
1

The Geometric Efficient Matching Algorithm for
Firewalls

Dmitry Rovniagin and Avishai Wool, Senior Member, IEEE

Abstract —Since firewalls need to filter all the traffic crossing the network perimeter, they should be able to sustain a very high
throughput, or risk becoming a bottleneck. Firewall packet matching can be viewed as a point location problem: Each packet (point) has
5 fields (dimensions), which need to be checked against every firewall rule in order to find the first matching rule. Thus, algorithms from
computational geometry can be applied. In this paper we consider a classical algorithm that we adapted to the firewall domain. We call
the resulting algorithm “Geometric Efficient Matching” (GEM). The GEM algorithm enjoys a logarithmic matching time performance.
However, the algorithm’s theoretical worst-case space complexity is O(n4) for a rule-base with n rules. Because of this perceived high
space complexity, GEM-like algorithms were rejected as impractical by earlier works. Contrary to this conclusion, this paper shows that
GEM is actually an excellent choice.
Based on statistics from real firewall rule-bases, we created a Perimeter rules model that generates random, but non-uniform, rule-
bases. We evaluated GEM via extensive simulation using the Perimeter rules model. Our simulations show that on such rule-bases,
GEM uses near linear space, and only needs approximately 13MB of space for rule-bases of 5,000 rules. Moreover, with use of
additional space improving heuristics, we have been able to reduce the space requirement to 2-3MB for 5,000 rules.
But most importantly, we integrated GEM into the code of the Linux iptables open-source firewall, and tested it on real traffic loads.
Our GEM-iptables implementation managed to filter over 30,000 packets-per-second on a standard PC, even with 10,000 rules.
Therefore, we believe that GEM is an efficient, and practical, algorithm for firewall packet matching.

Index Terms —Network Communication, Network-level security and protection

✦

1 INTRODUCTION

1.1 Motivation

The firewall is one of the central technologies allowing high-
level access control to organization networks. Packet matching
in firewalls involves matching on many fields from the TCP
and IP packet header. At least five fields (protocol number,
source and destination IP addresses, and ports) are involved
in the decision which rule applies to a given packet. With
available bandwidth increasing rapidly, very efficient matching
algorithms need to be deployed in modern firewalls to ensure
that the firewall does not become a bottleneck.

Modern firewalls all use “first match” semantics [5], [40],
[43]: The firewall rules are numbered from 1 ton, and the
firewall applies the policy (e.g., pass or drop) associated with
the first rule that matches a given packet. See Fig 1 for an
illustrated example.

Firewall packet matching is reminiscent of the well studied
router packet matching problem. However, there are several
crucial differences which make the problems quite different.
First, unlike firewalls, routers use “longest prefix match”
semantics. Next, the firewall matching problem is 4- or 5-
dimensional, whereas router matching is usually 1- or 2-
dimensional: A router typically matches only on IP addresses,
and does not look deeper, into the TCP or UDP packet headers.
Finally, major firewall vendors support rules that utilize IP

Part of this work has appeared, in extended abstract form, inthe 23rd
convention of IEEE Israel.
D. Rovniagin and A. Wool are with the School of Electrical En-
gineering, Tel Aviv University, Ramat Aviv 69978, Israel. E-mail:
dmitry.rovniagin@gmail.com, yash@acm.org

addressranges, in addition to subnets or CIDR blocks:1 this
is the case for Check Point and Juniper—the main exception
is Cisco, that only supports individual IP addresses or subnets.
Therefore, firewalls require their own special algorithms.

1.2 Statefull Firewall Matching

Most modern firewalls are stateful. This means that after the
first packet in a network flow is allowed to cross the firewall,
all subsequent packets belonging to that flow, and especially
the return traffic, is also allowed through the firewall. This
statefulness has two advantages. First, the administratordoes
not need to write explicit rules for return traffic—and such
return-traffic rules are inherently insecure since they rely on
source-port filtering (see discussion in [43] and Check Point’s
patent [29]). So stateful firewalls are fundamentally more
secure than simpler, stateless, packet filters. Second, state
lookup algorithms are typically simpler and faster than rule-
match algorithms, so statefulness potentially offers important
performance advantages.

Firewall statefulness is commonly implemented by two
separate search mechanisms: (i) a slow algorithm that im-
plements the “first match” semantics and compares a packet
to all the rules, and (ii) a fast state lookup mechanism that
checks whether a packet belongs to an existing open flow. In
many firewalls, the slow algorithm is a naive linear search
of the rule-base, while the state lookup mechanism uses a

1. It is possible to convert an arbitrary range of IP addresses into a collection
of subnets—however, as many as 62 subnets may be necessary to cover
a single IP address range, thus there is a great loss of efficiency in the
conversion.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ,VOL. 8, NO. 1, JAN-FEB 2011

2

access-list 101 permit tcp 12.20.51.0 255.255.255.0 host 1.2.3.4 gt 0

access-list 101 deny tcp 12.20.51.0 255.255.255.0 1.2.0.0 255.255.0.0 eq 135

Fig. 1. Excerpts from a Cisco PIX firewall configuration file, showing 2 rules. Both rules refer to the TCP protocol.
The source in both rules is the same subnet. The first rule has a single IP address as a destination but a range of
destination ports (1–65535), while the second rule has a range of destination IP addresses but a single destination
port. Note that a TCP packet with source IP 12.20.51.1, destination IP 1.2.3.4, and destination port 135 matches both
rules, but because of the first-match semantics, the first rule’s decision (“permit”) is triggered.

hash-table or a search-tree: This is the case for the open-
source firewallspf [24] andiptables [23]. There are strong
indications that commercial firewalls use linear search forthe
slow rule-match as well: E.g., Check Point rules are translated
into an assembly-like macro language called INSPECT [40]
with linear semantics, and the INSPECT language is simply
translated into bytecode. Moreover, the standard advise for
improving firewall performance, for all vendors, is to placethe
most popular rules near the top of the rule-base (cf. [14], [7]).
This advise doesn’t make much sense if the firewall rearranges
the rules into a complex search data structure.

Note that a stateful firewall’s two-part design provides its
highest performance on long TCP connections, for which the
fast state lookup mechanism handles most of the packets.
However, connectionless UDP2 and ICMP traffic, and short
TCP flows, like those produced in extremely high volume by
Distributed Denial of Service attacks (cf. [19]), only activate
the “slow” algorithm, making it a significant bottleneck. Our
main result is that the “slow” algorithm doesnot need to be
slow, even in a software-only implementation running on a
general-purpose operating system. We show that the GEM al-
gorithm has a matching speed that is comparable to that of the
state lookups: In isolation the algorithm required under 1µsec
per packet, and our LinuxGEM-iptables implementation
sustained a matching rate of over 30,000 packets-per-second
(pps), with 10,000 rules, without losing packets, on a standard
PC workstation.

1.3 Contributions

In this paper we revisit a classical algorithm from computa-
tional geometry (cf. [10], [22]), and apply it to the firewall
packet matching. In the firewall context we call this algorithm
the Geometric Efficient Matching (GEM) algorithm. This
algorithm performs matching inO(d log n) time, wheren is
the number of rules in the firewall rule-base andd is the
number of fields to match. The worst-case space complexity
of GEM is O(nd). For instance, for TCP and UDP we have
d = 4, giving a search time ofO(log n) and worst case space
complexity ofO(n4).

The GEM data structure allows easy control over the order
of fields to be matched. The data structure can be used for any
number of dimensionsd, but typical values for firewall packet
matching are eitherd = 2 for opaque protocols like IPsec
(protocol 50 or 51) ord = 4 for TCP, UDP, and ICMP. We

2. Some firewalls treat UDP traffic as connection-oriented andperform state
lookups on UDP packets as well.

focus on the more difficult case for the algorithm, withd = 4,
in which the match fields are: source IP address, destination
IP address, and source and destination port numbers. This
fits TCP and UDP filtering, and also ICMP (using the 8-bit
message type and code instead of 16-bit port numbers).

