www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

A SECURE MOBILE AGENT SYSTEM

A

SEMINAR REPORT

III

TABLE OF CONTENTS
	SR.NO.
	CONTENTS
	Page No.

	
	
	ABSTRACT
	1

	1.
	INTRODUCTION
	2

	
	1.1
	MOTIVATION AND APPROACH
	2

	
	1.2
	WHAT ARE MOBILE AGENTS?
	3

	
	1.3
	WHAT IS NEED FOR SECURITY?
	4

	
	1.4
	GOAL OF MOBILE AGENT SYSTEM
	4

	
	1.5
	PROBLEMS TO USE MOBILE AGENTS
	5

	2.
	SECURE MOBILE AGENT SYSTEM ARCHITECTURE
	6

	
	2.1
	GENERAL ARCHITECTURE WITH ROLE PALACES
	6

	
	2.2
	THE SeMoA SECURITY ARCHITECTURE
	10

	3.
	SECURITY IN MOBILE AGENT SYSTEM
	12

	
	3.1
	SECURITY FOR HOSTS FROM AGENTS
	12

	
	3.2
	SECURITY FOR AGENTS FROM HOSTS
	15

	4.
	THE AGENT PATTERN FOR MOBILE SYSYTEM
	19

	
	4.1
	STRUCTURE AND PARTICIPANTS
	19

	
	4.2
	BENEFITS AND CHALLENGES
	24

	5
	APPLICATION OF A MOBILE AGENT SYSTEM
	25

	6
	CONCLUSION
	28

	
	BIBLOGRAPHY
	29

	
	APPENDIX
	

IV

ABSTRCT

Mobile agent technology facilitates intelligent operation in software system with less human interaction. Major challenge to deployment of mobile agents and preventing unauthorized access to resources between interacting systems, as either hosts, or agents, or both can act maliciously. A Secure mobile agent system, handles the transmission and secure management of mobile agents in a heterogeneous distributed computing environment. It provides users with the option of incorporating their security managers.

 Security infrastructure is critical for any system for providing the end-user the quality of service. The need for security in mobile paradigm is overwhelming because of its various application in commercial world. We consider a study of various policies and issues regarding the security architecture that are to be consideredin the design of mobile systems so that they can be visualized in the commercial arena.

 This also presents the Agent pattern, a design pattern useful to develop dynamic and distributed applications. The Agent pattern provides a clean and easy way to develop agent-based applications, mainly in open and large-scale distributed environments such as the Internet and application areas such as Electronic Commerce.

V

CHAPTER 1

 INTRODUCTION

[image: image1.png]¥

Agent

Muchine A Machine B

Mobile agents are currently hot topic in the domain of distributed system. The main reason are the problems more traditionally designed distributed system, especially client/server system, might, have to handle work-load, the trend to open large number of customers direct access to services and goods, and user mobility. Mobile agent technology can help to design innovative solution in this domain by complementing other approaches, simply by adding mobility of code, machine based intelligence, and improved network and data management possibilities.

1.1 Motivation and Approach for Mobile Agents

Presently there is a wide range of information available on the Internet stored in distinct databases. The main problem is how to find the specific information. For this enabling the querying for the distinct databases with totally incompatible table structure or even different storage concepts still not solved satisfactorily.

 We suggest mobile software agents as proactive components realizing interconnections between data sources. Mobile agents offer the optimum solution due to their benefits with respect to aspects of security, flexibility and data compression. For each type of query in an application we suggest a specific agent. If a query has to be performed, the according agent will be instantiated, migrate to a number of data sources and return with a report, which aggregates the results of its queries. Since it is sufficient for each agent to know the structure of the small number of specific databases it is working on to perform the query task, the development becomes very effective, scalable and therefore manageable on a large scale.

1.2 What are Mobile Agents
A mobile agent is a program that can migrate from host to host in a network of heterogeneous computer systems and fulfill a task specified by its owner.

 It works autonomously and communicates with other agents and host systems. During the self-initiated migration, the agent carries all its code and the complete execution state with it. Mobile agent systems build the environment in which mobile agents can exists.

