firewall'set h1 interf left ted Fiq 8
optimization, it takesxz 20 MB, rather than~ 13 MB. € firewa’se intertace W,as €ft uhconnecte (see Fig 8).
We configured the firewall's routing table to forward all
45 The Inbound - Outbound Ratio the pa_ckets destined t_o the_ 10.0.0.0/8 class A subnet oger th
- ] ] et hl interface to an imaginary next-hop router. Thus every
An additional parameter of our Perimeter model is the ratigcoming packet with a 10.**.* destination IP would pass
between the number of Inbound and Outbound rules. {Rrough thei pt abl es FORWARD chain. However, all the

GEM building algorithm on rule-bases with different ratiob  actually forwarded—saving us the need to install a receiving
Inbound and Outbound rules. The results are shown in Fig st behind the firewall.

among the best in Section 4.3. randomly generated rules from the Perimeter model. We then
The figure clearly shows that if the rules are homogeneoji the packet generator send a sustained stream of paekets,
(ratios close td) or to 1), we get better space performancey specified send rate, for a period of 10 seconds, after which
The difference between homogeneous and mixed rule-baggsyinted the exact number of packets it sent. All the pasket
can be up to a factor of 6 in size. In all subsequent tests e 80-byte TCP packets, with no TCP-flags set. After all
used an inbound-outbound ratio of 50% - again, to stress R packets were sent, we recorded how many were filtered

GEM algorithm. (and dropped) by pt abl es: i pt abl es counts the number
. of packets that match each rule. If the send rate exceeds the
S5 THE GEM i pt abl es IMPLEMENTATION firewall's maximal filtering rate, the firewall's IP bufferslIfi

To evaluate GEM in a more realistic environment, we imdp, and packets start to drop beforethey reach pt abl es.

plemented the GEM algorithm and integrated it with th&/hen this occurs, the total number of filtered packets regdorte

code of the Linuxi pt abl es firewall. We used Red Hat by thei pt abl es counters idessthan the number of packets

Linux 9 (kernel version 2.4.18-8) aridpt abl es v1.2.8. We that were sent by the packet generator.

incorporated the GEM build algorithm into the user-space We verified that all the sent packets indeed arrived at

programi pt abl es, and the GEM search algorithm into thethe firewall computer, by sniffing itet hO interface using

i p_t abl es kernel module. The built GEM database wast her eal . Thus, all the packets that were lost, were lost on

transferred from user space to the kernel using the mecthiae firewall computer, within its IP layer. We did not enceemt

nism already employed bipt abl es. We left the existing any layer-2 (Ethernet) loss. Note that even at 30,00ppd) wit

i pt abl es linear search algorithm intact. The selection 080-byte packets, the total bandwidth is only 19.2Mbps, Wwhic

linear or GEM search was controlled by a command linis easily sustainable on a dedicated 100Mbps link.

switch. The packets we generated had random destination IP ad-
Since we wanted to be able to compare GEM’s performandeesses in the range 10.0.*.*-~10.7.255.255, random exdtern

to the regulai pt abl es, we adopted the pt abl es config- source IP address, and TCP port numbers that were chosen

uration language as our input. Howeviept abl es does not according to an Internet mix [21]. In earlier simulations we
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Fig. 9. Throughput of i pt abl es with and without GEM, for different rule-base sizes. Figure A shows the receive rate
as a function of the send rate, and figure B shows the throughput as a percentage.

verified that the firewall's matching speed is largely unatiéel (omitted), we extrapolate that GEM may well be able to filter
by the distribution of port numbers (both linear search arat a rate of 100,000 pps.
GEM). We omit the details.

Note that each packet mimics the first packet in a news caveats

TCP 3-way handshake—much like a SYN-flood DoS attacE. id tchi P add . b d ofot
This is reasonable for testing the performance pf abl es >esides malching on 1= adaresses, port humbers, and protoco
fields, i pt abl es also supports filtering based on other

because with a real TCP flow, any additional traffic on the

same flow would have been matched by the fast state-lookﬁ]?'bmes of the packet, such as the IP fragmentation IR T

algorithm (i.e., by theconnt r ack module) and not by the g‘:‘)’l ﬂ:e mtt:rfﬁace nhanlftba?d relltetrlllmlts.lcf:.urrenltlly ?i\g IS
“slow” i pt abl es search algorithm. unable to match such attributes. In the real firewall ruls

