www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

History of programming languages

Prehistory
The first programming languages predate the modern computer. From the first, the languages were codes. Herman Hollerith realized that he could encode information on punch cards when he observed that railroad train conductors would encode the appearance of the ticket holders on the train tickets using the position of punched holes on the tickets. Hollerith then proceeded to encode the 1890 census data on punch cards which he made the same size as the boxes for holding US currency. (The dollar bill was later downsized.)

The first computer codes were specialized for the applications. In the first decades of the twentieth century, numerical calculations were based on decimal numbers. Eventually it was realized that logic could be represented with numbers, as well as with words. For example, Alonzo Church was able to express the lambda calculus in a formulaic way. The Turing machine was an abstraction of the operation of a tape-marking machine, for example, in use at the telephone companies. However, unlike the lambda calculus, Turing's code does not serve well as a basis for higher-level languages — its principal use is in rigorous analyses of algorithmic complexity.

Like many "firsts" in history, the first modern programming language is hard to identify. From the start, the restrictions of the hardware defined the language. Punch cards allowed 80 columns, but some of the columns had to be used for a sorting number on each card. Fortran included some keywords which were the same as English words, such as "IF", "GOTO" (go to) and "CONTINUE". The use of a magnetic drum for memory meant that computer programs also had to be interleaved with the rotations of the drum. Thus the programs were more hardware dependent than today.

To some people the answer depends on how much power and human-readability is required before the status of "programming language" is granted. Jacquard looms and Charles Babbage's Difference Engine both had simple, extremely limited languages for describing the actions that these machines should perform. One can even regard the punch holes on a player piano scroll as a limited domain-specific programming language, albeit not designed for human consumption.

The 1940s
In the 1940s the first recognizably modern, electrically powered computers were created. The limited speed and memory capacity forced programmers to write hand tuned assembly language programs. It was soon discovered that programming in assembly language required a great deal of intellectual effort and was error-prone.

In 1948, Konrad Zuse [1] published a paper about his programming language Plankalkül. However, it was not implemented in his time and his original contributions were isolated from other developments.

Some important languages that were developed in this time period include:

· 1943 - Plankalkül (Konrad Zuse)

· 1943 - ENIAC coding system
· 1949 - C-10

The 1950s and 1960s
In the 1950s the first three modern programming languages whose descendants are still in widespread use today were designed:

· FORTRAN, the "FORmula TRANslator, invented by John W. Backus et al.;

· LISP, the "LISt Processor", invented by John McCarthy et al.;

· COBOL, the COmmon Business Oriented Language, created by the Short Range Committee, heavily influenced by Grace Hopper.

Another milestone in the late 1950s was the publication, by a committee of American and European computer scientists, of "a new language for algorithms"; the Algol 60 Report (the "ALGOrithmic Language"). This report consolidated many ideas circulating at the time and featured two key innovations:

· The use of Backus-Naur Form (BNF) for describing the language's syntax. Nearly all subsequent programming languages have used a variant of BNF to describe the context-free portion of their syntax.

· The introduction of lexical scoping for names in arbitrarily nested scopes.

Algol 60 was particularly influential in the design of later languages, some of which soon became more popular. The Burroughs large systems were designed to be programmed in an extended subset of Algol.

Some important languages that were developed in this time period include:

· 1951 - Regional Assembly Language
· 1952 - Autocode
· 1954 - FORTRAN
· 1958 - LISP
· 1958 - ALGOL

· 1959 - COBOL
· 1962 - APL
· 1962 - Simula

· 1964 - BASIC
· 1964 - PL/I
1967-1978: establishing fundamental paradigms
The period from the late 1960s to the late 1970s brought a major flowering of programming languages. Most of the major language paradigms now in use were invented in this period:

· Simula, invented in the late 1960s by Nygaard and Dahl as a superset of Algol 60, was the first language designed to support object-oriented programming.

· Smalltalk (mid 1970s) provided a complete ground-up design of an object-oriented language.

· C, an early systems programming language, was developed by Dennis Ritchie and Ken Thompson at Bell Labs between 1969 and 1973.

· Prolog, designed in 1972 by Colmerauer, Roussel, and Kowalski, was the first logic programming language.

· ML built a polymorphic type system (invented by Robin Milner in 1978) on top of Lisp, pioneering statically typed functional programming languages.

Each of these languages spawned an entire family of descendants, and most modern languages count at least one of them in their ancestry.

The 1960s and 1970s also saw considerable debate over the merits of "structured programming", which essentially meant programming without the use of GOTO. This debate was closely related to language design: some languages did not include GOTO, which forced structured programming on the programmer. Although the debate raged hotly at the time, nearly all programmers now agree that, even in languages that provide GOTO, it is bad style to use it except in rare circumstances. As a result, later generations of language designers have found the structured programming debate tedious and even bewildering.

Some important languages that were developed in this time period include:

· 1970 - Pascal
· 1972 - C
· 1972 - Smallalk
· 1972 - Prolog
· 1973 - ML
· 1978 - SQL
The 1980s: consolidation, modules, performance
The 1980s were years of relative consolidation. C++ combined object-oriented and systems programming. The United States government standardized Ada, a systems programming language intended for use by defense contractors. In Japan and elsewhere, vast sums were spent investigating so-called "fifth generation" languages that incorporated logic programming constructs. The functional languages community moved to standardize ML and Lisp. Rather than inventing new paradigms, all of these movements elaborated upon the ideas invented in the previous decade.

However, one important new trend in language design was an increased focus on programming for large-scale systems through the use of modules, or large-scale organizational units of code. Modula, Ada, and ML all developed notable module systems in the 1980s. Module systems were often wedded to generic programming constructs---generics being, in essence, parameterized modules (see also parametric polymorphism).

Although major new paradigms for programming languages did not appear, many researchers expanded on the ideas of prior languages and adapted them to new contexts. For example, the languages of the Argus and Emerald systems adapted object-oriented programming to distributed systems.

The 1980s also brought advances in programming language implementation. The RISC movement in computer architecture postulated that hardware should be designed for compilers rather than for human assembly programmers. Aided by processor speed improvements that enabled increasingly aggressive compilation techniques, the RISC movement sparked greater interest in compilation technology for high-level languages.

Language technology continued along these lines well into the 1990s. However, the adoption of languages has always been driven by the adoption of new computer systems, and in the mid-1990s one of the most important new systems in computer history suddenly exploded in popularity.

Some important languages that were developed in this time period include:

· 1983 - Ada

· 1983 - C++
· 1985 - Eiffel

· 1987 - Perl

· 1989 - FL (Backus)

The 1990s: the Internet age
The rapid growth of the Internet in the mid-1990's was the next major historic event in programming languages. By opening up a radically new platform for computer systems, the Internet created an opportunity for new languages to be adopted. In particular, the Java programming language rose to popularity because of its early integration with the Netscape Navigator web browser, and various scripting languages achieved widespread use in developing customized applications for web servers. Neither of these developments represented much fundamental novelty in language design; for example, the design of Java was a more conservative version of ideas explored many years earlier in the Smalltalk community, but the widespread adoption of languages that supported features like garbage collection and strong static typing was a major change in programming practice.

Some important languages that were developed in this time period include:

· 1990 - Haskell

· 1990 - Python
· 1991 - Java

· 1993 - Ruby

· 1995 - PHP

· 2000 - C#

Current trends
Programming language evolution continues, in both industry and research. Some current directions:

· Mechanisms for adding security and reliability verification to the language: extended static checking, information flow control, static thread safety

· Alternative mechanisms for modularity: mixins, delegates, aspects.

· Component-oriented software development.

· Increased emphasis on distribution and mobility.

· Integration with databases, including XML and relational databases.

· Open Source as a developmental philosophy for languages, including recent languages such as Python, Ruby, and Squeak.

· Support for Unicode so that source code (program text) is not restricted to those characters contained in the ASCII character set; allowing, for example, use of non-Latin-based scripts or extended punctuation.

Alphabetical list of programming languages

The list of programming languages consists of all notable programming languages in existence, currently or since the dawn of computing, in alphabetical order.