Note that the worst-case space complexity can only be
caused by an unlucky rule-base structure, and not by the
packets that the firewall encounters. Furthermore, knowledge
of the rule-base does not help an attacker force the firewall into
poor performance since the search time is deterministically
logarithmic in the worst case—so GEM is not subject to
algorithmic complexity attacks [8], [3].

To address the worst-case space complexity, we propose two
approaches. One approach involves optimization heuristics.
The other is a time-space trade-off, which at the cost of a factor
ℓ slowdown in the search time, provides anℓd−1 decrease in
the space complexity.

The next step in our evaluation of the GEM algorithm was
an extensive simulation study. Our simulations showed that, in
isolation, the algorithm required under 1µsec per packet, on a
standard PC, even for rule-bases of 10,000 rules. Furthermore,
we found that the worst case space complexity manifests itself
when the rule-base consists of uniformly-random rules.

However, real firewall rule-bases are far from random.
Rule-bases collected by the Lumeta (now AlgoSec) Firewall
Analyzer [42], [44] show that, e.g., the source port field is
rarely specified, and the destination port field is usually a
single port number (not a range) taken from a set of some
200 common values.

Based on statistics we gathered from real rule-bases, we
created a non-uniform model for random rule-base generation,
which we call the Perimeter rule model. On rule-bases gener-
ated by this model, we found that the order of field evaluation
has a strong impact on the data structure size (several orders
of magnitude difference between best and worst). We found
that the evaluation order which results in the minimal space
complexity is: destination port, source port, destinationIP
address, source IP address. With this evaluation order, the
growth rate of the data structure is nearly linear with the
number of rules. The data structure size for rule bases of 5,000
rules is ≈ 13MB, which is entirely practical. Using more
aggressive space optimizations allows us to greatly reducethe
data structure at a cost of a factor of 2 or 3 slowdown. For
instance, using 3-part heuristic division, we get a data structure
size of 2MB for 10,000 rules.

Beyond simulations, we created a fully functional GEM
implementation within the Linuxiptables open-source

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ,VOL. 8, NO. 1, JAN-FEB 2011

3

TABLE 1
Header field numbering.

number description space
0 source IP address 32bit
1 destination IP address 32bit
2 source port number 16bit
3 destination port number 16bit
4 protocol 8bit

firewall [23], and tested its performance in a laboratory
testbed. OurGEM-iptables Linux implementation sus-
tained a matching rate of over 30,000 pps, with 10,000 rules,
without losing packets. In comparison, the non-optimized
iptables could only sustain a rate of≈ 2500 pps with
the same rule-base.

Thus, we conclude that the GEM algorithm is an excellent,
practical, algorithm for firewall packet matching: Its matching
speed is far better than the naive linear search, and its space
complexity is well within the capabilities of modern hardware
even for very large rule-bases.

Parts of this work have appeared, in extended abstract form,
in [28].

Organization: Section 2 formally defines the matching
problem and describes the GEM algorithm along with its
data structure. Section 3 describes the statistics we gathered
from firewall rule-bases. Section 4 introduces the non-uniform
Perimeter rule model, and describes the simulation resultsin
this model. Section 5 describes ouriptables implemen-
tation and the performance it achieved. Section 6 describes
the time-space trade-off and space optimizations. Section7
describes related work, and we conclude with Section 8.

2 THE ALGORITHM

2.1 Definitions

The firewall packet matching problem finds the first rule that
matches a given packet on one or more fields from its header.
Every rule consists of set of ranges[li, ri] for i = 1, . . . , d,
where each range corresponds to thei-th field in a packet
header. The field values are in0 ≤ li, ri ≤ Ui, whereUi =
232 − 1 for IP addresses,Ui = 65535 for port numbers, and
Ui = 255 for ICMP message type or code. Table 1 lists the
header fields we use (the port fields can double as the message
type and code for ICMP packets). For notation convenience
later on, we assign each of these fields a number, which is
also listed in the table.
Remarks:

• Most firewalls allow matching on additional header
fields, such as IP options, TCP flags, or even the packet
payload (so called “deep packet inspection”). However,
real rule-bases [44] very rarely use such futures. Nearly
all the firewall rules that we have seen only refer to the
five fields listed in Table 1.

• The description above, and the GEM algorithm, is
mostly suitable to firewalls whose rules usecontiguous
ranges of IP addresses. This is not a limitation for enter-
prise firewalls—we have never encountered an enterprise
firewall that uses non-contiguous masks.

• We use ‘∗’ to denote wildcard: An ‘∗’ in field i means
any value in[0, Ui].

• We are ignoring the action part of the rule (e.g., pass
or drop), since we are only interested in the matching
algorithm.

2.2 The Sub-Division of Space

In one dimension, each rule defines one range, which divides
space into at most 3 parts. It is easy to see thatn possibly
overlapping rules define a subdivision of one-dimensional
space into at most(2n − 1) simple ranges. To each simple
range we can assign the number of thewinner rule. This is
the first rule which covers the simple range.

In d-dimensions, we pick one of the axes and project all the
rules onto that axis, which gives us a reduction to the previous
one-dimension case, with a subdivision of the one dimension
into at most(2n − 1) simple ranges. The difference is that
each simple range corresponds to a set of rules in(d − 1)
dimensions, calledactive rules. We continue to subdivide the
(d−1) dimensional space recursively. We call each projection
onto a new axis alevel of the algorithm, thus for a4-
dimensional space algorithm we have4 levels of subdivisions.
The last level is exactly a one-dimensional case—among all
the active rules, only the winner rule matters.

At this point we have a subdivision ofd-dimensional space
into simple hyper-rectangles, each corresponding to single
winning rule. In Section 2.4 we shall see how to efficiently
create this subdivision ofd-dimensional space, and how it
translates into an efficient search structure.

2.3 Dealing with the Protocol Field

Before delving into the details of the search data structure,
we first consider the protocol header field. The protocol
field is different from the other four fields: very few of the
256 possible values are in use, and it makes little sense to
define a numerical “range” of protocol values. This intuition
is validated by the data gathered from real firewalls (see
Section 3): The only values we saw in the protocol field in
actual firewall rules were those of specific protocols, plus the
wildcard ‘∗’, but never a non-trivial range.

Thus, the GEM algorithm only deals with single values in
the protocol field, with special treatment for rules with ‘∗’ as
a protocol. We preprocess the firewall rules into categories, by
protocol, and build a separate search data structure for each
protocol (including a data structure for the ‘∗’ protocol). The
actual geometric search algorithm only deals with4 fields.

Now, a packet can only belong to one protocol—but it is
also affected by protocol = ‘∗’ rules. Thus every packet needs
to be searched twice: once in its own protocol’s data structure,
and once in the ‘∗’ structure. Each search yields a candidate
winner rule.3 We take the action determined by the candidate
with the lower number.

In the remainder of this paper, we focus on the TCP
protocol, which hasd = 4 dimensions, although the same

3. If no rule matches, we assume that the packet matches an implicit default
catch-all rule with a maximal rule-number.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ,VOL. 8, NO. 1, JAN-FEB 2011

4

0 1 2 6 17 254 255

Protocol array

#Num of points

ORDER

Level 1

#Num of
points

Lower bound

Basic element

#Num of points

ORDER

Level 1

Level 2 Level 2 Level 2

Level 3 Level 3 Level 3 Level 3

Level 4 Level 4 Level 4 Level 4

Rule #

*

Fig. 2. Overall GEM data structure overview.

discussion applies for UDP and ICMP. In Section 3 we shall
see that TCP alone accounts for 75% of rules on real firewalls,
and collectively, TCP, UDP, and ICMP account for 93% of the
rules.