(Section 3) that we checked, we did not encounter any rule
. . that use this type of capability. Therefore we speculaté tha
5.2 Results and interpretation they are used rarely in typical firewall rule-bases.
We compared the matching throughput iopt abl es and There are several ways to handle iapt abl es rule-base
GEM i pt abl es for rule-bases of 2000, 4000, and 1000@vhich matches non-GEM attributes. One possibility is to add
rules. The rules were created according to the distributionore dimensions to the GEM data structure. The obvious
represented by the Inbound part of the Perimeter rules modehdidate would be the TCP flags field, that only has a handful
(recall Table 3). For each rule-base size, we varied theqiackf possible settings. Another possibility is to use a hybrid
send rate from 1000 pps up to 30,000 pps, and recordapproach: Namely, we would need to split the rule-base into
the number of received (filtered bypt abl es) packets. The GEM rules and non-GEM rules. Every packet would then need
results can be seen in Fig 9. Every point on the curves is tinbe filtered twice: once using GEM'’s efficient search, and
average of 15 runs using three rule-bases of the given sipace using a linear search over the non-GEM rules, giving
We also show the 90% confidence intervals. two candidate winner rules. The winner rule would be the one
Fig 9 clearly shows thatpt abl es has a maximal through- with the lower rule number. Exploring these possibilitias i
put of between 2500 pps and 9000 pps (inversely proportionaft for future work.
to the number of rules). This agrees with the results repadrte
[17] about the matChIng time of OpenBSDﬁ [24], Versus 6 SPACE OPTIMIZATION TECHNIQUES
i ptabl es and FreeBSD'sl PFi | t er [26]. The reported
maximal throughput in [17] was between 1500-3000 pps, fgr
1000 rules—but the author used a much slower machine thEe GEM algorithm require®(n?) space in the worst case,
ours. and has arO(d - logn) search time complexity, wheré is
In contrast, GEM maintained a 100% throughput at all tHée number of fields in packet header that are relevant for
send rates and for all rule-base sizes we tried. In fact, we wdacket classification. In this section we suggest a trafje-of
unable to reach send rates that cause GEM to lose packétgll-known in the computational geometry literature, whic
This is since the packet generating Perl script, running & the cost of a factof slowdown in the search time, provides
the slower computer, hit a CPU bottleneck and could néf ¢*~' decrease in the space complexity. The next process
send more than 30,000 pps. Thus we have not determined @igscribes the trade-off:
maximal throughput of GEM, even with 10,000 rules. Based 1) Split the firewall rule-base (arbitrarily) intbsets ofn/¢
on the fact that the GEM search time only grows with the rules each. Append a final default “drop” rule to each
log of the number of rules, and on earlier simulation results  partial rule-base, and give it a rule number of “infinity”.

1 A Space-Time Trade-off
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TABLE 4
Defining 2 and 3 parts splitting heuristics for perimeter
model rule-base.

—A—1 Part ( not divided )
—8—2 Parts

—o—3 Parts

2-part splitting rules

part 1 | all rules, which havex in source IP addres$ield
part 2 | all rules that not in part 1

3-part splitting rules

part 1 | all rules, which havex in source IP addres§eld
part 2 | all rules that not in part 1 and hawe

Size of GEM data structure (Mb )

in deStination IP 'addrESﬁeld . ° 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
part 3 | all rules that not in part 1 and not in part 2 number of rules
TABLE 5 Fig. 10. GEM data structure size: unsplit, 2-parts splitting
Best field orders for heuristic splitting tests. The and 3-parts splitting.

percentages indicate the fraction of rules in each part.

us 12

part 1 | part 2 | part 3
2 Parts| 0231 | 3021
48.5% | 51.5%
3 Parts| 0231 | 3120 | 3120
48.5% | 43.8% | 7.7%

=)

&

Search time in GEM data structurt
[ o
® ®
| |

—&—1 Part ( not divided )
4 —>%—2 Parts

2) Build a GEM data structure for each partial rule-bas

o
N

separately. The size of each GEM-database will K oo ‘ ‘ ‘ ‘ ‘ ‘ s ‘
O((n/f)d) in the worst case. The total size of the 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
structure is: number of rules
d d . . ) -
0 (g. (ﬁ) ) —0 <_Z 1) . Fig. 11. GEM search time: unsplit, 2-part splitting, and
¢ = 3-part splitting.