0-9
· 2.PAK

· 20-GATE
· 473L Query
· 51forth
A
· A+
· A++
· A# .NET
· A# (Axiom)
· A-0
· ABAP
· ABC
· ABC ALGOL
· ABLE
· ABSET
· ABSYS

· ACC
· Accent
· ACT-III
· Action!
· ACS
· ActionScript
· Actor
· Ada
· ADMINS - Automated Data Methods for Information Naming Systems [1]
· ADS/Online
· AdvPL
· Aleph
· AIMMS
· Alan
· Aldor

· Alef - concurrent language used in early versions of Plan 9
· Algae
· ALGO

· ALGOL
· Alice
· Alphard
· AmigaE

· AMOS
· AMPL
· ApeScript
· APL
· AppleScript
· Apply - A domain-specific language for image processing on parallel or conventional architectures

· AREXX - Amiga version of REXX scripting language

· Argos
· ARS++

· ASP (actually a runtime)

· ASP.Net
· AspectJ
· Assembly
· ATLAS
· Atlas Autocode
· ATOLL - Acceptance, Test Or Launch Language

· Aubit-4GL
· Autocoder
· AutoIt
· AutoLISP

· Averest
· AWK- Also derivatives gawk, mawk, and nawk

· Axiom

· Axiom-XL
B
· B
· BACI
· BASIC

· bc

· BCPL
· BeanShell
· BETA
· Bigwig
· Bistro
· BLISS

· Blitz Basic
· Block And List Manipulation (BALM)

· Blue - Rejected prototype for Ada
· Blue

· Boo
· Bourne shell (sh)

· Bourne-Again shell (bash)

· Boxx
· BPEL - Business Process Execution Language

· Brainfuck

· BUGSYS

· BuildProfessional
C
· C
· C--

· C-script
· C++
· C#
· C shell (csh)

· Caché ObjectScript

· Caml
· Cascading Style Sheets - CSS
· Cayenne
· CeeBot
· Cecil
· Cesil

· Cg
· CHAIN
· Charity

· Chey
· CHILL

· ChucK
· Cilk
· Clarion
· Clipper

· CLIPS
· CLIST - Programming language for online applications in the MVS TSO environment

· CLOS

· CLU
· CMS-2
· COBOL
· CobolScript
· CODE
· CodeSimian
· ColdFusion
· COMAL
· Common Intermediate Language(CIL)

· Common Lisp
· Component Pascal
· COMIT - List or string processing language

· Concurrent Clean
· Constraint Handling Rules
· CORAL66
· Corn
· CorVision
· COWSEL

· CPL
· CSP

· Chrome programming language
· Csound
· Cue
· Curl

· Curry

· Cyclone
D
· D
· DASL (historical)
· DASL (modern)
· Databus
· Dark Basic
· Dataflex
· Datalog
· dBASE

· dc
· Deesel (formerly G)

· DCL
· Delphi
· Dialog Manager
· DIBOL
· Dream Maker
· Dylan
E
· E
· Ease
· Easy PL/I
· eDeveloper
· Edinburgh IMP

· Eiffel
· Elan

· elastiC
· Elf
· Emacs Lisp
· Enterprise Generation Language (EGL)

· Epigram

· Erlang
· Escapade - server-side programming

· Esterel

· Euclid
· Euphoria

· Euler
· EXEC

· EXEC2

F
· F
· F#
· Factor

· Felix
· Ferite
· FL
· Flex
· FLOW-MATIC
· FOCAL
· FOCUS
· FOIL programming language
· FORMAC
· Formula language
· Forth
· Fortran
· Fortress
· FoxPro
· FP
· Franz Lisp
· Frink
· Frontier
G
· G (now known as Deesel)
· G (LabVIEW)
· GAMS
· GML
· Gclisp
· G-code
· Gema
· GEMBASE
· GENIE
· Gibiane
· GJ
· Godiva
· Gödel
· GOTRAN see IBM 1620
· GPSS
· Green - Prototype for Ada
· Groovy
· Gypsy

· Emma P
H
· HAL/S- Real-time aerospace programming language

· HAScript
· Haskell
· Heron
· High Level Assembly (HLA)

· Hugo
· HyperTalk
· HTML/OS

I
· ICI programming language
· Icon
· IDL programming language
· IMP
· Inform
· Information Processing Language (IPL)

· Informix-4GL
· Io
· IPTSCRAE
J
· J
· J#
· J++

· JADE
· Jal
· Janus
· Java
· JavaScript
· JCL
· Join Java
· JOSS
· Joule
· JOVIAL

· Joy
· JSP

· JScript
· Jython

· J2EE
K
· K
· Kid's Programming Language (KPL)

· Kiev
· Kite

· Kogut
· KRC
· KRYPTON
L
· L
· LabVIEW
· Lagoona
· LANSA
· Lasso
· Lava
· Leda

· Lead

· Leopard
· Lexico
· Lfyre
· Limbo
· Limnor

· LINC
· Lingo
· Lisaac

· Lisp
· Logo

· LPC
· LSE
· Lua
· Lucid

· Lush
· Lustre
· LYaPAS
M
· M4
· MAD

· MADCAP

· MAGIC

· Magma

· MapBasic

· Maple
· MAPPER(Unisys/Sperry) now part of BIS

· MARK-IV (Sterling/Informatics) now VISION:BUILDER of CA

· Mary
· Mathematica

· MATLAB
· Maya
· Mercury

· Mesa
· METAL

· Michigan Algorithmic Decoder

· Microcode
· MicroScript
· MIMIC
· Miranda
· Miva
· ML
· Moby
· MODCAP
· Modula
· Modula-2
· Modula-3

· Mondrian

· Mortran
· Moto
· MOUSE
· MSIL - Deprecated name for Common Intermediate Language
· MUMPS
N
· Napier88

· Natural
· Nemerle
· NESL
· NGL
· Nial
· Nice
· Nickle
· Nosica
O
· o:XML
· Oberon
· Objective Modula-2
· Object Pascal
· Objective-C
· Objective Caml
· Obliq
· occam
· occam-π
· Opal
· Open programming language
· OPS5
· Organiser Programming Language (OPL) - cf. Psion Organiser
· Oz
P
· Parser
· Pascal
· Free Pascal
· IP Pascal
· Object Pascal

· Turbo Pascal
· Virtual Pascal
· Pawn
· PBASIC
· Perl
· Perl Data Language
· PHP
· Pico
· Piet
· Pike
· PILOT
· Pizza
· PL 11

· PL/0
· PL/8

· PL/B

· PL/C

· PL/I
· PL/M
· PLD
· PL/SQL
· Plankalkül
· Pliant
· PPL
· POP-11
· Poplog
· PORTRAN
· PostScript

· POV-Ray
· Ppc++
· Processing
· Prograph
· Progress 4GL
· Prolog
· Turbo Prolog
· Promela
· Proteus
· Python
Q
· Q
· QuakeC
· QML
· QPL

· Quikcomp (for the Monrobot XI)

R
· R
· R++- Based on C++ and added semanteme description

· Rascal

· Ratfiv
· Ratfor

· RBScript

· rc
· REALbasic
· REPL - Really Easy Programming Language

· REBOL

· Red - Rejected prototype for Ada

· Redcode
· REDO
· REFAL
· Report Program Generator (RPG)

· Revolution
· REXX
· Rigal
· Rlab
· Robot Scripting Language (RSL)

· Ruby
· RuneScript
S
· S
· S2

· S-Lang
· SAIL
· SAKO
· SAM76
· SAS
· Sather
· Scala
· SCAR

· Scheme
· Sed
· Seed7
· Self- Also written "SELF"

· SETL
· SIGNAL
· SiMPLE

· SIMSCRIPT
· Simula
· SISAL
· Slate
· SLIP

· SMALL Machine Algol Like Language
· Small
· Smalltalk
· Snobol
· SPITBOL
· Snowball
· SPARK
· SP/k
· SPS (1620) see IBM 1620
· Squeak
· SR
· SSL
· Standard ML
· Subtext
· SuperCollider
· SYMPL
· SyncCharts
· Synergy/DE

T
· T
· TACL
· TACPOL
· TADS
· Transaction Application Language
· Tcl
· teco
· TELCOMP
· Telon
· Tempo
· Titanium
· TI-Basic

· Today
· Tom
· Topspeed see Clarion
· TorqueScript
· tpu
· Trac
· TTCN
· Turing
· TUTOR
· Tutorial D
· TXL
U
· Ubercode
· Ultra 32
· Unicon
· UnrealScript
V
· Visual DataFlex
· Visual DialogScript
· Visual FoxPro
· Visual Objects
· Visual Basic
· VBScript
· Visual Basic .NET
W
· Water
· WATFOR
· WATFIV
· Whitespace
· Winbatch
· WinDev
· Windows PowerShell
· WML
X
· X10
· XBL

· xbScript - Also xBaseScript

· xHarbour

· XL
· XOTcl
· XPL
· XPL0
· XQuery
· XSLT

Y
· YAFL
· Yellow - Rejected prototype for Ada
· Yorick
· Y programming language
Z
· Z notation - A program specification language, like UML
· ZPL
· ZZT-oop
· ZOPL
· ZUG
Generational list of programming languages

Here, a genealogy of programming languages is shown. Languages are categorized under the ancestor language with the strongest influence. Of course, any such categorization has a large arbitrary element, since programming languages often incorporate major ideas from multiple sources.