2.4 The Data Structure

The GEM search data structure consists of three parts. The first
part is an array of pointers, one for each protocol number,
along with a cell for the ‘∗’ protocol (as mentioned in
Section 2.3). We build the second and third parts of the search
data structure for each protocol separately.

The second part is aprotocol database header, which
contains information about theorder of data structure levels.
The order in which the fields of packet header are checked is
encoded as a4-tuple of field numbers, using the numbering
of Table 1. The protocol database header also contains the
pointer to the first level and the number of simple ranges in
that level.

The third part represents the levels of data structure them-
selves. Every level is a set of nodes, where each node is an
array. Each array cell specifies a simple range, and containsa
pointer to the next level node. In the last level the simple range
information contains the number of the winner rule instead of
the pointer to the next level. See Fig 2 for an illustration.

The basic cell in our data structure (i.e., an entry in the
sorted array which is a node in the structure) has a size of 12
bytes: 4 for the value of the left boundary of the range, 4 for
the pointer to the next level, and 4 for the number of cells in
the next-level node. The nodes at the deepest level are slightly
different, consisting of only 8 bytes: 4 for the left boundary
of the range and 4 for the number of winner rule.

Note that the order of levels is encoded in the protocol
database header, which gives us convenient control over the
field evaluation order.

2.5 The Search Algorithm

The packet header contains the protocol number, source and
destination address and port numbers fields. First, we check
the protocol field and go to the protocol array of the search

2

1

3

SIMPLE

BLOCKS

OPTIMIZED

BLOCK

1 2 3 4 5 6 7

4

Fig. 3. The last two levels of building the search data
structure. At this point the rules are two-dimensional, e.g.,
the X axis may represent the destination IP and the Y axis
is the destination port. We can see three rules, shown
as shaded overlapping rectangles, plus the default rule in
white. The critical points and simple ranges are projected
onto the X axis. Three blocks in rule 1 are optimized.

data structure, to select the corresponding protocol database
header. From this point, we apply a binary search with the
corresponding field value on every level, in order to find the
matching simple range and continue to the next level. The last
level will supply us with the desired result—the matching rule
number.

For example, suppose we have an incoming TCP packet.
Assume that the GEM protocol header for TCP shows that
the order of levels is 1203. The first level - 1 - denotes
the destination address. We execute a binary search of the
destination address value from packet header against the values
of the array in the first level. The simple range associated with
the found array item points us to the corresponding node from
the second level. The second level, in our example (2) denotes
the source port number. By binary search on the second level
array we find a new simple range, which contains the packet
source port number. Similarly, we search for the source address
(field 0) and destination port (field 3). In the last level node
we find the winner rule information.

We repeat the search procedure for protocol ‘∗’, and get
another “winner” rule. From the two candidates we choose
the one with the lower rule number.

Search time: In each level we execute a binary search on
an array of at most2n entries, wheren is the maximal number
of active rules. We process two searches: one with the packet’s
protocol and one in the ‘∗’ data structure. Thus, ford levels,
the search time isO(d log n). For a constantd = 4, we get an
O(log n) search time. Note that the ‘∗’ search data structure
only has 2 levels (for IP addresses), thus the search time is
dominated by the time to search the 4 levels of the TCP search
data structure.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ,VOL. 8, NO. 1, JAN-FEB 2011

5

TABLE 2
Protocol and port numbers distribution in rule-bases.

SOURCE PORT DISTRIBUTION DESTINATION PORT DISTRIBUTION
* 98% * 0%
ranges 1% ranges 4%
single port 1% average range size 27030

single ports 96%
average # single ports per rule-base 50

PROTOCOL DISTRIBUTION

* 6%
TCP 75%
UDP 14%
ICMP 4%
Other 1%

most referred-to ports in rules

80 6.89%
21 5.65%
23 4.87%
443 3.90%
8080 2.25%
139 2.16%

2.6 The Build Algorithm

The build algorithm is executed once for each protocol. The
input to the build algorithm consists of the rule-base, plusthe
field order to use. The order dictates the contents of each data
structure level, and also, the order in which the header fields
will be tested by the search algorithm. There are4! = 24
possible orders we can choose from, to check 4 fields. The
data structure is built using a geometric sweep-line algorithm
(cf. [9]).

All four levels of the search data structure are built in the
same manner. We start with the set ofactive rules from the
previous level. For the first level all the rules with the specified
protocol (e.g., TCP) are active.

We then construct the set ofcritical points of this level—
these are the endpoints of the ranges, which are the projections
of the active rules onto the axis that corresponds to the
currently checked field (See Fig 3). For example, if the first
field is “1” (destination IP address), then the critical points are
all the IP addresses that start or end a destination IP address
range in any rule. We sort the list of critical points in increasing
order, and run the sweep-line over them. Note that there are
two implicit critical points: 0, and the maximal value for the
level. Every critical point corresponds to a start of one simple
range, which in turn relates to a subset of active rules.

For each simple range we calculate its set of active rules,
by choosing all the rules that overlap the simple range in
the current field. For example, in Fig 3, rules 2, 3 and 4 are
relevant for the third simple range on the X axis. With this new
set of active rules we continue to the next level for each one
of the simple ranges. In the deepest level we only need to list
the number of the “winner rule”: the rule with lowest number
among the active rules associated with the current range.

Build time and space complexity: In the worst case, GEM
performs a sort ofΩ(n) values for each of thed levels, giving
a build time complexity ofO((n log n)d). It is easy to see that
the space complexity isO(nd) in the worst case, andO(n4)
for TCP or UDP.

2.7 Reducing The Space Usage: Basic Optimiza-
tions

A space complexity ofO(n4) may be theoretically acceptable
since it is polynomial. However, withn reaching thousands

of rules [44], conserving space is crucial. Here we introduce
two optimization heuristics, which significantly reduce GEM’s
space requirement.

The first optimization works on the last level of the data
structure. If we take a closer look at last level ranges, we see
that occasionally two or more adjacent ranges point to the
same “winner” rule. This means that we can replace all these
ranges with a single range which is their geometrical union
(see Fig 3).

The second optimization works on the one-before-last level
of the search data structure. Occasionally, there exist simple
ranges that point to equivalent last level structures. Instead
of storing the same last level structure multiple times, we
keep a single last level structure, and replace the duplicates
by pointers to the main copy. For example, in Fig 3, ranges 2
and 6 are equivalent (rules 4-3-4, with boundaries in the same
vertical positions)

As part of the simulation study, we tested the effectiveness
of these optimizations. Our simulations on rule bases of sizes
from 500 to 10,000 show that the optimizations reduce the
search data structure size by 30%∼60% on average, and that
the effect grows with rule-base size (See Section 4.4.2).

We also tried to apply this optimization method on the
higher levels of our data structure, but we found that this
greatly increases the preprocessing time, and only gives minor
improvements to the space complexity. We omit the details.
Some space/time optimization tradeoffs are discussed in sec-
tion 6. We remark that additional optimization techniques for
GEM-like data structures are known to perform well in the
computational geometry literature, so it would be interesting
to test their effectiveness in the firewall matching domain.
Possibilities include: not using the same field ordering in every
branch of the search tree; switching to the next branch before
completing the search along an axis; or even replacing the last
two levels of binary search tree with a data structure optimized
for two-dimensional queries such as that of [11] or [4].

3 FIREWALL RULE-BASE STATISTICS

To get a better understanding of what real-life firewall rule-
bases look like, we gathered statistics from firewall rule-bases
that were analyzed by the Lumeta (now AlgoSec) Firewall An-
alyzer [42], [44]. The statistics are based on 19 rule-basesfrom
enterprise firewalls (Cisco PIX and Check Point FireWall-1)

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ,VOL. 8, NO. 1, JAN-FEB 2011

6

collected during 2001 and 2002. The rule-bases came from a
variety of corporations from the financial, telecommunications,
automotive, and pharmaceutical industries. We analyzed a total
of 8434 rules.