3) To match a packet header we have to match it against
each of the/ GEM data structures. Each search coné.z.2 GEM Data Structure Size

tributes a matching rule for the packet. From thdse

candidates we choose the one with the lowest numb¥t, order to test the build time, data structure size and $earc
Thus the overall search time complexityG&/-log ™ + speed behavior, we generated rule-bases of sizes from »000 t
7

0)=0(f-log 2). 20000 and built the GEM data structure using two approaches:

Note that if we choose — O(n), then we get a GEM 2—part. heuristic splitting and 3-part heuristic splittings
described above.

structure size oD(n) and a linear search speed. At the other _. : .
; . Fig 10 shows the data structure size of the unsplit, 2-

extreme, if we choosé = 1 we get the pure GEM complexity. - - )
part splitting, and 3-part splitting approaches. The figure

clearly shows that both splitting heuristics are very dffec
6.2 Evaluating the Effect of Splitting the Rule-Base in reducing the data structure size: The data structureisize
In order to evaluate the performance of the time-space ¢fddereduced by a factor of 7 in the 2-part, and by a factor of 10
(Section 6.1), we experimented with the Perimeter model. \ie the 3-part.
tried two splitting heuristics: The first heuristic is calle2-

part’, in which one part contains rules with sourc€zand the 6'_2'3 GEM Search Time -and Build T|m§ o
other part contains all the other rules. In the other heiaristig 11 shows the search times for the different heuristics. W

called ‘3-part’, the first part is the same as in 2-part splig  See that the theoretically expected results are true and tha
the second part contains rules with destinatienand source the search time is linear to the number of parts and is almost
# %, and the third part is all other rules not included in part§idependent of the parts sizes.

1 and 2. An additional benefit from splitting is a significant redwcti
in build time for large rule-bases. For instance, buildihg 8-
6.2.1 GEM Parts Information part GEM data structure for 20,000 rules takes about 10 sec,

Before we can proceed with the main test we have to determiWQ_IIe the unsplit GEM data structure took over an hour to

the optimal orders for each part in both approaches. Tablebg'ld‘

shows that the best field order differs among parts: E.g.am p

1, the first field in the best order is the source IP (field O)SThi7 RI_ELATED WORK