· ALGOL

· Atlas Autocode
· ALGOL 60
· ALGOL 68

· Burrogh's Extended ALGOL
· ALGOL W
· Pascal
· Ada
· Turbo Pascal
· Delphi
· Free Pascal (FPC)

· Kylix (same as Delphi, but for Linux)

· Euclid
· Concurrent Euclid
· Turing
· Turing Plus
· Object Oriented Turing
· Modula-2
· Modula-3
· Oberon (Oberon-1)

· Oberon-2
· Component Pascal
· Objective Modula-2 (also under Objective-C and Smalltalk)

· SPARK
· CPL
· BCPL
· B
· C

· Alef
· Limbo
· Coyote
· C++
· Java
· Groovy
· Join Java
· J#
· X10
· C--
· D
· C#
· Windows PowerShell (also under bash, ksh and Ruby)

· ColdFusion
· LPC
· Pike
· Objective-C (also under Smalltalk)

· Objective Modula-2 (also under Modula-2 and Smalltalk)

· Perl
· S2
· PHP
· PDL (also under APL)

· QuakeC
· MCPL
· APL
· J (also under FL)
· K (also under LISP)
· NESL
· PDL(also under Perl)

· Glee

· Assembly
· BASIC
· Cache BASIC
· BASIC09
· COMAL
· Quickbasic
· QBasic
· Liberty BASIC
· Just BASIC
· TrueBASIC
· Visual Basic
· VBScript
· Visual Basic for Applications (VBA)

· Visual Basic .NET
· RealBasic
· Euphoria
· COBOL
· DIBOL
· WATBOL
· Batch languages
· MS-DOS Batch files
· Winbatch
· COMIT
· SNOBOL
· Icon
· Unicon
· Lua
· CORAL
· Corn
· FP (Functional Programming)
· FL (Function Level)
· J (also under APL)
· FORTH
· InterPress
· PostScript
· Joy
· Fortran
· FORTRAN II
· FORTRAN IV
· PORTRAN
· FORTRAN 66
· FORTRAN 77
· Fortran 90
· Fortran 95

· F
· Fortran 2003
· Ratfor
· WATFOR
· WATFIV
· FORMAC
· HyperTalk
· AppleScript
· Revolution
· JOSS
· CAL
· TELCOMP
· FOCAL
· MUMPS
· Caché ObjectScript
· LabVIEW
· Lisp
· Logo
· AutoLISP
· Common Lisp
· Emacs Lisp
· Scheme
· Pico
· Guile
· K (also under APL)
· S
· R
· ML
· Standard ML SML

· Alice
· Ocaml
· MCPL (also under BCPL)

· Occam
· PL/1
· PL/M
· PL/M-86
· PL/C
· REXX
· SP/k
· Progress
· Prolog
· PROLOG II, III, IV
· CLP(R), CLP(FD)

· Mercury
· REFAL
· Tcl
· Today
· BuildProfessional
· Sh
· bash
· ksh
· Windows PowerShell (also under C# and Ruby)

· Miranda
· Haskell
· ed
· sed
· awk

· perl (also under C)

· Seed7
· SETL
· ABC
· Python
· TECO
· Eiffel
· Sather
· Ubercode
· Simula
· C++(also under C)

· Smalltalk
· Objective-C (hybrid of C and Smalltalk)

· Objective Modula-2 (hybrid of Modula-2 and Smalltalk, following Objective-C blueprint)

· Ruby
· Windows PowerShell (also under bash, ksh and C#)

· Self
· JavaScript (originally LiveScript)

· ActionScript
· JavaScript OSA
· ECMAScript
· JScript
· NewtonScript
· Io
· Slate
· BETA
· Web design languages
· Bigwig
Categorical list of programming languages
This is a list of programming languages grouped by category.

Array languages
Array programming (also known as vector or multidimensional languages) generalize operations on scalars to apply transparently to vectors, matrices, and higher dimensional arrays.

· A+
· Analytica
· APL
· F
· FISh
· Fortran 90 and later versions

· IDL
· J
· K

· MATLAB
· NESL
· Nial
· PDL
· ZPL

· SAC
Aspect-oriented languages
· AspectC++
· AspectJ
· CaesarJ

· CLOS
· Compose*
· JAsCo
· ObjectTeams
Assembly languages
Assembly languages directly correspond to a machine language (see below) in order to allow machine code instructions to be written in a form understandable by humans. Assembly languages allow programmers to use symbolic addresses which are later converted to absolute addresses by the assembler. Most assemblers also allow for macros and symbolic constants
· ASEM-51 [1]
· a56 (for Motorola DSP56000 DSPs, DSP56k series)

· AKI (AvtoKod Ingenera, "engineer's autocode" for Minsk family of computers)

· ASCENT (ASsembler for CENTral Processor Unit of Control Data Corporation computer systems pre-COMPASS)

· ASPER (ASsembler for PERipheral Processor Units of Control Data Corporation computer systems pre-COMPASS)

· BAL (Basic AssembLer) - for IBM System/360 and later mainframe systems

· C-- (name used by a few languages that bring C language closer to Assembly)

· COMPASS (COMPrehensive ASSembler)

· D (multiparadigm curly-brace language with built-in inline assembler)

· Emu8086 [2] (x86 assembler and Intel's 8086 microprocessor emulator)

· FAP (FORTRAN Assembly Program, for IBM 709, 7090, 7094 mainframes)

· FASM (Flat Assembler; IA-32, IA-64)

· GAS (GNU Assembler)

· HLA (High Level Assembly)

· HLASM (High Level Assembler, for mainframes)

· Linoleum (for cross platform use)

· MACRO-11 (for DEC PDP-11)

· MACRO-20 (for DEC DECSYSTEM-20)

· MACRO-32 (for DEC VAX)

· MASM (Microsoft Macro Assembler)

· MI (Machine Interface, compile-time intermediate language)

· NASM (Netwide Assembler)

· NEAT (National's Electronic Autocoder Technique), for NCR computers, evolved into NEAT/3

· PAL-III (for DEC PDP-8)

· PASM (for Parrot virtual machine)

· RosASM (32 bit Assembler; The Bottom Up Assembler)

· Sphinx C-- (mixes Assembly commands with C-like structures)

· SSK (Sistema Simvolicheskogo Kodirovaniya, or "System of symbolic coding") for Minsk family of computers

· TASM(Turbo Assembler, Borland)

Authoring languages
· Bigwig (web design language)

· Coursewriter

· PILOT

· TUTOR

Command line interface languages
Command line interface (CLI) languages are also called batch languages, or job control languages. Examples:

· 4DOS (extended command-line shell for IBM PCs)

· bash (the "Bourne-Again" shell from GNU/FSF)

· Ch (C-compatible shell)

· CHAIN (Datapoint)

· CLIST (MVS Command List)

· csh (C-like shell from Bill Joy at UC Berkeley)

· DCL DIGITAL Command Language - standard CLI language for VMS (DEC, Compaq, HP)

· DOS batch language (standard CLI/batch language for the IBM PC running DR-DOS, MS-DOS, or PC-DOS before Windows)

· EA_QB_Command

· EXEC

· EXEC 2

· JCL (punch card-oriented batch control language for IBM/360 family mainframes)

· ksh (a standard Unix shell, written by David Korn)

· REXX
· sh (the standard Unix shell, written by Stephen Bourne)

· Winbatch (Windows batch file language)

· Windows PowerShell (Microsoft .NET-based CLI)

· zsh(a Unix shell)

Compiled languages
These are languages typically processed by compilers, though theoretically any language can be compiled or interpreted.