Table 2 shows the distribution of protocols in the rules
we analyzed. The data shows that75% of rules from typical
firewall rule-bases match TCP, and a total of 93% match TCP,
UDP or ICMP. Of these the most important is clearly TCP.
Therefore, we concentrate on these protocols in the rest of
paper. In our problem context, these protocols are the most
difficult for evaluation since they imply a4-dimensional space.

The same table shows the distribution of TCP source and
destination port numbers. We can clearly see that the source
port number is rarely specified: 98% of the rules have a
wildcard ‘*’ in the source port. This makes sense because both
PIX and FireWall-1 are stateful firewalls that do not need to
perform source-port filtering to allow return traffic through the
firewall—and source port data is generally unreliable because
it is usually under the control of the attacker.

On the other hand, the TCP destination port is usually
specified precisely. The vast majority of rules specified a single
port number, but 4% allowed a range of ports, and the ranges
tended to be quite large. Common ranges are “all high ports”
(1024–65535) and “X11 ports” (6000-6003). The single port
numbers we encountered were distributed among some 200
numbers, the most popular of which are shown in Table 2:
these correspond to the HTTP, FTP, Telnet, HTTPS, HTTP-
Proxy, and NetBIOS services.

4 THE SIMULATION STUDY

4.1 The Random Rules Simulation

As the first step of our performance evaluation of GEM we
implemented and tested it in isolation. The GEM build and
search algorithms were implemented in C using Microsoft
VC++ 6.0. The simulations were performed on a 733MHz
Pentium III PC with 256MB of RAM running the Windows
XP operating system.

We started by testing GEM using uniformly-generated rules:
for every rule, each endpoint of each of the 4 fields (IP address
ranges and port ranges) was selected uniformly at random from
its domain. We built the GEM data structure for increasing
numbers of such rules and then used the resulting structure
to match randomly generated packets. We omit the details for
lack of space, and instead refer the reader to [27].

On one hand, these early simulations showed us that the
search itself was indeed very fast: a single packet match took
around 1µsec, since it only required 4 executions of a binary
search in memory.

On the other hand, we learned that the data structure size
grew rapidly—and that the order of fields had little or no
effect on this size. The problem was that since the ranges in
the rules were chosen uniformly, almost every pair of ranges
(in every dimension) had a non-empty intersection. All these
intersections produced a very fragmented space subdivision,
and effectively exhibited the worst-case behavior in the data
structure size. We concluded that a more realistic rule model
is needed.

4.2 The Perimeter Rules Model

As we saw in Section 3, real firewall rule-bases have a large
degree of structure. Thus, we hypothesized that realistic rule-
bases rarely cause worst-case behavior for the GEM algorithm.
Furthermore, we wanted to test the effects of the field order on
the performance of GEM on such rule-bases. For this purpose,
we built the Perimeter firewall rules model, and simulated the
behavior of GEM on rule-bases generated in this model.

4.2.1 The Modeled Topology

The model assumes a perimeter firewall with two “sides”:
a protected network on the inside, and the Internet on the
outside. The inside network consists of 10 class B networks,
and the Internet consists of all other IP addresses. Thus, the
internal network contains10 · 65536 possible IP addresses. In
reality, organizations that actually own 10 class B networks are
quite rare. However, we used this assumption for two reasons:

1) Many organizations use private (RFC 1918) IP addresses
internally, and export them via network address transla-
tion (NAT) on outbound traffic. Such organizations often
use large subnets liberally, e.g., assign a 172.x.*.* class
B subnet to each department.

2) Having a large internal subnet stresses the GEM algo-
rithm since we pick random ranges from the internal
ranges.

4.2.2 The Rules

The Perimeter rules model produces rules of two types:
Inbound rules, that allow traffic from the Internet into the
protected network, and Outbound rules, that allow traffic from
the protected network out to the Internet. Each rule in the
rule-base is constructed randomly according to the distribution
detailed in Table 3 for its type (Inbound or Outbound).

Inbound rules. When we are modeling rules for inbound
traffic, the source IP addresses are rarely specified in the rules,
and 95% of the rules have ‘∗’ as their source address. The re-
maining 5% have a range in their source address field, chosen
uniformly at random from the Internet’s IP addresses. The
destination addresses for inbound rules are always internal,
belonging to the 10 internal class B subnets. 45% of the rules
have a randomly chosen individual internal IP address as a
destination, modeling server machines. Another 15% have a
small random range: a range which completely lies inside one
of the internal class C networks. These ranges model clusters
of servers and small classless subnets such as ’/27’s and ’/28’s.
Then, 30% of the rules have a complete class C as a destination
(i.e., a range of the forma.b.c.0 − a.b.c.255). Finally, 10%
allow access to a full class B.

Note that Inbound rules produce many “collisions” in the
destination field. E.g., consider the 30% of rules with a full
class C destination. The Birthday paradox [13] shows that the
probability of findingsomeclass C destinations that collide is
close to 1 when the number of rules exceeds

√
2560 ∼ 50.

Essentially the same is true for collisions of a single-internal-
IP-destination and an internal class C subnet, since every
internal IP address has exactly a 1:2560 chance of falling
inside a particular internal class C.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ,VOL. 8, NO. 1, JAN-FEB 2011

7

������
��

���� ���� ���� ����
Mb

��������
��

���� ���� ���� ���� ���� ���� ���� ����
Mb

��������
������	�	�
��

���� ����

�

2000 rules

500 rules

5000 rules

Fig. 4. Finding the best field order: GEM data structure size as a function of field order. The bars also show the 90%
confidence intervals.

Outbound rules. When we are modeling the outbound
rules, 90% of the rules have a destination IP address of ‘∗’.
10% of the rules have either a specific address or a range in the
destination field, modeling a rule that restricts or allows access
to some particular server or network. The source addresses for
outbound rules are selected from the internal addresses with
the frequencies shown in Table 3.

Services. The service field in the rules is selected similarly
for both Inbound and Outbound rules. The service is selected
uniformly at random from a collection of 100 services, whose
definitions were taken from real firewall rule-bases (recall
Table 2). Most of these services have individual destination
port numbers, however a few include port ranges, and one
service is the ‘∗’ service. We allow a small rate of growth in
the number of services by adding 2% of randomly generated
services, where the destination port is randomly picked from
0 to 65535.

One concern we had was that, occasionally, the model gen-
erated a rule of the form “from∗, to ∗, with service∗”.4 When
such a rule shows up in the rule-base, it acts as the default
rule, and all subsequent rules become redundant, because of
the “first match” semantics. This effectively shortens the rule-
base, and prevents us from simulating GEM’s behavior on
large rule-bases. Thus, our model checks for, and discards,
such randomly-generated catch-all rules.

The rule-bases generated by the model are still much less
structured than actual firewall rule-bases. In real firewallrule-
bases the number of internal servers is usually rather small, and
they have many rules that refer to them. Also, it is considered

4. This occurs with a probability of approximately 0.00025, so we can
expect such a rule once every 4000 rules.

TABLE 3
The statistical distribution for rules in the Perimeter

model. An ‘∗’ in the source IP address for Outbound rules
represents all IP addresses inside the internal network.

Inbound Outbound
∗ 95% 5%

source range 5% 15%

IP Class B 10%

Class C 25%

single IP 45%

∗ 90%

dest range 15% 5%

IP Class B 10%

Class C 30%

single IP 45% 5%

service from 100 services list 96% 96%

dst port is random range 2% 2%

dst port is single port 2% 2%

insecure to allow many TCP services into large parts of the
internal networks [44]. Both considerations would cause more
repetitions in IP addresses, and hence, reduce the number
of simple ranges, which would lead to smaller search data
structures. Therefore, we believe our Perimeter model stresses
the GEM algorithm more than real firewall rule-bases would.