 Migration of agents is based on an infrastructure that has to provide the necessary services in the network. The infrastructure is a set of agent servers that run on platforms (nodes) within a possibly heterogeneous network. Each agent server hides the vendor specific aspects of its host platform and offers standardized services to an agent that is docking on to such a server concluding migration. Services include access to local resources and applications.

[image: image2.png]¥

Agent

Muchine A Machine B

 A mobile agent is an executing program that can migrate from machine to machine in a heterogeneous under its own control.

 Here an agent has migrate to interact with a search engine and will migrate again to bring the result back to its owner.

 Mobile agent is a program, which can autonomously migrate from a host to another and it provides a useful framework for Electronic Commerce.
1.3 What is the need for security?
In mobile systems, security must be considered from many dimensions. The main need for security in mobile systems as in any distributed systems is to secure the valuable information distributed over the network. In mobile systems, this is more complex as along with the information, the code and the Execution State are distributed. So the system has to consider various possibilities of system attacks on data, code and the runtime environment.

 Different policies of security must be considered by taking into account the environment in which the system will be deployed. For example, if the system’s environment is highly prone to failure in various parts of the network, then the fault tolerance part of security should be given weight. However, if the system is vulnerable to miscreants, the focus must be on confidentiality and integrity of data.
1.4 Goals of mobile agent system

· The agent systems have to identify and trust each other and be able to communicate in a secure fashion.

· The code must be transmitted in a manner such that the receiving host can verify its integrity.

· The execution host must be able to restrict the actions of the mobile code (e.g., limiting access to local files or the amount of resources it may use).

· In case of the agent's failure, the execution host must securely notify the sending host.

 An agent system must be authenticated before sending its agents and agent tasks should be subject to access control. An agent's integrity, and possibly confidentiality, must be ensured as a prerequisite to access control and subsequent operation on the remote system.

1.5 Problems associated with the use of mobile agent systems

The problems associated with mobile agent systems are classified into three categories namely mobility, portability and wireless communications.

1.5.1 Problems due to mobility

The problems that arise with the mobility dimension is, how do these systems incorporate the address, process and object migration from host to host and the privacy of various resources that are either stationary or in transit.

1.5.2 Problem due to portability

The problem due to portability is that the mobile code must be able to do its job with the use of limited resources without any loss of efficiency. The resources can be of any form viz. power, storage, etc.

1.5.3 Problem due to Wireless Communications

The basis of mobile agent systems is the wireless communications. The main hurdles in this type of communications are heterogeneity, disconnection and constant changes in the environment parameters.

CHAPTER 2
SECURE MOBILE AGENT SYSTEM ARCHITECTURE

[image: image3.png]Client

Agant

AgentView

Coneretegent

SecurityManager

.

ExceutionPlace

2.1 General Architecture with role and places:-

This architecture based on mobile software agents as security-centric middleware. This approach allows to combine distinct databases by establishing application dependent links between remote data sets with a proprietary access.

 We define different roles (see Figure 1) appearing in our approach and the dependencies between them.

 So-called service providers with detailed knowledge about the interfaces to data sources of certain information providers develop specific services as mobile software agents. Services will be collected, reviewed and published by service brokers as pieces of executable code. Besides structuring and filtering the variety of provided services quality inspection is a major issue.

 An user who wants to access a service downloads this service as a mobile agent from the service broker and installs it on his mobile device - subsequently he is able to benefit from its features. Two kinds of services are conceivable here those which are instructed by the user in direct interaction before they investigate the validity of the information and those which are activated once and then run as autonomous background processes providing the user with information and assisting him in case of special events.

 To optimize the instruction process of services the personal profile keeps track of the user’s preferences. Agents will query the profile database if they require certain information about the user. An user will therefore not be inconvenienced by information requests until a requested piece of information cannot be found in the profile. In that case it is the task of the personal profile as active component to request the required information in communication with the user. The user has the possibility to alter automatic generated settings, add new settings, or delete particular entries from the profile.

 The underlying infrastructure implicitly defines several logic places separated by means of different security domains and is described in the following.