· Ada (multi-purpose language)

· ALGOL (extremely influential language design. The second high level language compiler.)

· SMALL Machine Algol Like Language

· BASIC (some dialects, including the first version of Dartmouth BASIC)

· C (one of the most widely-used procedural programming languages)

· C++

· C# (compiled into Intermediate Language bytecode)

· CLEO (Clear Language for Expressing Orders) used the compiler for the British Leo computers

· CLush (Lush)

· COBOL

· Common Lisp
· Corn
· D
· Delphi (Borland's Object Pascal development system)

· Eiffel (object-oriented language developed by Bertrand Meyer)

· Sather

· Ubercode

· Forth (professional systems, like VFX and SwiftForth)

· Fortran (the first high level, compiled, language, from IBM, John Backus, et al)

· Java (originally from Sun Microsystems; usually compiled into JVM bytecode although true native-code compiled versions exist)

· JOVIAL

· Nemerle (compiled into Intermediate Language bytecode)

· Objective-C
· Pascal (most implementations)

· ppC++

· Scheme (some implementations, e.g. Gambit)

· ML

· Standard ML

· Alice

· Ocaml
· Urq
· Visual Basic (from Microsoft)

· Visual Foxpro
· Visual Prolog
· WinDev
Concurrent languages
Message passing languages provide language constructs for concurrency. The predominant paradigm for concurrency in mainstream languages such as Java is shared memory concurrency based on monitors. Concurrent languages that make use of message passing have generally been inspired by CSP or the π-calculus, but have had little commercial success, except for Ada and Erlang. Ada is a multipurpose language and concurrent programming is only one option available.

· Ada (multi-purpose language)

· Afnix – concurrent access to data is protected automatically (previously called Aleph, but unrelated to Alef)

· Alef – concurrent language with threads and message passing, used for systems programming in early versions of Plan 9 from Bell Labs

· ChucK – domain specific programming language for audio, precise control over concurrency and timing

· Cilk – a concurrent C

· Cω – C Omega, a research language extending C#, uses asynchronous communication

· Concurrent Pascal (by Brinch-Hansen)

· Corn

· Curry

· E – uses promises, ensures deadlocks cannot occur

· Eiffel (through the SCOOP mechanism, Simple Concurrent Object-Oriented Computation)

· Erlang – uses asynchronous message passing with nothing shared

· Java
· Join Java – concurrent language based on Java

· X10

· Join-calculus

· Joule– dataflow language, communicates by message passing

· Limbo – relative of Alef, used for systems programming in Inferno (operating system)
· MultiLisp – Scheme variant extended to support parallelism

· occam – influenced heavily by Communicating Sequential Processes (CSP).

· occam-π – a modern variant of occam, which incorporates ideas from Milner's π-calculus

· Oz – multiparadigm language, supports shared-state and message-passing concurrency, and futures

· Mozart Programming System – multiplatform Oz

· Pict – essentially an executable implementation of Milner's π-calculus

· SALSA – actor language with token-passing, join, and first-class continuations for distributed computing over the Internet

· SR – research language

Curly-bracket languages
The curly bracket programming languages have a syntax that defines statement blocks using the "curly bracket" or "brace" characters { and }. All these languages descend from or are strongly influenced by C. Examples of curly-bracket languages include:

· ABCL/c+

· Alef
· Limbo
· AutoHotkey
· AWK
· C- developed circa 1970 at Bell Labs
· C shell (csh)

· C++
· C#
· Ch - embeddable C/C++ interpreter

· ChucK - audio programming language

· Cilk - concurrent C for multithreaded parallel programming

· Coyote - safer C variant to lower the likelihood of some common errors, e.g., buffer overflows

· Cyclone - safer C variant

· D - safer faster C/C++ variant

· DINO
· E
· ECMAScript
· ActionScript
· DMDScript
· E4X
· JavaScript
· JScript
· MDMscript
· Frink
· ICI
· Java
· Groovy
· Join Java
· X10
· LPC
· Nemerle - combines C# and ML features, provides syntax extension capabilities

· Perl
· PHP
· Pico

· Pike

· ppC++
· SuperCollider
· TorqueScript
· UnrealScript

· Windows PowerShell (Microsoft .NET-based CLI)

· Yorick
Dataflow languages
Dataflow languages rely on a (usually visual) representation of the flow of data to specify the program. Frequently used for reacting to discrete events or for processing streams of data. Examples of dataflow languages include:

· Hartmann pipelines
· LabVIEW
· Max
· Prograph
· Pure data
· VEE
· VisSim
Data-oriented languages
Data-oriented languages provide powerful ways of searching and manipulating the relations that have been described as entity relationship tables which map one set of things into other sets. Examples of data-oriented languages include:

· Clipper

· dBase a relational database access language

· M (an ANSI standard general purpose language with specializations for database work.)

· SQL

· Tutorial D, see also The Third Manifesto
· Visual Foxpro native rdbms engine, object oriented, functional, RAD

· Clarion

Data-structured languages
Data-structured languages are those where logic is structured in ways similar to their data. Such languages are generally well suited to reflection and introspection. There are three main types:

· Array-based
· List-based
· Stack-based
Assembly languages which statically link data inline with instructions can also be considered data-structured, in the most primitive way.

Declarative languages
Declarative languages describe a problem rather than defining a solution. Declarative programming stands in contrast to imperative programming via imperative programming languages, where serial orders (imperatives) are given to a computer. In addition to the examples given just below, all (pure) functional and logic-based programming languages are also declarative. In fact, "functional" and "logical" constitute the usual subcategories of the declarative category.

· ABSET
· Analytica
· Lustre
· MetaPost
· Prolog
· SQL
· XSL Transformations
Esoteric languages
An esoteric programming language is a programming language designed as a test of the boundaries of computer programming language design, as a proof of concept, or as a joke.

· Befunge
· Brainfuck
· FALSE
· INTERCAL
· Shakespeare
· Whitespace
Extension languages
Extension programming languages are languages intended to be embedded into another program and used to harness its features in extension scripts.

· AutoLISP (specific to AutoCAD)

· CAL
· Guile
· Visual Basic for Applications

· Lua
· REXX
Fourth-generation languages
Fourth-generation programming languages are high-level languages built around database systems. They are generally used in commercial environments.

· ABAP
· ADMINS
· BuildProfessional
· CorVision
· CSC's GraphTalk
· Focus
· GEMBASE
· Informix-4GL / Aubit-4GL
· LINC
· MAPPER (Unisys/Sperry) now part of BIS

· MARK-IV (Sterling/Informatics) now VISION:BUILDER of CA

· Oracle Express 4GL
· Revolution (not based on a database; still, the goal is to work at a higher level of abstraction than 3GLs)

· SAS
· Today
· Ubercode (VHLL, or very high level language)

· Visual DataFlex
· Visual Foxpro
 Functional languages
Functional programming languages define programs and subroutines as mathematical functions. Many so-called functional languages are "impure", containing imperative features. Not surprisingly, many of these languages are tied to mathematical calculation tools. Functional languages include:

· APL

· Charity
· Clean(purely functional)

· CodeSimian
· Curry
· Erlang
· F#
· Haskell (purely functional)

· J
· Joy
· Kite

· Lisp

· Dylan
· Logo
· Scheme
· Lush
· Maple
· Mathematica
· ML
· Standard ML
· Alice

· Ocaml
· Nemerle
· Opal
· OPS5
· Poplog
· Q
· REFAL
· Spreadsheets
Interactive mode languages
Interactive mode languages act as a kind of shell: expressions or statements can be entered one at a time, and the result of their evaluation is seen immediately.

· BASIC (some dialects)

· Forth
· M (an ANSI standard general purpose language)

· Maple
· ML
· Python
· Windows PowerShell (Microsoft .NET-based CLI)

Interpreted languages
Interpreted languages are programming languages which programs may be executed from source code form, by an interpreter.