4.3 Selecting the Best Field Order

Our first goal in the Perimeter model is to determine if any
efficiency can be achieved by selecting the GEM data structure
field order.

Preliminary simulations showed us that the order of fields
had a very strong impact on the size of the data structure in

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ,VOL. 8, NO. 1, JAN-FEB 2011

8

��� ������	

������
�	�
��

�
�� �
��
���
���
���
���
���
��� �
�� ���
 ��
� �
�� ��
� ���
 �
�� ��
� ��
� ��
� �
�� ���
 ���
 ���
 ���
 ��
������
�������������
���� �! "## $%&'(

A
)*)+)

,)-).)
/)

0 1000 2000 3000 4000 50006789:; <= ;7>:?�������������
����@A�BC��D�
�EFGHIJ KLMN OPMLQLRSMLOTTO OPMLQLRSMLOT �!

B

Fig. 5. (A): Build time as a function of the order of fields. (B): Build time as a function of the number of rules, with and
without optimization, using the best (3210) order.

the Perimeter model (several orders of magnitude between best
and worst choices). The variance was so large that we were
unable to simulate the worst choices on large rule-bases, since
the data structure grew to hundreds of MB and took up to 20
minutes to build.

The rationale is that the usage patterns in the different fields
are non-uniform (as we saw in Section 3), so some choices of
fields in the high levels of the hierarchy cause large amount
of subdivisions in the lower levels (many ranges are created).

Therefore, we used a 3-stage process to identify the best
order. In the first stage we generated small (500 rules) rule-
bases, and built the data structure for each of the4! = 24
possible orders. This simulation showed that 16 orders were
clearly much worse than others, so we dropped them and
continued to 2000-rule sets with the remaining 8 orders. Here
we found that the best 4 orders were better than the rest. The
top 4 candidates were evaluated on 5,000-rule sets, which
identified the best and second-best orders. The process of
finding the best order for the “Perimeter” model is shown in
Fig 4.

Fig 4 shows that the confidence intervals for the best 4
orders all overlap, indicating that the differences between them
are not statistically significant. Moreover, a closer look shows
that the position of field “2” (source port) among the best 8
orders is less significant: there are really only two orders
(310 and 301) with the “2” field inserted in all 4 possible
positions. This is reasonable because the source port in the
Perimeter model is almost always ‘∗’, so it’s position in the
order has a limited impact. Therefore, for all subsequent tests
we somewhat arbitrarily used the “natural” order of 3210
(destination port, source port, destination IP address, source
IP address).

4.4 The Search Data Structure

Every point on the simulation result graphs represents the
mean value from 10 independent runs. The graphs also show
90% confidence intervals (cf. [18]).

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of rules

Si
ze
 of

 G
EM

 D
ata

 S
tru

ctu
re
 (M

b)

Fig. 6. Data structure size as a function of the number of
rules.

4.4.1 Growth Rate
After we identified the best field order, we investigated rela-
tively large rule-bases to get a more precise picture of the GEM
data structure and search algorithm properties. Fig 6 showsthe
GEM data structure size as a function of the rule-base size.
As we can see, the data structure size grows almost linearly
with the rule-base size, i.e., at a much slower rate than the
theoretical upper bound ofO(n4) indicates. By plotting the
data on alog-log scale and calculating a linear regression we
found that the growth rate isO(n0.95).

4.4.2 Build Time
In this test we evaluated the time it takes to build the search
data structure. Fig 5(A) shows the build time for different
field orders. We compared all 24 orders on small-sized rule-
bases (500 rules). Again we can see the great variability, with
the fastest build about 2 orders of magnitude faster than the
slowest. Luckily, our best field order also has a good build
time (4th place).

Fig 5(B) shows the rate of growth in the build time. The
figure shows that the build time grows at a super-linear rate,
but that the time remains reasonable even for large rule-bases:

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ,VOL. 8, NO. 1, JAN-FEB 2011

9

����
����
� ��� ��� ��� ��� ��� ��� ��� ��	 ��
 ���
�����
�� ���� ����

2500 rules

������� ��������
Fig. 7. The Inbound-Outbound Ratio vs. GEM data struc-
ture size. A ratio of 0 means that all rules are Inbound.

the search data structure for 5,000 rules took about 45 seconds
to build. A linear regression of thelog− log plot shows a
growth rate ofO(n1.7) with optimization andO(n1.5) without
optimization.

The figure also shows that about 20-30% of the build time
is taken by the optimizations (recall Section 2.7). However,
the optimizations give us 30-60% improvement in space usage
of the GEM search structure. For example, if we use the best
order and build the GEM data structure for 5,000 rules without
optimization, it takes≈ 20 MB, rather than≈ 13 MB.

4.5 The Inbound - Outbound Ratio

An additional parameter of our Perimeter model is the ratio
between the number of Inbound and Outbound rules. In
order to determine the effect of this parameter, we ran the
GEM building algorithm on rule-bases with different ratiosof
Inbound and Outbound rules. The results are shown in Fig 7.
We show the results for two different field orders, that were
among the best in Section 4.3.

The figure clearly shows that if the rules are homogeneous
(ratios close to0 or to 1), we get better space performance.
The difference between homogeneous and mixed rule-bases
can be up to a factor of 6 in size. In all subsequent tests we
used an inbound-outbound ratio of 50% - again, to stress the
GEM algorithm.

5 THE GEM-iptables IMPLEMENTATION

To evaluate GEM in a more realistic environment, we im-
plemented the GEM algorithm and integrated it with the
code of the Linuxiptables firewall. We used Red Hat
Linux 9 (kernel version 2.4.18-8) andiptables v1.2.8. We
incorporated the GEM build algorithm into the user-space
programiptables, and the GEM search algorithm into the
ip_tables kernel module. The built GEM database was
transferred from user space to the kernel using the mecha-
nism already employed byiptables. We left the existing
iptables linear search algorithm intact. The selection of
linear or GEM search was controlled by a command line
switch.

Since we wanted to be able to compare GEM’s performance
to the regulariptables, we adopted theiptables config-
uration language as our input. However,iptables does not

eth0eth0eth1

192.168.1.2192.168.1.110.0.0.100

10.0.0.0/8

FORWARD

Fig. 8. Testbed system configuration.

support general ranges of IP addresses in the rules, and only
accepts subnets. Therefore, we modified our rule generation
module to only produce subnets, e.g., instead of generating
a random IP range, we generate a random IP address and
a random netmask that leaves the resulting subnet inside
one class C network (recall Section 4.2). The modified rule
generator output aniptables configuration script.

5.1 Testbed setup

Our testbed consisted of two computers, with one acting as
the firewall, and the other acting as a packet generator. The
firewall was a 2.4GHz Pentium 4 with 512MB RAM, with
two 100Mbps Ethernet interfaces. The packet generator was a
700MHz Pentium III with 396MB RAM and a single 100Mbps
Ethernet interface. Both computers ran Red Hat Linux 9. We
connected the two computers by a cross-over Ethernet cable.
The firewall’seth1 interface was left unconnected (see Fig 8).

We configured the firewall’s routing table to forward all
the packets destined to the 10.0.0.0/8 class A subnet over the
eth1 interface to an imaginary next-hop router. Thus every
incoming packet with a 10.*.*.* destination IP would pass
through theiptables FORWARD chain. However, all the
rules we generated had a DROP action, so no packets were
actually forwarded—saving us the need to install a receiving
host behind the firewall.

In each experimentation run, we loaded the firewall with
randomly generated rules from the Perimeter model. We then
let the packet generator send a sustained stream of packets,at
a specified send rate, for a period of 10 seconds, after which
it printed the exact number of packets it sent. All the packets
were 80-byte TCP packets, with no TCP-flags set. After all
the packets were sent, we recorded how many were filtered
(and dropped) byiptables: iptables counts the number
of packets that match each rule. If the send rate exceeds the
firewall’s maximal filtering rate, the firewall’s IP buffers fill
up, and packets start to drop —beforethey reachiptables.
When this occurs, the total number of filtered packets reported
by theiptables counters islessthan the number of packets
that were sent by the packet generator.