2.1.1 Mobile device

The mobile device acts as the standard unit of execution for the user’s needs. Usually it has small computing power, but a high connectivity. It stores just the information, which is actually needed, and those which enable the user to continue work even if a network connection is not available. The mobile device could be equipped with additional (generally plugable) extensions such as GPS receivers for the user’s current location.

 2.1.2 User’s homebase

The homebase keeps the user’s personal profile. This data should be (authorized) accessible via the Internet as well. The user is always reachable by means of his homebase since the home base remembers the mobile device that was recently used by the user, e.g. by the device’s IP address. A messenger agent sent by Alice with the order to meet Bob would migrate first to Bob’s home base. A stationary personal agent at Bob’s homebase would check the identity and intention of Alics agents, and occasionally allow him to migrate to Bob’s current location in order to hand over the message.

 2.1.3 Service portal

The service portal provides services for download. These services are manifested as a group of agents, which interact with the user, migrate back and forth between mobile device, homebase and data sources, and perform the task according to the users preferences. The service provider usually integrates database access, which are coordinated with the information providers. Hence he can rely on different but stable APIs for each data source. Query agents could access them by means of standard protocols (e.g. SQL or LDAP) and even migrate to the sources and access the data locally. Hence, the agent metapher allows to combine disjunct data sources which only could be managed difficultly otherwise.

2.1.4 Execution server

The execution server provides both the runtime environment for mobile agents and access to data sources. Hence, one could interpret it as a mobile agent server providing an interface, which enables agents to access local data. There are three types of execution servers. First, execution servers run by information providers. These kind states the majority of the exectuion servers. Second, the homebases which have additional functionality such as running the personal agent, hosting profile data, etc. And third, the mobile device which act as execution servers with the ability of direct agent-user interaction. We refer to the concrete architecture of the agent servers as well as to security aspects in section 2.2.

2.1.5 Basic services

The basic services provide access to server functionality for the agent. These services are typically for data access, special computing algorithms, encrypting and decrypting, or user interaction. In conclusion basic services allow an information provider to make the own data accessible for mobile agents and hence combinable with other data sources he has no knowledge about.

 Each of these places belong to the security domain of the operation authority. The sum of places provide multilateral security for all participants.

[image: image4.png]Clien

user e
Agent secuny sentSecurtyManager
e
-

ConcreteAgent

Agent Companent

ExccutionPlace

 The user typically controls the mobile device and the homebase, where as the execution servers and the basic services are under supervision of the respective provider. This has two main advantages. First, an agent is able to perform secure computations in the user’s security domain which lessens the malicious host problem. Second, an information provider keeps full control over the provided data. He could implement any data access policy he desires. This should be kept in mind when developing secure services, since frequent migations between these security domains can be less expensive than most algorithms against malicious hosts.

2.2 The SeMoA Security architecture

 As middleware for data access we need a mobile agent platform which provides the runtime environment for the agents. It is quite clear that this platform should follow a secure aware design concept. For our architecture we used the SeMoA (Secure Mobile Agent) platform, which fits our needs best.

 The SeMoA project developes an open server for mobile agents with a special focus on all aspects of mobile agent security, including protection of mobile agents against malicious hosts. SeMoA builds on JDK 1.3 and is a “best effort” to provide adequate security for mobile agent systems, servers as well as agents.

 The security architecture of the SeMoA server compares to an onion: agents have to pass all of several layers of protection before they are admitted to the runtime system (see Figure 2) and the first class of an agent is loaded into the server’s JVM.

 The first (outer) security layer is a transport layer security protocol such as TLS or SSL. This layer provides mutual authentication of agent servers, transparent encryption and integrity protection. Connection requests of authenticated peers can be accepted or rejected as specified in a configurable policy.

 The second layer consists of a pipeline of security filters. Separate pipelines for incoming agents and outgoing agents are supported. Each filter inspects and processes incoming/ outgoing agents, and either accepts or rejects them.

 Subsequent to passing all security filters, Se- MoA sets up a sandbox for the accepted agent (which can be regarded as layer three).