· APL
· AutoIt scripting language

· BASIC (some dialects)

· CodeSimian
· Databus (later versions added optional compiling)

· Eiffel (via "Melting Ice Technology" in EiffelStudio)

· Forth (interactive shell only; otherwise compiled to native or threaded code)
· Frink

· J

· Lisp (early versions, pre-1962, and some experimental ones; production Lisp systems are compilers)

· Lua (programming language)

· Lush

· M (an ANSI standard general purpose language)

· Maple
· Pascal (early implementations)

· PostScript

· REXX
· The SDYPAIKSSVDAYSF Programming Language
· TorqueScript

· VBScript

· Windows PowerShell (Microsoft .NET-based CLI)

· Some scripting languages (below)

Iterative languages
Languages built around or offering generators
· Aldor

· Alphard
· CLU
· Eiffel, through "agents"

· Icon

· IPL-v

· Lua

· Lush

· Python

· Sather

List-based languages
List-based languages are a type of data-structured language that are based upon the list data structure.

· Joy

· Lisp

· Arc
· CodeSimian (like Lisp, but made with Java)

· Dylan

· Scheme

· Logo

· Lush

· Tcl

· TRAC

Little languages
Little languages serve a specialized problem domain.

· apply is a domain-specific language for image processing on parallel and conventional architectures

· awk can serve as a prototyping language for C, because the syntax is similar

· SQL has only a few keywords, and not all the constructs needed for a full programming language

Logic-based languages
Logic-based languages specify a set of attributes that a solution must have, rather than a set of steps to obtain a solution. Examples:

· ALF
· Curry
· Janus
· Leda

· Oz

· Mozart Programming System a multiplatform Oz

· Poplog
· Prolog (formulates data and the program evaluation mechanism as a special form of mathematical logic called Horn logic and a general proving mechanism called logical resolution)

· Visual Prolog (object-oriented Prolog extension)

· Mercury (based on Prolog)

· ROOP

Machine languages
Machine languages are directly executable by a computer's CPU. They are typically formulated as bit patterns, usually represented in octal or hexadecimal. Each group of npatterns (often 1 or more bytes) causes the circuits in the CPU to execute one of the fundamental operations of the hardware. The activation of specific electrical inputs (eg, CPU package pins for microprocessors), and logical settings for CPU state values, control the processor's computation. Individual machine languages are processor specific and are not portable. They are (essentially) always defined by the CPU developer, not by 3rd parties. The symbolic version, the processor's assembly language, is also defined by the developer, in most cases. Since processors come in families which are based on a shared architecture, the same basic assembly language style can often be used for more than one CPU. Each of the following CPUs served as the basis for a family of processors:

· ARM

· Intel 80x86
· IBM 360

· Intel 8008/8080/8085
· MIPS R2000|R3000

· MOS Tech 6502

· Motorola 680x

· Motorola 680x0

· National 32032

· Power Architecture- (POWER and PowerPC)

· StrongARM

· Sun SPARC, UltraSPARC

Macro languages
Macro languages embed small pieces of executable code inside a piece of free-form text.

· C preprocessor
· m4 (originally from AT&T, bundled with Unix)

· PHP

· SMX

· Stage 2
Scripting languages such as Tcl and ECMAScript (ActionScript, DMDScript, E4X, JavaScript, JScript) have been embedded into applications so that they behave like macro languages.

Metaprogramming languages
Metaprogramming is writing of programs that write or manipulate other programs (or themselves) as their data or that do part of the work that is otherwise done at run time during compile time. In many cases, this allows programmers to get more done in the same amount of time as they would take to write all the code manually.

· Forth

· Lisp

· Maude
· Nemerle
Multiparadigm languages
Multiparadigm languages support more than one programming paradigm. They allow a program to use more than one programming style. The goal is to allow programmers to use the best tool for a job, admitting that no one paradigm solves all problems in the easiest or most efficient way.

· Ada (concurrent, distributed, generic (template metaprogramming), imperative, object-oriented (class-based))

· ALF (functional, logic)

· APL (functional, imperative)

· BETA (functional, imperative, object-oriented (class-based))

· C++ (generic, imperative, object-oriented (class-based))

· ChucK (imperative, object-oriented, time-based, concurrent, on-the-fly)

· Common Lisp (functional, imperative, object-oriented (class-based), aspect-oriented (user may add further paradigms, e.g., logic))

· Corn (concurrent, generic, imperative, object-oriented (class-based))

· Curry (concurrent, functional, logic)

· D (generic, imperative, object-oriented (class-based))

· Dylan (functional, object-oriented (class-based))

· ECMAScript (functional, imperative, object-oriented (prototype-based))

· ActionScript

· DMDScript

· E4X

· JavaScript

· JScript

· Eiffel (imperative, object-oriented (class-based), generic)

· J (functional, imperative, object-oriented (class-based))

· LabVIEW (dataflow, visual)

· Lasso (macro, object-oriented (prototype-based), procedural, scripting)

· Lava (object-oriented (class-based), visual)

· Leda (functional, imperative, logic, object-oriented (class-based))

· Lua (functional, imperative, object-oriented (prototype-based))

· Maple

· Nemerle (functional, object-oriented (class-based), imperative, metaprogramming)

· Objective Caml (functional, imperative, object-oriented (class-based))

· Oz (functional (evaluation: eager, lazy), logic, constraint, imperative, object-oriented (class-based), concurrent, distributed)

· Mozart Programming System (multiplatform Oz)

· Object Pascal (imperative, object-oriented (class-based))

· Perl (imperative, functional (can't be purely functional), object-oriented, class-oriented, aspect-oriented (through modules))

· PHP (imperative, object-oriented)

· Pliant (functional, imperative, object-oriented (class-based))

· Poplog (functional, imperative, logic)

· ppC++ (imperative, object-oriented (class-based))

· Prograph (dataflow, object-oriented (class-based), visual)

· Python (functional, object-oriented (class-based))

· REBOL (functional, object-oriented (prototype-based))

· ROOP (imperative, logic, object-oriented (class-based), rule-based)

· Ruby(functional, object-oriented (class-based))

· SISAL (concurrent, dataflow, functional)

· Spreadsheets (functional, visual)

· Tcl (functional, imperative, object-oriented (class-based))

Numerical analysis
· Algae

· Seneca an Oberon variant

Non-English-based languages
Non-English-based programming languages do not use English keywords.

· ARLOGO - Arabic

· Chinese BASIC - Chinese

· Fjölnir - Icelandic

· HPL - Hebrew

· Lexico - Spanish
· Rapira - Russian
· Glagol - Russian

· var'aq - Klingon

Object-oriented class-based languages
Object-oriented programming languages support 'data & method' objects. The data structures are defined in object classes, which also include executable code (methods). Thus the effects of a change to the code remain localized. Object classes can be extended by inheritance in most of these languages. Examples:

· Actor

· Ada 95 (multi-purpose language)

· BETA

· C++
· C#
· Chrome programming language
· ChucK
· Common Lisp
· Corn
· D
· Delphi
· Dylan
· ECMAScript a.k.a. ActionScript, DMDScript, JavaScript, JScript (originally from Sun and Netscape)

· Eiffel

· Sather
· Ubercode
· F-Script

· Fortran 2003

· Fortress

· J
· Java (closely related to C++, but with built-in garbage collection, removal of unsafe features and some advanced ones, compilation to universally runnable 'bytecode', protective sandbox for security -- originally from Sun Microsystems)

· Groovy

· Join Java

· X10

· Kite

· Lava

· Lua

· Modula-2 (data abstraction, information hiding, strong typing, full modularity -- from N Wirth)

· Modula-3 (added more object oriented features to Modula-2)

· Objective Modula-2 (Modula-2 with Smalltalk message passing, following the Objective-C object model)

· Moto

· Nemerle
· NetRexx

· Oberon-2 (full object orientation equivalence in an original, strongly typed, Wirthian manner)

· Object Pascal

· Object REXX
· Objective-C(a superset of C adding a Smalltalk derived object model and message passing syntax)

· Objective Caml
· Oz
· Mozart Programming System
· Perl 5
· PHP
· Pliant
· PowerBuilder
· ppC++
· Prograph
· Python (object oriented interpretive language)

· Revolution (programmer does not get to pick the objects)

· Ruby

· Simula (the first object oriented language, from Norway)

· Smalltalk (pure object-orientation, originally from Xerox PARC)

· Bistro
· F-Script
· Little Smalltalk
· Squeak
· VisualAge
· VisualWorks
· SuperCollider
· VBScript (Microsoft Office 'macro scripting' language)

· Visual Basic
· Visual DataFlex
· Visual Foxpro
· Visual Prolog
· XOTcl
Object-oriented prototype-based languages
Prototype-based languages are object-oriented languages where the distinction between classes and instances have been removed:

· ABCL/1

· ABCL/R

· ABCL/R2

· ABCL/c plus
· ActionScript

· Agora
· Cecil
· CodeSimian
· ECMAScript

· ActionScript
· DMDScript
· E4X
· JavaScript (first named Mocha, then LiveScript)

· JScript
· eToys in Squeak

· Io

· Lisaac

· MOO

· NewtonScript

· Maple

· Obliq

· REBOL

· Self (the first prototype-based language, derived from Smalltalk)

· Slate

· TADS

Off-side rule languages
Off-side rule languages are those where blocks are formed, indicated, by their indentation.