is reasonable since all the rules in part 1 have sourceso /-1 First match

using it as the top-level field produces a single item in thEhe results closest to ours were presented by Gupta and
second level and minimizes the size of the data structure. McKeown in their Recursive Flow Classification (RFC) algo-
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rithm [16]. They introduced an efficient packet classifioati algorithm which solves the point location problem far
algorithm, which is optimized for a hardware implementatio non-overlappingl-dimensional hyper-rectangles, with a linear
Their algorithm divides the address space into rangesauleaspace requirement an@((logn)(@~1)) search time. In our
by borders of the rules, and encodes these ranges into a moake, we haveverlapping d-dimensional hyper-rectangles,
smaller “number space”. They then project the rules onts ttsince firewall rules can, and often do, overlap each other—
smaller space, and repeat until the number space is snmallking rules overlap is the method firewall administrators
enough, at which point they assign the winning rule to eaclse to implement intersection and difference operations on
encoded range. The authors did not present an asymptotc tisets of IP addresses or port numbers. These overlapping
complexity analysis—however, based on our reading of thdiyper-rectangles can be decomposed into non-overlapping
work we believe that RFC, like GEM, enjoys a logarithmityper-rectangles—however, a moment’s reflection shows that
matching time, but suffers from a@®(n¢) worst-case space the number of resulting non-overlapping hyper-rectangges
complexity, when the matching is performed ahfields. (n?), thus the worst case complexity of [31] for firewall
By counting the machine instructions in their algorithm theules is no better than that of GEM.
authors claim that RFC should be able to process 1Mpps inNote that [25], [4], [31], trade off search time for a linear
isolation. The authors tested the actual space complexity space complexity. Our approach is to use the fastest pessibl
small-sized rule bases, provided by Internet Service s search time @Q(logn)) - And we show that the penalty we
(ISPs), and claim that it grows linearly with number of rulessuffer in the space complexity is still low enough to chose th
Interestingly, Gupta and McKeown remark that classical GEMGEM algorithm.
like algorithms from the field of computational geometry are Interval Decision Diagrams were introduced by [6] as a
applicable to the firewall matching problem—ubut they dismissol for packet filtering using first-order logic. The ideat
such algorithms as impractical due to their high (theoatfic construct a logic formula based on the integer intervalate
space complexity. In contrast, our results show that origg@l by the set of rules. The algorithm enjoys logarithmic search
rule-bases the space complexity of GEM grows linearly. Otime, but the build algorithm is exponential.
simulations also show that, in isolation, GEM requires unde
1usec per packet and can handle well over 1Mpps. Finally, oyr, ,
emphasis is on a software implementation in the Linux kermz'2 Longest prefix match
and on very large rule-bases that are typical of enterprisébere is an extensive literature dealing with router packet
rather than ISPs. matching, usually called “packet classification”. Exigti@go-
The work of [25] describes two algorithms: backtrackingithms implement the “longest prefix match” semantics, gsin
and set pruning tries. Both perform better than their reypec several different approaches.
theoretical boundsf)((logn)?~') time for backtracking and  The IPL algorithm of [12], which is based on results
O(n?) space for set pruning tries. The authors used the figlttroduced in [20], divides the search space into elemgntar
order to reduce the backtracking time, whereas we use thik figitervals by different prefixes for each dimension, and finds
order to reduce the required space. A survey of many pacltee best (longest) match for each such interval.
classification algorithms implementing “first match” can be The Tuple Space Search algorithm is described in [33].
found in [36]. In this algorithm, all the prefixes are divided into tuples by
The work of Cohen and Lund [7], which appeared aftdield prefix length, and then searched linearly. To reduce the
our [28], offers a different approach using decision trettme complexity, the authors use pre-computations, marker
classifiers. Their construction uses linear space, yet hasarad heuristic decisions based on statistics of tuples .diag5
sub-linear search time oB(n%%). Thus, their algorithms introduced an extension to the Tuple Space Search algorithm
are significantly faster than the naive linear search, whitbat is optimized for hardware implementation.
still maintaining a linear space complexity. However, thei Hash-based algorithms are proposed in [38], [35], [34].
algorithm is much slower than our logarithmic search time. These algorithms use hash tables for each prefix length and
The GEM algorithm is a variant of the classical “slalperform a binary search on those hash tables, coupled with
method” algorithm of Dobkin and Lipton [10] for planar pointvarious optimizations according to prefix statistics.
location, which we adapted to the firewall domain. A survey Other packet matching algorithms include Line Search on
of results in geometric range searching can be found in [22hulti-dimensional tuple space [37], a modular approachh wit
The algorithm of [11] uses a geometric approach (randeeuristic tree search [41], and two dimensional classificat
queries and interval trees, cf. [9]), implements first-rhatcusing prefix tuple space and different types of markers [39].
semantics, and achieves logarithmic time matching, witirne A survey of many packet matching algorithms implementing
linear space usage and a dynamic data structure that akksws flongest prefix” semantics can be found in [15], [2], [1] and
updates. However, this algorithm works in one dimension, afB0].
may be scaled to two dimensions, but it seems hard to extend
to more than two dimensions.
Another algorithm, which uses a geometric approach, is tﬁe CONCLUSIONS AND FUTURE WORK
Area Based Quad-Trees (AQT) [4]. It has éh{(logn)d_l) We have seen that the GEM algorithm is an efficient and
time complexity and allows fast updates. practical algorithm for firewall packet matching. We imple-
In the field of computational geometry, [31] proposed amented it successfully in the Linux kernel, and tested its
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packet-matching speeds on live traffic with realistic langle-
bases. GEM’s matching speed is far better than the naivarline
search, and it is able to increase the throughputpifabl es

by an order of magnitude. On rule-bases generated according

to realistic statistics, GEM’'s space complexity is well hifit
the capabilities of modern hardware. Thus we believe thg
GEM may be a good candidate for use in firewall matching
engines.

We note that there are other algorithms that may wéﬁl]
be candidates for software implementation in the kernel—
specifically, we can point out the algorithms of Gupta and?!

McKeown [16], Qiu et al. [25] and Woo [41]. We believe it[,3

should be quite interesting to implement all of these athans
and to test them on equal footing, using the same hardwalf®]
rule-bases, and traffic load. Furthermore, it would be edéer
ing to do this comparison with real rule-bases, in addition {26]
synthetic Perimeter-model rules. We leave such a “bake-off’!
for future work.

As for GEM itself, we would like to explore the algorithm’s
behavior when using more than 4 fields, e.g., matching &Pl

the TCP flags, meta data, interfaces, etc. The main questions

(17]

(18]

(19]

[24]

are: How best to encode the non-range fields? Will the spdegl
complexity still stay close to linear? What will be the be

direction to pursue is how GEM would perform with of IPv6]31]
in which IP addresses have 128 bits.
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