We verified that all the sent packets indeed arrived at
the firewall computer, by sniffing itseth0 interface using
ethereal. Thus, all the packets that were lost, were lost on
the firewall computer, within its IP layer. We did not encounter
any layer-2 (Ethernet) loss. Note that even at 30,00pps, with
80-byte packets, the total bandwidth is only 19.2Mbps, which
is easily sustainable on a dedicated 100Mbps link.

The packets we generated had random destination IP ad-
dresses in the range 10.0.*.*–10.7.255.255, random external
source IP address, and TCP port numbers that were chosen
according to an Internet mix [21]. In earlier simulations we

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ,VOL. 8, NO. 1, JAN-FEB 2011

10

G
EM

2000

4000

10000

0

5000

10000

15000

20000

25000

30000

0 5000 10000 15000 20000 25000 30000

Send rate (pps)
R
e
c
e
iv
e
 r
a
te
 (
 p
p
s
)

A

GEM

2000

4000

10000

0%

20%

40%

60%

80%

100%

0 5000 10000 15000 20000 25000 30000

Send rate (pps)

R
e
c
e
iv
e
 r
a
te
 (
 %
)

B

Fig. 9. Throughput of iptables with and without GEM, for different rule-base sizes. Figure A shows the receive rate
as a function of the send rate, and figure B shows the throughput as a percentage.

verified that the firewall’s matching speed is largely unaffected
by the distribution of port numbers (both linear search and
GEM). We omit the details.

Note that each packet mimics the first packet in a new
TCP 3-way handshake—much like a SYN-flood DoS attack.
This is reasonable for testing the performance ofiptables
because with a real TCP flow, any additional traffic on the
same flow would have been matched by the fast state-lookup
algorithm (i.e., by theconntrack module) and not by the
“slow” iptables search algorithm.

5.2 Results and interpretation

We compared the matching throughput ofiptables and
GEM-iptables for rule-bases of 2000, 4000, and 10000
rules. The rules were created according to the distribution
represented by the Inbound part of the Perimeter rules model
(recall Table 3). For each rule-base size, we varied the packet
send rate from 1000 pps up to 30,000 pps, and recorded
the number of received (filtered byiptables) packets. The
results can be seen in Fig 9. Every point on the curves is an
average of 15 runs using three rule-bases of the given size.
We also show the 90% confidence intervals.

Fig 9 clearly shows thatiptables has a maximal through-
put of between 2500 pps and 9000 pps (inversely proportional
to the number of rules). This agrees with the results reported in
[17] about the matching time of OpenBSD’spf [24], versus
iptables and FreeBSD’sIPFilter [26]. The reported
maximal throughput in [17] was between 1500–3000 pps, for
1000 rules—but the author used a much slower machine than
ours.

In contrast, GEM maintained a 100% throughput at all the
send rates and for all rule-base sizes we tried. In fact, we were
unable to reach send rates that cause GEM to lose packets.
This is since the packet generating Perl script, running on
the slower computer, hit a CPU bottleneck and could not
send more than 30,000 pps. Thus we have not determined the
maximal throughput of GEM, even with 10,000 rules. Based
on the fact that the GEM search time only grows with the
log of the number of rules, and on earlier simulation results

(omitted), we extrapolate that GEM may well be able to filter
at a rate of 100,000 pps.

5.3 Caveats

Besides matching on IP addresses, port numbers, and protocol
fields, iptables also supports filtering based on other
attributes of the packet, such as the IP fragmentation bit, TCP
flags, the interface name, and rate limits. Currently GEM is
unable to match such attributes. In the real firewall rule-bases
(Section 3) that we checked, we did not encounter any rule
that use this type of capability. Therefore we speculate that
they are used rarely in typical firewall rule-bases.

There are several ways to handle aniptables rule-base
which matches non-GEM attributes. One possibility is to add
more dimensions to the GEM data structure. The obvious
candidate would be the TCP flags field, that only has a handful
of possible settings. Another possibility is to use a hybrid
approach: Namely, we would need to split the rule-base into
GEM rules and non-GEM rules. Every packet would then need
to be filtered twice: once using GEM’s efficient search, and
once using a linear search over the non-GEM rules, giving
two candidate winner rules. The winner rule would be the one
with the lower rule number. Exploring these possibilities is
left for future work.

6 SPACE OPTIMIZATION TECHNIQUES

6.1 A Space-Time Trade-off

The GEM algorithm requiresO(nd) space in the worst case,
and has anO(d · log n) search time complexity, whered is
the number of fields in packet header that are relevant for
packet classification. In this section we suggest a trade-off,
well-known in the computational geometry literature, which
at the cost of a factorℓ slowdown in the search time, provides
an ℓd−1 decrease in the space complexity. The next process
describes the trade-off:

1) Split the firewall rule-base (arbitrarily) intoℓ sets ofn/ℓ
rules each. Append a final default “drop” rule to each
partial rule-base, and give it a rule number of “infinity”.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ,VOL. 8, NO. 1, JAN-FEB 2011

11

TABLE 4
Defining 2 and 3 parts splitting heuristics for perimeter

model rule-base.

2-part splitting rules
part 1 all rules, which have∗ in source IP addressfield
part 2 all rules that not in part 1

3-part splitting rules
part 1 all rules, which have∗ in source IP addressfield
part 2 all rules that not in part 1 and have∗

in destination IP addressfield
part 3 all rules that not in part 1 and not in part 2

TABLE 5
Best field orders for heuristic splitting tests. The

percentages indicate the fraction of rules in each part.

part 1 part 2 part 3
2 Parts 0231 3021

48.5% 51.5%
3 Parts 0231 3120 3120

48.5% 43.8% 7.7%

2) Build a GEM data structure for each partial rule-base
separately. The size of each GEM-database will be
O((n/ℓ)d) in the worst case. The total size of the
structure is:

O

(

ℓ ·
(n

ℓ

)d
)

= O

(

nd

ℓd−1

)

.

3) To match a packet header we have to match it against
each of theℓ GEM data structures. Each search con-
tributes a matching rule for the packet. From theseℓ
candidates we choose the one with the lowest number.
Thus the overall search time complexity isO(ℓ · log n

ℓ
+

ℓ) = O(ℓ · log n

ℓ
).

Note that if we chooseℓ = O(n), then we get a GEM
structure size ofO(n) and a linear search speed. At the other
extreme, if we chooseℓ = 1 we get the pure GEM complexity.

6.2 Evaluating the Effect of Splitting the Rule-Base

In order to evaluate the performance of the time-space tradeoff
(Section 6.1), we experimented with the Perimeter model. We
tried two splitting heuristics: The first heuristic is called ‘2-
part’, in which one part contains rules with source=‘∗’, and the
other part contains all the other rules. In the other heuristic,
called ‘3-part’, the first part is the same as in 2-part splitting,
the second part contains rules with destination=‘∗’ and source
6= ∗, and the third part is all other rules not included in parts
1 and 2.

6.2.1 GEM Parts Information
Before we can proceed with the main test we have to determine
the optimal orders for each part in both approaches. Table 5
shows that the best field order differs among parts: E.g., in part
1, the first field in the best order is the source IP (field 0). This
is reasonable since all the rules in part 1 have source=‘∗’, so
using it as the top-level field produces a single item in the
second level and minimizes the size of the data structure.

�����
��������

� ���� ���� ���� ���� ����� ����� ����� ����� ����� ��������	
��
���
���������������������
�� �!" 1 Part (not divided)

2 Parts
3 Parts

Fig. 10. GEM data structure size: unsplit, 2-parts splitting
and 3-parts splitting.