· ISWIM, the abstract language that introduced the rule

· ABC, Python's parent

· Python
· Miranda, Haskell's parent

· Haskell
· Curry
· Occam

· Pliant

Procedural languages
Procedural programming languages are based on the concept of the unit and scope (the data viewing range of an executable code statement). A procedural program is composed of one or more units or modules, either user coded or provided in a code library; each module is composed of one or more procedures, also called a function, routine, subroutine, or method, depending on the language. Examples of procedural languages include:

· Ada (multi-purpose language)

· ALGOL (extremely influential language design. The second high level language compiler.)

· SMALL Machine Algol Like Language

· BASIC (BASICs are innocent of most modularity in (especially) versions prior to about 1990)

· BLISS

· C

· C++ (C with objects + much else)

· C# (from Microsoft, a next generation Java/C++ like language)

· ChucK (C/Java-like syntax, with new syntax elements for time and parallelism)

· ColdFusion

· COBOL

· Component Pascal (an Oberon-2 variant)

· D

· Delphi

· ECMAScript
· ActionScript
· DMDScript
· E4X
· JavaScript (first named Mocha, then LiveScript)

· JScript

· Eiffel

· Fortran (better modularity in later Standards)

· F

· FPC Pascal (Pascal dialect)

· HyperTalk

· Java

· Groovy
· Join Java

· JOVIAL

· Lasso

· Modula-2 (fundamentally based on modules)

· Oberon-1 and Oberon-2 (improved, smaller, faster, safer follow-ons for Modula-2)

· Component Pascal

· Lagoona

· Seneca

· MATLAB

· M (more modular in its first release than a language of the time should have been; the standard has become still more modular since then)

· Nemerle

· Occam

· Pascal (successor to Algol60 and predecessor of Modula-2)

· Object Pascal

· Perl

· PL/C

· PL/I (large general purpose language, originally for IBM mainframes)

· Rapira

· Seed7

· VBScript

· Visual Basic

· Visual Foxpro

Reflective languages
Reflective languages let programs examine and possibly modify their high level structure at runtime. This is most common in high-level virtual machine programming languages like Smalltalk, and less common in lower-level programming languages like C. Languages and platforms supporting reflection:

· Aspect-oriented

· Befunge

· ChucK

· CodeSimian

· Curl

· ECMAScript

· ActionScript
· DMDScript

· E4X

· JavaScript

· JScript

· Eiffel

· Forth

· Java

· Java Virtual Machine
· Groovy

· Join Java
· X10

· Maple

· Lisp

· Dylan
· Logo

· Scheme
· Lua

· Maude system

· .NET Common Language Runtime

· Objective-C

· Objective Modula-2

· Perl

· PHP
· Pico

· Pliant

· Poplog

· POP-11

· Prolog

· Python

· REBOL

· Ruby

· Smalltalk (pure object-orientation, originally from Xerox PARC)

· Bistro

· F-Script

· Little Smalltalk

· Self

· Squeak

· VisualAge

· VisualWorks

· Snobol

· Tcl

· XOTcl

Rule-based languages
Rule-based languages instantiate rules when activated by conditions in a set of data. Of all possible activations, some set will be selected and the statements belonging to those rules will be executed. Examples of rule-based languages include:

· Clips

· Constraint Handling Rules

· Jess

· OPS5

· Prolog

Scripting languages
"Scripting language" has two apparently different, but in fact similar meanings.

In a traditional sense, scripting languages are designed to automate frequently used tasks that usually involve calling or passing commands to external programs.

Many complex application programs allow users to implement custom functions by providing them with built-in languages. Those which are of interpretive type, are often called scripting languages.

More recently many of these applications have chosen to "build in" traditional scripting languages, such as Perl or Visual Basic, but there are quite a few "native" scripting languages still in use.

Many scripting languages are compiled to bytecode and then this (usually) platform independent bytecode is run through a virtual machine (compare to Java).

· AWK

· AppleScript
· BeanShell
· Ch (Embeddable C/C++ interpreter)

· CLIST

· ColdFusion

· ECMAScript

· ActionScript

· DMDScript
· E4X

· JavaScript (first named Mocha, then LiveScript)

· JScript

· EXEC
· EXEC 2
· F-Script

· Frink

· Game Maker Language (GML)

· ICI

· Io

· JASS

· Java

· Groovy
· Join Java
· Lua

· MAXScript
· MEL

· Mondrian

· Perl

· PHP (intended for Web servers)

· Python

· REXX

· Ruby

· Sed

· Tcl

· TorqueScript

· Revolution

· VBScript

· Windows PowerShell (Microsoft .NET-based CLI)

· Many shell command languages such as the UNIX shell or DCL on VMS have powerful scripting capabilities.

Stack-based languages
Stack-based languages are a type of data-structured language that are based upon the stack data structure.

· colorForth
· Forth
· Factor
· Poplog via its implementation language POP-11

· PostScript

· Urq

 Synchronous languages
Synchronous programming languages are optimized for programming reactive systems, systems that are often interrupted and must respond quickly. Many such systems are also called realtime systems, and are found often in embedded uses. Examples:

· Argos

· Averest

· Esterel

· LEA

· Lustre

· Signal

· SyncCharts

Syntax handling languages
· GNU bison (FSF's version of Yacc)

· GNU Flex (FSF's version of Lex)

· Lex (Lexical analysis, from Bell Labs)

· M4

· yacc (yet another compiler compiler, from Bell Labs)

· javacc

Visual languages
Visual programming languages let users specify programs in a two-(or more)-dimensional way, instead of as one-dimensional text strings, via graphic layouts of various types.

· CODE

· Eiffel (program design from BON or UML diagrams, with back-and-forth facilities (round-trip engineering) through EiffelStudio)

· Fabrik

· Hyperpascal

· LabVIEW

· Lava

· Limnor

· Mindscript — software visualization and development environment, open source

· Max

· Pict

· Prograph

· Pure Data

· Quartz Composer

· Simulink

· Spreadsheets

· Subtext

· Tinkertoy

· VEE

· VisSim

· VVVV

Some dataflow languages are also visual languages.

Wirth languages
Computer scientist Niklaus Wirth designed and implemented several influential languages.

· Algol W

· Modula

· Modula-2 (and Modula 3, etc. variants)

· Obliq Modula 3 variant

· Oberon (Oberon and Oberon-2)

· Component Pascal

· Lagoona

· Seneca

· Pascal

· Object Pascal (original name for Borland Delphi language)

XML-based languages
These are languages based on or that operate on XML. Although the big-boy equivalents of Oracle/PostgreSQL/MSSQL don't yet exist for XML, there are languages to navigate through it and its more tree-oriented structure.

· ECMAScript E4X

· Jelly

· XPath

· XQuery

· XSLT

· Cω
Computer science

Computer science, or computing science, is the study of the theoretical foundations of information and computation and their implementation and application in computer systems. Computer science has many sub-fields; some emphasize the computation of specific results (such as computer graphics), while others (such as computational complexity theory) relate to properties of computational problems. Still others focus on the challenges in implementing computations. For example, programming language theory studies approaches to describing computations, while computer programming applies specific programming languages to solve specific computational problems with solutions. A further subfield, human-computer interaction, focuses on the challenges in making computers and computations useful, usable and universally accessible to people.

History

The history of computer science predates the invention of the modern digital computer by many years. Machines for calculating fixed numerical tasks, such as the abacus, have existed since antiquity. Wilhelm Schickard built the first mechanical calculator in 1623. Charles Babbage designed a difference engine in Victorian times, and around 1900 the IBM corporation sold punch-card machines However all of these machines were constrained to perform a single task, or at best, some subset of all possible tasks.