 Each agent gets a separate thread group and class loader. This class loader supports loading classes that came bundled with the agent, as well as loading classes from remoted code sources specified in the agent. Agents cannot share

classes so one agent cannot not load a Trojan Horse class into the name space of any other agent. Agents are separated from all other agents in the system; no references to agent instances are published by default.

 The only means to share instances between agents is to publish them in a global environment. Each agent gets its own view on this global environment, which tracks the instances registered by that agent. All published objects are wrapped into proxys which are created dynamically. SeMoA supports a lot of (security) standards, such as JAR archive format, X.509, PKCS, and ASN.

[image: image5.png]r
<l Clien. — [

e User

I
b ——

At Component

Asenvien| = 12 Uer

 CHAPTER 3

 SECURITY IN MOBILE AGENT SYSTEM

[image: image6.png]Agent Component

 This section discusses the various issues of security with respect to the mobile agent systems. The security issues in mobile paradigm can be broadly classified into four classes viz.

a. Security for hosts from agents

b. Security for agents from hosts

c. Security for hosts from hosts

d. Security for agents from agents

Of the above four class ‘a’ and ‘b’ are the major ones and the remaining two (c and d) can be solved using the techniques of ‘a’ and ‘b’. So the further discussion will consider only ‘a’ and ‘b’ cases.

 3.1 Security for Hosts from Agents

Many security threats and attacks associated to the traditional systems can also be extended to the mobile paradigm, however the situation is more complex in the latter case. Hosts in the mobile agent systems provide the runtime environment and the required resources for the mobile agents to satisfy their requirements. Thus hosts are at a potential risk that they can be harmed by the miscreant agents. As the agents are given access to the internal resources of the hosts there is every chance for them to modify the internal configuration of the hosts. However, there are many techniques proposed to counteract these attacks on the hosts, viz.

3.1.1 Proof-Carrying Code Model

The major attack on the hosts can be done by the malicious code of agent, so it is highly required for providing some ways to the host to check for the fairness of the code that the agent carries. One way of achieving this is to make some extensions to the actual semantics of the language in which the agent is implemented. These additional semantics are some formal rules or procedures using which the host can verify that the code is not harmful to the host. The main advantages of this model are it is highly flexible, faster than other methods and does not require any end-security measures for safety. However, this model of countermeasure is not efficient to use as the formal methods for representing proof semantics is very complicated and hence this is impractical.

3.1.2 Signed Code Model

The traditional countermeasure models have been inherited for mobile paradigm, the signed code is one of them. The hosts to verify the integrity and authenticity of the agents use this model of countermeasure. The public keys are used for digital signing of the code by the owner or author of the agent which is then verified by the host platform where the agent is going to run. The digital signing of the code that the agent carries is based on the predefined security policies and if the process of verification gives the results that satisfy the predefined policies then the agent is allowed to access the resources of the host platform. This model of security countermeasure depends on the fact that the host must trust the owner of the agent. Thus if the owner turns out to be bogus then there is no way that the host platform would stop its misuse. Thus, this doesn’t form the sufficient solution for the security attacks.

3.1.3 Fault Isolation Model

This is a software based model based on the pessimistic approach. According to this approach the host system is divided into separate domains based on their software specification so that any fault or failure resulted by agent’s execution affects only that domain rather than the entire system. This technique is also known as sandboxing. The main disadvantage of this model is that it adds extra overhead of context switches. So the selection of model must be based on the idea of the level of security required by the system.

3.1.4 Path-History model

In this model the agent contains a list of hosts which it had visited in the past. This list of hosts is constructed as the agent moves from one host to another. As the agent leaves a particular host, that respective host attaches its signature or some kind of identity to the list along with the identity of the next host that it is to be visited by the agent. Thus, whenever an agent boards onto a host, the host can evaluate the level of confidence that can be kept on the agent and based on this level of confidence and the pre-defined policies the host can further serve the agent. Now the level of confidence mentioned above can be made up of different parameters. Such as how many hosts are there in the list i.e. the history of agent, how many of the visited hosts can be trusted by the new host, who is the owner or originator of this agent, what are all the services required by the agent, and so on. Thus the path history provides wealthy information for the host to take further decisions. This model similar to the signed code model should trust on other host platforms of the system. So this model depends on the fairness of the hosts, and thus is not a complete solution.