#$##$%#$&
#$'#$()$#
)$%

%### &### '### (###)####)%###)&###)'###)(### %####*+,-./01/+2.3456789:;<5;=>?@A
6:6B:7C8:C75

1 Part (not divided)
2 Parts
3 Parts

µs

Fig. 11. GEM search time: unsplit, 2-part splitting, and
3-part splitting.

6.2.2 GEM Data Structure Size
In order to test the build time, data structure size and search
speed behavior, we generated rule-bases of sizes from 1000 to
20000 and built the GEM data structure using two approaches:
2-part heuristic splitting and 3-part heuristic splitting, as
described above.

Fig 10 shows the data structure size of the unsplit, 2-
part splitting, and 3-part splitting approaches. The figure
clearly shows that both splitting heuristics are very effective
in reducing the data structure size: The data structure sizeis
reduced by a factor of 7 in the 2-part, and by a factor of 10
in the 3-part.

6.2.3 GEM Search Time and Build Time
Fig 11 shows the search times for the different heuristics. We
see that the theoretically expected results are true and that
the search time is linear to the number of parts and is almost
independent of the parts sizes.

An additional benefit from splitting is a significant reduction
in build time for large rule-bases. For instance, building the 3-
part GEM data structure for 20,000 rules takes about 10 sec,
while the unsplit GEM data structure took over an hour to
build.

7 RELATED WORK

7.1 First match
The results closest to ours were presented by Gupta and
McKeown in their Recursive Flow Classification (RFC) algo-

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ,VOL. 8, NO. 1, JAN-FEB 2011

12

rithm [16]. They introduced an efficient packet classification
algorithm, which is optimized for a hardware implementation.
Their algorithm divides the address space into ranges created
by borders of the rules, and encodes these ranges into a much
smaller “number space”. They then project the rules onto this
smaller space, and repeat until the number space is small
enough, at which point they assign the winning rule to each
encoded range. The authors did not present an asymptotic time
complexity analysis—however, based on our reading of their
work we believe that RFC, like GEM, enjoys a logarithmic
matching time, but suffers from anO(nd) worst-case space
complexity, when the matching is performed ond fields.
By counting the machine instructions in their algorithm the
authors claim that RFC should be able to process 1Mpps in
isolation. The authors tested the actual space complexity on
small-sized rule bases, provided by Internet Service Providers
(ISPs), and claim that it grows linearly with number of rules.
Interestingly, Gupta and McKeown remark that classical GEM-
like algorithms from the field of computational geometry are
applicable to the firewall matching problem—but they dismiss
such algorithms as impractical due to their high (theoretical)
space complexity. In contrast, our results show that on realistic
rule-bases the space complexity of GEM grows linearly. Our
simulations also show that, in isolation, GEM requires under
1µsec per packet and can handle well over 1Mpps. Finally, our
emphasis is on a software implementation in the Linux kernel,
and on very large rule-bases that are typical of enterprises
rather than ISPs.

The work of [25] describes two algorithms: backtracking
and set pruning tries. Both perform better than their respective
theoretical bounds:Ω((log n)

d−1
) time for backtracking and

O(nd) space for set pruning tries. The authors used the field
order to reduce the backtracking time, whereas we use the field
order to reduce the required space. A survey of many packet
classification algorithms implementing “first match” can be
found in [36].

The work of Cohen and Lund [7], which appeared after
our [28], offers a different approach using decision tree
classifiers. Their construction uses linear space, yet has a
sub-linear search time ofO(n0.63). Thus, their algorithms
are significantly faster than the naive linear search, while
still maintaining a linear space complexity. However, their
algorithm is much slower than our logarithmic search time.

The GEM algorithm is a variant of the classical “slab
method” algorithm of Dobkin and Lipton [10] for planar point
location, which we adapted to the firewall domain. A survey
of results in geometric range searching can be found in [22].

The algorithm of [11] uses a geometric approach (range
queries and interval trees, cf. [9]), implements first-match
semantics, and achieves logarithmic time matching, with near-
linear space usage and a dynamic data structure that allows fast
updates. However, this algorithm works in one dimension, and
may be scaled to two dimensions, but it seems hard to extend
to more than two dimensions.

Another algorithm, which uses a geometric approach, is the
Area Based Quad-Trees (AQT) [4]. It has anO((log n)

d−1
)

time complexity and allows fast updates.
In the field of computational geometry, [31] proposed an

algorithm which solves the point location problem forn
non-overlappingd-dimensional hyper-rectangles, with a linear
space requirement andO((log n)(d−1)) search time. In our
case, we haveoverlapping d-dimensional hyper-rectangles,
since firewall rules can, and often do, overlap each other—
making rules overlap is the method firewall administrators
use to implement intersection and difference operations on
sets of IP addresses or port numbers. These overlapping
hyper-rectangles can be decomposed into non-overlapping
hyper-rectangles—however, a moment’s reflection shows that
the number of resulting non-overlapping hyper-rectanglesis
Ω(nd), thus the worst case complexity of [31] for firewall
rules is no better than that of GEM.

Note that [25], [4], [31], trade off search time for a linear
space complexity. Our approach is to use the fastest possible
search time (O(log n)) - And we show that the penalty we
suffer in the space complexity is still low enough to chose the
GEM algorithm.

Interval Decision Diagrams were introduced by [6] as a
tool for packet filtering using first-order logic. The idea isto
construct a logic formula based on the integer intervals created
by the set of rules. The algorithm enjoys logarithmic search
time, but the build algorithm is exponential.

7.2 Longest prefix match

There is an extensive literature dealing with router packet
matching, usually called “packet classification”. Existing algo-
rithms implement the “longest prefix match” semantics, using
several different approaches.

The IPL algorithm of [12], which is based on results
introduced in [20], divides the search space into elementary
intervals by different prefixes for each dimension, and finds
the best (longest) match for each such interval.

The Tuple Space Search algorithm is described in [33].
In this algorithm, all the prefixes are divided into tuples by
field prefix length, and then searched linearly. To reduce the
time complexity, the authors use pre-computations, markers
and heuristic decisions based on statistics of tuples sizes. [32]
introduced an extension to the Tuple Space Search algorithm
that is optimized for hardware implementation.

Hash-based algorithms are proposed in [38], [35], [34].
These algorithms use hash tables for each prefix length and
perform a binary search on those hash tables, coupled with
various optimizations according to prefix statistics.

Other packet matching algorithms include Line Search on
multi-dimensional tuple space [37], a modular approach with
heuristic tree search [41], and two dimensional classification
using prefix tuple space and different types of markers [39].
A survey of many packet matching algorithms implementing
“longest prefix” semantics can be found in [15], [2], [1] and
[30].

8 CONCLUSIONS AND FUTURE WORK

We have seen that the GEM algorithm is an efficient and
practical algorithm for firewall packet matching. We imple-
mented it successfully in the Linux kernel, and tested its

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ,VOL. 8, NO. 1, JAN-FEB 2011

13

packet-matching speeds on live traffic with realistic largerule-
bases. GEM’s matching speed is far better than the naive linear
search, and it is able to increase the throughput ofiptables
by an order of magnitude. On rule-bases generated according
to realistic statistics, GEM’s space complexity is well within
the capabilities of modern hardware. Thus we believe that
GEM may be a good candidate for use in firewall matching
engines.

We note that there are other algorithms that may well
be candidates for software implementation in the kernel—
specifically, we can point out the algorithms of Gupta and
McKeown [16], Qiu et al. [25] and Woo [41]. We believe it
should be quite interesting to implement all of these algorithms
and to test them on equal footing, using the same hardware,
rule-bases, and traffic load. Furthermore, it would be interest-
ing to do this comparison with real rule-bases, in addition to
synthetic Perimeter-model rules. We leave such a “bake-off”
for future work.