Prior to the 1950s, the term computer referred to a human clerk who performed calculations. Early researchers in what came to be called computer science, such as Kurt Gödel, Alonzo Church, and Alan Turing, were interested in the question of computability: what things can be computed by a human clerk who simply follows a list of instructions with paper and pencil, for as long as necessary, and without ingenuity or insight?[Part of the motivation for this work was the desire to develop computing machines that could automate the often tedious and error-prone work of a human computer. Their key insight was to construct universal computing systems capable (in theory) of performing all possible computable tasks, and thus generalising all previous dedicated-task machines into the single notion of the universal computer. The creation of the concept of a universal computer marked the birth of modern computer science
During the 1940s, as newer and more powerful computing machines were developed, the term computer came to refer to the machines rather than their human predecessors. As it became clear that computers could be used for more than just mathematical calculations, the field of computer science broadened to study computation in general. Computer science began to be established as a distinct academic discipline in the 1960s, with the creation of the first computer science departments and degree programs. Since practical computers became available, many applications of computing have become distinct areas of study in their own right.

Major achievements

German military used the Enigma machine during World War II for communication they thought to be secret. The large-scale decryption of Enigma traffic at Bletchley Park was an important factor that contributed to Allied victory in WWII.
Despite its relatively short history as a formal academic discipline, computer science has made a number of fundamental contributions to science and society. These include:

Applications within computer science

· A formal definition of computation and computability, and proof that there are computationally unsolvable and intractable problems.

· The concept of a programming language, a tool for the precise expression of methodological information at various levels of abstraction

· The theory and practice of compilers for translating between programming languages

Applications outside of computing

· Sparked the Digital Revolution which lead to the current Information Age

· In cryptography, breaking the Enigma machine was an important factor contributing to the Allied victory in World War II
· Scientific computing enabled advanced study of the mind and mapping the human genome was possible with Human Genome Project. Distributed computing projects like Folding@home explore protein folding

· Created powerful tools such as the PC, the internet, and search engines

Relationship with other fields
Despite its name, much of computer science does not involve the study of computers themselves. In fact, the renowned computer scientist Edsger Dijkstra is often quoted as saying, "Computer science is no more about computers than astronomy is about telescopes." The design and deployment of computers and computer systems is generally considered the province of disciplines other than computer science. For example, the study of computer hardware is usually considered part of computer engineering, while the study of commercial computer systems and their deployment is often called information technology or information systems. Computer science is sometimes criticized as being insufficiently scientific, a view espoused in the statement "Science is to computer science as hydrodynamics is to plumbing" credited to Stan Kelly-Bootle and others. However, there has been much cross-fertilization of ideas between the various computer-related disciplines. Computer science research has also often crossed into other disciplines, such as artificial intelligence, cognitive science, physics.

Computer science is considered by some to have a much closer relationship with mathematics than many scientific disciplines. Early computer science was strongly influenced by the work of mathematicians such as Kurt Gödel and Alan Turing, and there continues to be a useful interchange of ideas between the two fields in areas such as mathematical logic, category theory, domain theory, and algebra.

The relationship between computer science and software engineering is a contentious issue, which is further muddied by disputes over what the term "software engineering" means, and how computer science is defined. Some people believe that software engineering is a subset of computer science. Others, taking a cue from the relationship between other engineering and science disciplines, believe that the principal focus of computer science is studying the properties of computation in general, while the principal focus of software engineering is the design of specific computations to achieve practical goals, making them different disciplines. This view is promulgated by (among others) David Parnas.Still others maintain that software cannot be engineered at all[
Fields of computer science
Computer science searches for concepts and proofs to explain and describe computational systems of interest. It is a science; because given a system of interest, it performs /analysis/ and seeks general principles to explain that system]. As with all sciences, these theories can then be utilised to synthesize practical engineering applications, which in turn may suggest new systems to be studied and analysed. While the ACM Computing Classification System can be used to split computer science up into different topics of fields a more descriptive break down follows:

Mathematical foundations
Mathematical logic
Boolean logic and other ways of modeling logical queries; the uses and limitations of formal proof methods

Number theory

Theory of proofs and heuristics for finding proofs in the simple domain of integers. Used in cryptography as well as a test domain in artificial intelligence.

Graph theory

Foundations for data structures and searching algorithms.

Type Theory

Formal analysis of the types of data, and the use of these types to understand properties of programs — especially program safety.

Theory of computation
Automata theory

Different logical structures for solving problems.

Computability theory

What is calculable with the current models of computers. Proofs developed by Alan Turing and others provide insight into the possibilities of what may be computed and what may not.

Computational complexity theory

Fundamental bounds (especially time and storage space) on classes of computations.

Quantum computing theory

Algorithms and data structures
Analysis of algorithms

Time and space complexity of algorithms.

Algorithms

Formal logical processes used for computation, and the efficiency of these processes.

Data structures

The organization of and rules for the manipulation of data.

Programming languages and compilers
Compilers

Ways of translating computer programs, usually from higher level languages to lower level ones.

Programming languages

Formal language paradigms for expressing algorithms, and the properties of these languages (e.g. what problems they are suited to solve).

Concurrent, parallel, and distributed systems
Concurrency

The theory and practice of simultaneous computation; data safety in any multitasking or multithreaded environment.

Distributed computing
Computing using multiple computing devices over a network to accomplish a common objective or task and there by reducing the latency involved in single processor contributions for any task.

Parallel computing
Computing using multiple concurrent threads of execution.

Software engineering
Formal methods

Mathematical approaches for describing and reasoning about software designs.

Software engineering

The principles and practice of designing, developing, and testing programs, as well as proper engineering practices.

Reverse engineering

The application of the scientific method to the understanding of arbitrary existing software

Algorithm design

Using ideas from algorithm theory to creatively design solutions to real tasks

Computer programming

The practice of using a programming language to implement algorithms

Computer architecture
Computer architecture

The design, organization, optimization and verification of a computer system, mostly about CPUs and Memory subsystem (and the bus connecting them).

Computer organization

The implementation of computer architectures, in terms of descriptions of their specific electrical circuitry

Operating systems

Systems for managing computer programs and providing the basis of a useable system.

Communications
Game theory

Recently game theory has drawn attention from computer scientists because of its use in artificial intelligence and cybernetics.

Networking

Algorithms and protocols for reliably communicating data across different shared or dedicated media, often including error correction.

Cryptography

Applies results from complexity, probability and number theory to invent and break codes.

Computer Audio

Algorithms and data structures for the creation, manipulation, storage, and transmission of digital audio recordings. Also important in voice recognition applications.

Databases
Relational databases

Data mining

Study of algorithms for searching and processing information in documents and databases; closely related to information retrieval.

Artificial intelligence
Artificial intelligence

The implementation and study of systems that exhibit an autonomous intelligence or behaviour of their own.

Automated reasoning

Solving engines, such as used in Prolog, which produce steps to a result given a query on a fact and rule database.

Robotics

Algorithms for controlling the behavior of robots.

Computer vision

Algorithms for identifying three dimensional objects from a two dimensional picture.

Machine learning

Automated creation of a set of rules and axioms based on input.

Soft computing
A collective term for techniques used in solving specific problems. See the main article.

Computer graphics
Computer graphics

Algorithms both for generating visual images synthetically, and for integrating or altering visual and spatial information sampled from the real world.

Image processing

Determining information from an image through computation.

Human-Computer Interaction
Human computer interaction

The study of making computers and computations useful, usable and universally accessible to people, including the study and design of computer interfaces through which people use computers.

Scientific computing
Numerical algorithms

Numerical solution of mathematical problems such as root-finding, integration, the solution of ordinary differential equations and the approximation of special functions.

Symbolic mathematics

Manipulation and solution of expressions in symbolic form, also known as Computer algebra.

Computational physics

Numerical simulations of large non-analytic systems

Computational chemistry

Computational modelling of theoretical chemistry in order to determine chemical structures and properties

Bioinformatics

The use of computer science to maintain, analyse, store biological data and to assist in solving biological problems such as Protein folding, function prediction and Phylogeny.

Computational neuroscience

Computational modelling of real brains

Cognitive Science

Computational modelling of real minds

Computer science education
Some universities teach computer science as a theoretical study of computation and algorithmic reasoning. These programs often feature the theory of computation, analysis of algorithms, formal methods, concurrency theory, databases, computer graphics and systems analysis, among others. They typically also teach computer programming, but treat it as a vessel for the support of other fields of computer science rather than a central focus of high-level study.