3.1.5 State Appraisal and Authentication model

The Authentication model that can be used in mobile computing system is similar to that of traditional systems. In the authentication process the host can determine from where the agent was originated or sent. The state appraisal process is to evaluate the set of privileges that can be assigned to the agent, by taking the agent’s state into consideration and using the appraisal function given by the author or owner of the agent as a part of its code. Thus this model takes into account the execution state of the agent for securing the hosts. The state appraisal is done on top of the authentication, so the authentication process is done using the outputs of the state appraisal evaluation.

 However, this model depends on fact that modifications can be detectable, i.e. this process works only on the modifications which can be detected.

3.2 Security for Agents from Hosts

According to the research community malicious host problem is the toughest part of the security facility and still there is no absolute “software” solution for this problem. The malicious hosts are dangerous to the system because they provide the runtime environment for the mobile agents the integral objects of the mobile agent system. So the hosts have full control over the agent during their execution and thus can easily manipulate the state of the agent and also provide false results. The host can also deny providing the necessary resources or environment for the agent’s execution.

 Thus without some mechanism for securing the mobile agents from the hosts, the mobile agent systems will be infeasible for use in secure way. Some of the countermeasures to solve this problem of malicious hosts.

3.2.1 Legal/Contractual Policy Agreement

This model is based on the pre-defined policy of contract signed by different principals, that they would not misuse the system resources. This model has the serious drawback that there is no way to know whether there is any breach of this pact or not.

3.2.2 Mobile Cryptography

The mobile cryptography as the name suggests is based on the cryptography. In this model encrypted programs are used by the agent for execution and the data for these programs is also encrypted. Thus the overall procedure is based on homomorphism. Others cannot tamper the data and code, so the agent is supposed to be safe from attacks. This procedure is easily provable and not bounded by time. But the major drawbacks for this model are that, it is very difficult to generate encrypted programs for large, recursive and random programs and if by any way an external agent finds the key used for the encryption, the entire agent will be under risk. So the security of the system using this model is based on the secrecy of the key.

3.2.3 Time Limited Blackbox Model

In this model the agent’s code is transformed into a black box which has the property that the code and data of the agent cannot be changed or read for a particular period of time and even though the attacks are possible they have no effect on the agent. This model unlike mobile cryptography model is independent of the code content, so can be applied to any type of agent. But the major drawback in this model is that it is very difficult to know how much the expiry time must be specified for the black box.

3.2.4 Digital Signatures

The other countermeasure technique is to use digital signatures. As the agent is about to leave the host after getting the required results, the host has to digitally sign the results. Using this method one can tackle the problem of repudiation and maintain audit records of what is happening to the agent in the system. But the major concern here is that there is no way to detect whether the host is spying the agent code or data and about any possible theft of data. Therefore, this technique can be used as an ancillary to other mechanism to form a complete solution.

 3.2.5 Central Station Model

In this model the principal at which the agent is originated is maintained as a central station. The agents that follow this principle are known as boomerang agents. The idea here is that after every completion of partial execution of agent at a host the agent goes back and reports the central station, here it is verified whether the agent is tampered or not. The major drawbacks in this are that the very principle of free-roaming agents is lost and even if this is used it cannot determine the theft of any information of a host from the agent.

3.2.6 Execution Tracing

The main threat for the mobile agent from the host system is that the host can change the code and thereby modify the decision-making policies. In this model, the host platform maintains an audit report of all the operations that the agent performs on it. This audit report or log must be non-repudiable and attached to the agent. Thus, whenever a boomerang agent or a multi-hop agent returns to its origin, the owner of the agent checks this log which was attached to the agent’s code and determines whether any tampering of mobile agent has occurred or not. Thus this model keeps track of any unauthorized modification of agent. However, if the system grows large, then the maintenance of the traces or log is very expensive, thus this model has a scalability problem.