As for GEM itself, we would like to explore the algorithm’s
behavior when using more than 4 fields, e.g., matching on
the TCP flags, meta data, interfaces, etc. The main questions
are: How best to encode the non-range fields? Will the space
complexity still stay close to linear? What will be the best
order of fields to achieve the best space complexity? Another
direction to pursue is how GEM would perform with of IPv6,
in which IP addresses have 128 bits.

REFERENCES

[1] F. Baboescu, S. Singh, and G. Varghese, “Packet classification for core
routers: Is there an alternative to cams,” inProc. IEEE INFOCOM, 2003.

[2] F. Baboescu and G. Varghese, “Scalable packet classification,” in Proc.
ACM SIGCOMM, 2001, pp. 199–210.

[3] N. Bar-Yosef and A. Wool, “Remote algorithmic complexity attacks
against randomized hash tables,” inProc. International Conference on
Security and Cryptography (SECRYPT), Barcelona, Spain, Jul. 2007, pp.
117–124.

[4] M. M. Buddhikot, S. Suri, and M. Waldvogel, “Space decomposition
techniques for fast Layer-4 switching,” inProtocols for High Speed
Networks IV, Aug. 1999, pp. 25–41.

[5] W. R. Cheswick, S. M. Bellovin, and A. Rubin,Firewalls and Internet
Security: Repelling the Wily Hacker, 2nd ed. Addison-Wesley, 2003.

[6] M. Christiansen and E. Fleury, “Using interval decisiondiagrams for
packet filtering,” 2002, http://www.cs.auc.dk/∼fleury/publications.html.

[7] E. Cohen and C. Lund, “Packet classification in large ISPs: Design and
evaluation of decision tree classifiers,” inProc. ACM SIGMETRICS.
New York, NY, USA: ACM Press, 2005, pp. 73–84.

[8] S. Crosby and D. Wallach, “Denial of service via algorithmic complexity
attacks,” in Proceedings of the 12th USENIX Security Symposium,
August 2003, pp. 29–44.

[9] M. de Berg, M. van Kreveld, and M. Overmars,Computational Geom-
etry: Algorithms and Applications, 2nd ed. Springer-Verlag, 2000.

[10] D. P. Dobkin and R. J. Lipton, “Multidimensional searching problems,”
SIAM J. Comput., vol. 5, no. 2, pp. 181–186, 1976.

[11] D. Eppstein and S. Muthukrishnan, “Internet packet filter management
and rectangle geometry,” inACM-SIAM Symp. on Discrete Algorithms
(SODA), 2001, pp. 827–835.

[12] A. Feldmann and S. Muthukrishnan, “Tradeoffs for packetclassifica-
tion,” in Proc. IEEE INFOCOM, 2000, pp. 1193–1202.

[13] W. Feller, An Introduction to Probability Theory and Its Applications,
3rd ed. New York: John Wiley & Sons, 1967, vol. 1.

[14] “Firewall Wizards,” Electronic mailing list, 1997–2009, archived at
https://listserv.icsalabs.com/pipermail/firewall-wizards/.

[15] P. Gupta and N. McKeown, “Algorithms for packet classification,” IEEE
Network, vol. 15, no. 2, pp. 24–32, 2001.

[16] ——, “Packet classification on multiple fields,” inProc. ACM SIG-
COMM, 1999, pp. 147–160.

[17] D. Hartmeier, “Design and performance of the OpenBSD stateful packet
filter (pf),” in Proc. FREENIX Track: 2002 USENIX Annual Technical
Conference, Jun. 2002.

[18] R. Jain,The Art of Computer Systems Performance Analysis. John
Wiley & Sons, 1991.

[19] S. Kandula, D. Katabi, M. Jacob, and A. Berger, “Botz-4-sale: Surviving
organized DDOS attacks that mimic flash crowds,” inNSDI, 2005.

[20] T. V. Lakshman and D. Stiliadis, “High-speed policy-based packet
forwarding using efficient multi-dimensional range matching,” in Proc.
ACM SIGCOMM, 1998, pp. 203–214.

[21] C. Logg and L. Cottrell, “Characterization of the traffic between SLAC
and the Internet,” March 2001, http://www.slac.stanford.edu/comp/net/
netflow/SLAC-Netflow.html.

[22] J. Matoǔsek, “Geometric range searching,”ACM Comput. Surv., vol. 26,
no. 4, pp. 422–461, 1994.

[23] “The netfilter/iptables project, v1.2.7,” 2002, http://www.netfilter.org/.
[24] “PF: OpenBSD packet filter,” 2003, http://www.benzedrine.cx/pf.html.
[25] L. Qiu, G. Varghese, and S. Suri, “Fast firewall implementations for

software and hardware-based routers,” inProc. ACM SIGMETRICS,
2001.

[26] D. Reed, “IP filter,” 2003, http://coombs.anu.edu.au/∼avalon/.
[27] D. Rovniagin and A. Wool, “The geometric efficient matching algorithm

for firewalls,” Dept. Electrical Engineering Systems, Tel Aviv University,
Tech. Rep. EES2003-6, 2003, available from http://www.eng.tau.ac.il/
∼yash/ees2003-6.ps.

[28] ——, “The geometric efficient matching algorithm for firewalls,” in
Proceedings of the 23th Convention of IEEE Israel, Sep. 2004, pp. 153–
156.

[29] G. Shwed, “System for securing inbound and outbound data packet flow
in a computer network,” U.S. Patent Number 5,606,668, Feb. 1997.

[30] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packetclassification
using multidimensional cutting,” inProc. ACM SIGCOMM, 2003.

[31] M. Smid, “Dynamic rectangular point location with an application to the
closest pair problem,”Information and Computation, vol. 116, no. 1, pp.
1–9, Jan. 1995.

[32] V. Srinivasan, “A packet classification and filter management system,”
in Proc. IEEE INFOCOM, 2001, pp. 1464–1473.

[33] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple
space search,” inProc. ACM SIGCOMM, 1999, pp. 135–146.

[34] V. Srinivasan and G. Varghese, “Faster IP lookups usingcontrolled
prefix expansion,” inACM Conference on Measurement and Modeling
of Computer Systems, 1998, pp. 1–10.

[35] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
scalable layer four switching,” inProc. ACM SIGCOMM, 1998, pp.
191–202.

[36] D. E. Taylor, “Survey and taxonomy of packet classification techniques,”
ACM Comput. Surv., vol. 37, no. 3, pp. 238–275, 2005.

[37] M. Waldvogel, “Multi-dimensional prefix matching using line search,”
in Proceedings of IEEE Local Computer Networks, Tampa, FL, USA,
Nov. 2000, pp. 200–207.

[38] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable high
speed IP routing lookups,” inProc. ACM SIGCOMM, September 1997,
pp. 25–36.

[39] P. R. Warkhede, S. Suri, and G. Varghese, “Fast packet classification for
two-dimensional conflict-free filters,” inProc. IEEE INFOCOM, 2001,
pp. 1434–1443.

[40] D. D. Welch-Abernathy,Essential Checkpoint Firewall-1: An Installa-
tion, Configuration, and Troubleshooting Guide. Addison-Wesley, 2002.

[41] T. Y. C. Woo, “A modular approach to packet classification: Algorithms
and results,” inProc. IEEE INFOCOM, 2000, pp. 1213–1222.

[42] A. Wool, “Architecting the Lumeta firewall analyzer,” inProceedings of
the 10th USENIX Security Symposium, Washington, D.C., August 2001,
pp. 85–97.

[43] ——, “Packet filtering and stateful firewalls,” inHandbook of Infor-
mation Security, H. Bidgoli, Ed. John Wiley & Sons, 2006, vol.
III: Threats, Vulnerabilities, Prevention, Detection andManagement, ch.
171, pp. 526–536.

[44] ——, “A quantitative study of firewall configuration errors.” IEEE
Computer, vol. 37, no. 6, pp. 62–67, 2004.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING ,VOL. 8, NO. 1, JAN-FEB 2011