Other colleges and universities, as well as secondary schools and vocational programs that teach computer science, emphasize the practice of advanced computer programming rather than the theory of algorithms and computation in their computer science curricula. Such curricula tend to focus on those skills that are important to workers entering the software industry. The practical aspects of computer programming are often referred to as software engineering. However, there is a lot of disagreement over what the term "software engineering" actually means, and whether it is the same thing as programming.

Design of computers
In recognition of the high error rate in the calculation of mathematical tables, Babbage wanted to find a method by which they could be calculated mechanically, removing human sources of error. Three different factors seem to have influenced him: a dislike of untidiness; his experience working on logarithmic tables; and existing work on calculating machines carried out by Wilhelm Schickard, Blaise Pascal, and Gottfried Leibniz. He first discussed the principles of a calculating engine in a letter to Sir Humphry Davy in 1822.

Part of Babbage's difference engine, assembled after his death by Babbage's son, using parts found in his laboratory.

Babbage's engines were among the first mechanical computers. His engines were not actually completed, largely because of funding problems and personality issues. Babbage realized that a machine could do the work better and more reliably than a human being. Babbage controlled building of some steam-powered machines that more or less did their job; calculations could be mechanized to an extent. Although Babbage's machines were mechanical monsters their basic architecture was astonishingly similar to a modern computer. The data and program memory were separated, operation was instruction based, control unit could make conditional jumps and the machine had a separate I/O unit.

Difference engine
In Babbage’s time numerical tables were calculated by humans called ‘computers’. At Cambridge he saw the high error rate of the people computing the tables and thus started his life’s work in trying to calculate the tables mechanically, removing all human error. He began in 1822 with what he called the difference engine, made to compute values of polynomial functions.

Unlike similar efforts of the time, Babbage's difference engine was created to calculate a series of values automatically. By using the method of finite differences, it was possible to avoid the need for multiplication and division.

The London Science Museum's replica Difference Engine, built from Babbage's design.

The first difference engine needed around 25,000 parts of a combined weight of fifteen tons standing eight feet high. Although he received much funding for the project, he did not complete it. He later designed an improved version, "Difference Engine No. 2". This was not constructed at the time, but was built using his plans in 1989-1991, to 19th century tolerances, and performed its first calculation at the London Science Museum bringing back results to 31 digits, far more than the average modern pocket calculator.

Printer
Babbage designed a printer for the second difference engine which had some remarkable features; it supported line-wrapping, variable column and row width, and programmable output formatting.

Analytical engine
Soon after the attempt at making the difference engine crumbled, Babbage started designing a different, more complex machine called the Analytical Engine. The engine is not a single physical machine but a succession of designs that he tinkered with until his death in 1871. The main difference between the two engines is that the Analytical Engine could be programmed using punch cards, an idea unheard of in his time. He realized that programs could be put on similar cards so the person had to only create the program initially, and then put the cards in the machine and let it run. The analytical engine was also proposed to use loops of Jacquard's punched cards to control a mechanical calculator, which could formulate results based on the results of preceding computations. This machine was also intended to employ several features subsequently used in modern computers, including sequential control, branching, and looping, and would have been the first mechanical device to be Turing-complete.

Ada Lovelace, an impressive mathematician and one of the few people who fully understood Babbage's vision, created a program for the Analytical Engine. Had the Analytical Engine ever actually been built, her program would have been able to calculate a numerical sequence known as the Bernoulli numbers. Based on this work, Ada is now credited as being the first computer programmer and, in 1979, a contemporary programming language was named Ada in her honour. Shortly afterward, in 1981, a satirical article by Tony Karp in Datamation magazine described the Babbage programming language, the "language of the future".

Diversity of computer science

Because of the youth of the discipline, there are many alternative definitions of computer science. Computer science can be seen either as a science, a form of mathematics, or a new discipline that cannot be categorized into pre-existing frameworks. Most people who study computer science go on to become programmers, leading some to believe that the discipline is the study of software and programming. However most computer scientists are interested in innovative or theoretical aspects of the field that go well beyond programming, and deeply into computability.

Core problems in defining computer science
A major issue is deciding exactly what it is that computer science covers. One of the major areas of contention surrounds the issue of computability. Computer science can for example be defined as the study of what can be computed (or automated) and how it can be computed. There is a dispute over whether this is defined in a mathematical or a physical (mechanical) context. In essence, mathematics shows us how to compute, yet the mechanical provides what can be computed.

An adjunct to this issue is how to define a computer in this context. It could be a real physical machine with inherent weaknesses and limitations, in which case those weaknesses are a valid concern for study. Or, it could be an idealized or theoretical machine in which case practical limitations such as memory space are not important.

Another issue is whether computer science is scientific. Most sciences are concerned with the study of the natural world, whereas computer science studies abstractions and artificial objects. However, artificial objects (such as a digital computer) are usually considered by philosophers as part of the natural world (which is opposed to the "supernatural world").

Youth
Richard Feynmann pointed out that computer science is young, and therefore more volatile than other sciences:

Computer science is not as old as physics; it lags by a couple of hundred years. However, this does not mean that there is significantly less on the computer scientist's plate than on the physicist's: younger it may be, but it has had a far more intense upbringing!

Alternative definitions
ACM definition
According to the Association for Computing Machinery, "The discipline of computing is the systematic study of algorithmic processes that describe and transform information, their theory, analysis, design, efficiency, implementation, and application. The fundamental question underlying all of computing is, 'What can be (efficiently) automated?'" (Computing as a discipline, Communications of the ACM, January 1989). The ACM's term "computing" is defined as "computer science and engineering".

Computer science and other fields
The similarity or difference between computer science and computer engineering and software engineering is also an area of contention. Traditionally, the practice of engineering has included the application of knowledge from the physical sciences to help in the design of products and systems, and thus the study of theories of computation has not generally been included within the scope of engineering. However, the growing ubiquity of computers has fueled a change in the scope of modern engineering. For example, the above ACM definition includes computer engineering within its scope, and there are embedded systems courses in some schools of electrical engineering that include the study of models of computation.The origins of computer science lie heavily in mathematics, but unlike mathematics, computer science is often held to be an experimental discipline.

Computer science may be a misnomer
"Science"
Some claim that computer science is not an experimental science (but this is controversial), and (as with fields such as political science and, indeed, all the social sciences) some have considered the name a misnomer. Scientific computing, though it sounds similar, is only a tangentially related field involving computer programming for hard- and soft-science applications. Despite these seeming ambiguities, the name computer science has remained both common and unambiguously well-understood within the field it names.

"Computers"
The name computer science immediately gives the impression that the field is the study of computers, the everyday machines that run programs and perform computations. Nonetheless, some have argued that the field is both wider and more abstract than this name would suggest. َAs Edsger Dijkstra mentions: “Computer Science is no more about computers than astronomy is about telescopes”. Arguably, the comment of Dijkstra refers to a narrow definition of computer (e.g. a digital computer). However, if a computer is defined as the any physical system or mathematical model in which a computation occures, then the definition of CS as the science that studies computers is not as narrow as the science that studies digital computers.

Alternative nomenclature for computer science
Alternative names such as computing science or computation science have been proposed, but the traditional name remains the most common.

In French, the discipline is named informatique, in German Informatik, in Spanish informática, in Dutch, Italian and Romanian informatica, in Polish informatyka, in Russian информатика and in Greek Πληροφορική. However, informatics in English is not directly synonymous with computer science; it is used to explicitly encompass the study of both natural and artificial systems that store process and communicate information - and this use was introduced to address (or at least sidestep) the difficulties discussed in this article.

Danish scientist Peter Naur thus suggested the term datalogy, to reflect the fact that the scientific discipline revolves around data and data treatment, while not necessarily involving computers. The first scientific institution applying the datalogy term was DIKU, the Department of Datalogy at the University of Copenhagen, founded in 1969, with Peter Naur being the first professor in datalogy. The term is used mainly in the Nordic countries.

In the early days of computing, a number of terms for the practitioners of the field of computing were suggested in the Communications of the ACM 1(4):p.6 -- turingineer, turologist, flow-charts-man, applied meta-mathematician, and applied epistemologist. Three months later in the same journal, comptologist was suggested, followed next year (CACM 2(1):p.4) by hypologist. Recently the term computics has been suggested (IEEE Computer 28(12):p.136).

www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