3.2.7 Environmental Key Generation Model

In mobile agent systems the mobile agent has its runtime environment under the full control of hosts. Therefore the agent must somehow restrict the host from analyzing the unauthorized information. It is known that the agent’s state is dependent on the runtime environment so one of the approaches for securing the agent is to design a policy such that the environment in which the agent executes provides the required key with which the agent can start its execution. The environmental parameters that are required for the execution of agent are pre-defined by the owner and attached to the code. The agent code is either encrypted with the corresponding environmental trigger. So whenever the agent boards on a host platform, it will start execution only if the host provides the runtime environment which sets the above described pre-defined condition true, if the environmental factors are not suitable to the agent then the agent’s code or data is left unintelligible for the host for any misuse. However, even this procedure has the drawback that, one cannot stop host from stealing the important information from the agent.

3.2.8 Itinerary Tracking using Cooperative Agents

The idea of cooperative agents as explained by V. Roth is “…. distributed critical operations of a malicious agent between two cooperating agents, each of which operates in two disjoint nonempty sets of Hosts Ha and Hb which hold the following condition C….” Where the condition C is no malicious host of either sets Ha or Hb will collaborate with a host in other set. However, attacks on agent can happen by two hosts collaborated in one set. According to Roth, this model also assumes that the owners of the two cooperating agents would provide a secure channel for the communication between the agents. Roth’s idea of keeping cooperative agent follows the following scheme, the cooperative agent keeps track of the corresponding agent in other set. The former keeps a log of which hosts the latter is traveling and verifies whether the itinerary is valid or not. Thus this model also belongs to auditory genre. However, the drawbacks of this system are as mentioned, there is the overhead of communication between cooperative agents and establishment of secure channel. The other negative point mentioned is that if by any chance the agent is killed then the cooperative agent of this agent cannot determine which host has caused it.
 CHAPTER 4

 THE AGENT PATTERN FOR MOBILE SYSTEM

[image: image7.png]Figure 1 General architeture with roles

This chapter presents the Agent pattern, a design pattern useful to develop and dynamic distributed application. The Agent pattern provides clean and easy way to develop agent-based application, mainly in open and large-scale distributed environments such as the Internet and applications areas such as Electronic Commerce. The Agent pattern encapsulates a business specific class with some user identification and a specific security policy, providing distributed, security and persistence transparency.

4.1 Structure and Participants

[image: image8.png]Implicit names for privacy
protection and scalable Dynarmic proxy generaion,
message routing agent encapsulation

Content inspecton:
fiters, digital
signatures, encryption

Transport Layer Secuity
authentication, encrypton,
Dynarric bytecade intearity

loacing & filering
acosss cortrol

Environment

A\ paen :
s, st oo |e—]

Figure 2: The SeMoA sccurity architecture

Figure1 shows the Agent pattern represented by a generic UML collaboration diagram its main participants and involved collaborations.
 Figure1: Generic structure of the Agent pattern – collaboration diagram.

Figure 2 shows the generic static structure corresponding to the previous depicted collaboration diagram.

The main participants in the pattern are

4.1.1 Client

Manipulates agents through the AgentView reference.

Clients can be other agents or other objects (for instance Java applets).

 Figure2: Generic structure of the Agent pattern-class digram.

4.1.2 AgentView

The AgentView is an adaptation of the Proxy and Remote Proxy

 patterns. This pattern is very suitable to support transparent and secure

 access to these different types of objects.

The aim of AgentView is to provide transparent access to agents. This

 access is done indirectly through proxies in order to protect them, and to

 hide transparently their current localization.

Additionally, AgentView avoids the need to create and manage

 emote/virtual classes. Usual examples of operations protected through agent

 proxies are sendMessage, getCurrentPlace, start, moveTo,etClassName, etc.

4.1.2 User

The user is identified by a unique identity, which may contains for instance:

 his/her name; a public key; a set of certificates; the organization and country

 he/she belongs to; and his/her e-mail.. Moreover, the user can have

 different identifiers depending on the context he/she belongs to. This

 specific identity, managed in every Agent Server’s context, is represented

 by the User class,which may contains, in addition to all fields mentioned

 above, the authentication attributes (e.g., login and password).

The agent’s owner has necessarily an associated user identity, represented

 always by an User instance.

Different users can access the same agent however, only through the

 corresponding AgentView instance. Depending on the agent’s security

 manager,each access is allowed or not.

4.1.3 Agent

The Agent abstract class is the visible and extensible part of the Agent.

Basically, programmers should derive the Agent abstract class in order to

 build their own concrete classes. The agent class has three main groups of

 methods as depicted in Figure 4: (1) public final; (2) callbacks; and (3)

 helper methods.

Figure 4: Agent’s main groups of methods.

Final methods are pre-defined operations provided by all agent classes that

 cannot be changed by the programmer. Examples of these final methods are:

 moveTo, save, die, backHome, clone, getId, sendMessage, etc.

On the other hand, callbacks are methods customized by specific agent

 classes,and are usually invoked transparently as the result of some event.

 Events are trigged by some action started by the agent itself or by other

 related entity, such as an other agent, an end-user a time service etc.

Finally, agent classes also have helper methods, generally with private or

 protected access modifiers, in order to support specific functions of that

 class/object. These methods are used internally by callback methods.

The Agent instance provides transparently several services, such as:

 persistence, communication, mobility, naming and access control.

 Additionally, the Agent instance may keep related information, such as: the

 current and native place identities, security policy object, a reference to the

 concrete agent itself, its own identity, its owner identity, a reference to the

 involved security manager, and the group of threads involved.

4.1.4 ConcreteAgent

Concrete agent classes are Agent subclasses.

Basically they define helper methods and specialized callbacks, that, as a

 whole, implement the agent’s specific functionality .

4.1.5 SecurityManager

This class specifies the agent access security policy.

The agent’s SecurityManager instance controls all the operations made

 available on the agent component through each AgentView instance.

4.1.6 ExecutionPlace

This class specifies the agent’s computational environment, which

 corresponds to place where it was created and where it is currently resident.

The notion of execution places is a crucial component supported by mobile

 agent frameworks due to the need of handling conveniently agent's mobility

 operations.

 Figure5 shows an example of a UML object diagram of the Agent pattern at run-time.There are just one agent component (corresponding to the ca object) and two client components (i.e., c1 and c2 objects) interacting with it. The figure shows that all the involved agent and client objects are associated with different users, respectively owner,u1 and u2. Additionally, the locality of each component is not relevant, because this aspect is handled transparently by the AgentView class, and of course by the involved ASS.

 Figure5: Application examples of using the Agent pattern-object diagram
4.2Benefits And Challenges

The Agent pattern introduces several benefits in designing and building agent-based applications, mainly in open, dynamic and distributed contexts such as the Internet. However, at the same time, its adoption raises some challenges and difficulties.

4.2.1 Benefits:

· Suitable to the indirect computational (i.e., delegation) paradigm.

· Easy development of dynamic and distributed applications

· Simple integration with definition and management of users

· Flexible definition of agent’s security policy

4.2.2 Problems/Challenges:

· The inexperience of users with the indirect human-machine interaction

 (delegation) paradigm.

· Security and privacy, namely in open and distributed contexts.

· Requires applications with novel business models.
· Requires the existence of some agent support system or framework.

· Requires the existence of generic clients to monitor and to manage the current execution and state of agents.
CHAPTER 5

 APPLICATION OF A MOBILE AGENT SYSTEM

5.1 Application of mobile agents in web based learning

Web-base learning environments are strongly driven by information revolution and the Internet, but they have a number of common deficiencies such as slow access, no adaptivity to the individual student, limitation by bandwidth, and so on. Web based learning outlines the benefits of mobile agent technology. Mobile agent technology is being used in the implementation of the TILE adaptation mechanism, which the TILE projects aims to provide an integrated system for the management, authoring, delivery and monitoring of education at a distance.

5.2 Routing Management Application Based On Mobile Agents On The Internet

 In this work, the design and development of a routing management application based on mobile agents in an Internet environment is proposed. The objective of the application is to provide a routing based on the quality of service defined on a Service Level Agreement (SLA). For this purpose, the application obtains in each moment the best route according to a traffic and congestion control. As a consequence of the distributed operation scenario and the requirement of the real time functionality, the application uses CORBA and intelligent mobile agent technologies.

5.3 Flyingware: An Email-based Mobile Agent System

 The email and the world wide web are two major infrastructures on the internet. Both of them were text-based systems on the early days but they have been enhanced to provide rich media. For Example, technologies such as HTML(Hyper –Text Markup Language),Java applets, JavaScript, and browser plug-ins, have allowed the web to be today’s standard information tool.

We use a mobile-agent technology and give context-dependency and autonomy to the email. The Flyingware system is a prototype that we are currently developing for this goal. A flyingware is a stand-alone application written in Java but it can autonomously move to another host computer with SMTP (Simple Mail Transfer Protocol), which is the standard protocol for exchanging emails. Since the flyingware moves with its execution context, it can act in a contextdependent way at the destination. In the rest of this paper, we first mention applications of Flyingware. We compare Flyingware, which is an email enhanced by Java, and Java applets, which is a web page enhanced by Java. Then we present an overview of our current prototype system of Flyingware. This technique for reducing the size of an email delivering a flyingware and for protecting security at the receiver side. .

5.4 D’Agents: Applications and Performance of a Mobile-Agent System

D’Agents is a general-purpose mobile-agent system that has been used in several information retrieval applications. one such application, operational support for military field personnel, where D’Agents greatly simplifies the task of providing efficient, application specific access to remote information resources. After describing the application, we discuss the key differences between D’Agents and most other mobile-agent systems, notably its support for strong mobility and multiple agent languages. Finally, we derive a small, simple application that is representative of many information-retrieval tasks, including those in the example application, and use this application to compare the scalability of mobile agents and traditional client/server approaches. The results confirm and quantify the usefulness of mobile code, and perhaps more importantly, confirm that intuition about when to use mobile code is usually correct. Although significant additional experiments are needed to fully characterize the complex mobile-agent performance space, the results here help answer the basic question of when mobile agents should be considered at all, particularly for information-retrieval application
5.5 An application of mobile agents as personal assistants in electronic commerce

Targeted Advertising on Interactive Media developed a proof of concept application based on mobile agent technology by which we demonstrated some of the benefits that can be expected from using mobile agent technology (e.g. delegating a high level shopping task to a mobile agent. The basic concepts and architecture of the mobile agent server that was the basis of said application. The server is still under active development at the Fraunhofer Institute for Computer Graphics. Security has been identified numerous times by different is discarded. SeMoA comes with services that support agent transport via simple socket connections (either plain or SSL sockets) and HTTP transport. HTTP transport is handled by means of a Web agent and a Servlet registered with it. Details of how the Web is integrated in SeMoA can be found in . 7 Agent Structure In SeMoA, mobile agents are transported as Java Archives (JAR files) The JAR specification of Sun Microsystems extends ZIP archives with support for digital signatures by means of adding appropriate signature files to the contents of the ZIP archive.

.

CONCLUSION

From the above discussion it can be seen that the policy making plays an important role in the design of mobile agent system’s security. Each of the above countermeasures is designed based on some pre-defined policy. And moreover the entire mobile agent systems security is dominated by the policy certificates based on which the agents and hosts verify each others fairness.
 It can be concluded that mobile systems are still not secure enough, but lot of improvement is going on in this field. The area of interest as gradually shifted from a relatively easy problem domain - the host based approach to a much difficult one - the agent based approach. The latter is the current area of research, and if successful methods are devised for securing the agents from hosts, the mobile systems will soon become the integral part of the commercial market.

BIBLIOGRAPHY

[1] Ulrich Pinsdorf, Jan Peters, Mario Hoffmann and Piklu Gupta, ”Context-Aware Services based on secure Mobile Agents” , Fraunhofer Institute for Computer Graphics, Germany , Fraunhofer for Secure Telecooperation.

[2] Alberto Silva, Jose Delgado, “The Agent Pattern for Mobile Agent Systems”,INESC & IST Technical University of Lisbon.

[3] Meduri Kiran Kumar ,”Policies and Issues of Security in Mobile Agent Systems”, University of Southern Califormia,USA.

[4] http://www.semoa.org/

� EMBED PBrush ���

1
www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

_1122507320

