
1

Privacy-Preserving Updates to Anonymous and
Confidential Databases
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Abstract—Suppose Alice owns a k-anonymous database and needs to determine whether her database, when inserted with a tuple
owned by Bob, is still k-anonymous. Also, suppose that access to the database is strictly controlled, because for example data are
used for certain experiments that need to be maintained confidential. Clearly, allowing Alice to directly read the contents of the tuple
breaks the privacy of Bob (e.g., a patient’s medical record); on the other hand, the confidentiality of the database managed by Alice
is violated once Bob has access to the contents of the database. Thus, the problem is to check whether the database inserted with
the tuple is still k-anonymous, without letting Alice and Bob know the contents of the tuple and the database respectively. In this
paper, we propose two protocols solving this problem on suppression-based and generalization-based k-anonymous and confidential
databases. The protocols rely on well-known cryptographic assumptions, and we provide theoretical analyses to proof their soundness
and experimental results to illustrate their efficiency.

Index Terms—Privacy, anonymity, data management, secure computation.
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1 INTRODUCTION
It is today well understood that databases represent an
important asset for many applications and thus their
security is crucial. Data confidentiality is particularly
relevant because of the value, often not only monetary,
that data have. For example, medical data collected by
following the history of patients over several years may
represent an invaluable asset that needs to be adequately
protected. Such a requirement has motivated a large
variety of approaches aiming at better protecting data
confidentiality and data ownership. Relevant approaches
include query processing techniques for encrypted data
and data watermarking techniques. Data confidentiality
is not however the only requirement that needs to be
addressed.

Today there is an increased concern for privacy. The
availability of huge numbers of databases recording a
large variety of information about individuals makes it
possible to discover information about specific individ-
uals by simply correlating all the available databases.
Although confidentiality and privacy are often used as
synonyms, they are different concepts: data confiden-
tiality is about the difficulty (or impossibility) by an
unauthorized user to learn anything about data stored
in the database. Usually, confidentiality is achieved by
enforcing an access policy, or possibly by using some
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cryptographic tools. Privacy relates to what data can be
safely disclosed without leaking sensitive information
regarding the legitimate owner [5]. Thus, if one asks
whether confidentiality is still required once data have been
anonymized, the reply is yes if the anonymous data have a
business value for the party owning them or the unauthorized
disclosure of such anonymous data may damage the party
owning the data or other parties. (Note that under the con-
text of this paper, the term anonymized or anonymiza-
tion means identifying information is removed from the
original data to protect personal or private information.
There are many ways to perform data anonymization.
We only focus on the k-anonymization approach [28],
[32].)

To better understand the difference between confiden-
tiality and anonymity, consider the case of a medical
facility connected with a research institution. Suppose
that all patients treated at the facility are asked before
leaving the facility to donate their personal health care
records and medical histories (under the condition that
each patient’s privacy is protected) to the research insti-
tution, which collects the records in a research database.
To guarantee the maximum privacy to each patient, the
medical facility only sends to the research database an
anonymized version of the patient record. Once this
anonymized record is stored in the research database,
the non-anonymized version of the record is removed
from the system of the medical facility. Thus the research
database used by the researchers is anonymous. Suppose
that certain data concerning patients are related to the
use of a drug over a period of four years and certain
side-effects have been observed and recorded by the
researchers in the research database. It is clear that these
data (even if anonymized) need to be kept confidential
and accessible only to the few researchers of the insti-
tution working on this project, until further evidence is
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found about the drug. If these anonymous data were to
be disclosed, privacy of the patients would not be at risk;
however the company manufacturing the drug may be
aversely affected.

Recently, techniques addressing the problem of pri-
vacy via data anonymization have been developed, thus
making it more difficult to link sensitive information
to specific individuals. One well-known technique is k-
anonymization [28], [32]. Such technique protects pri-
vacy by modifying the data so that the probability of
linking a given data value, for example a given disease,
to a specific individual is very small. So far, the prob-
lems of data confidentiality and anonymization have
been considered separately. However, a relevant problem
arises when data stored in a confidential, anonymity-
preserving database need to be updated. The operation
of updating such a database, e.g., by inserting a tuple
containing information about a given individual, intro-
duces two problems concerning both the anonymity and
confidentiality of the data stored in the database and
the privacy of the individual to whom the data to be
inserted are related: (i) Is the updated database still privacy-
preserving? and (ii) Does the database owner need to know
the data to be inserted? Clearly, the two problems are
related in the sense that they can be combined into the
following problem: can the database owner decide if the
updated database still preserves privacy of individuals
without directly knowing the new data to be inserted?
The answer we give in this work is affirmative.

It is important to note that assuring that a database
maintains the privacy of individuals to whom data are
referred is often of interest not only to these individu-
als, but also to the organization owning the database.
Because of current regulations, like HIPAA [19], organi-
zations collecting data about individuals are under the
obligation of assuring individual privacy. It is thus in
their interest to check that data that are entered in their
databases do not violate privacy, and to perform such
a verification without seeing any sensitive data of an
individual.
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Fig. 1. Anonymous Database System

1.1 Problem Statement

Figure 1 captures the main participating parties in our
application domain. We assume that the information
concerning a single patient (or data provider) is stored
in a single tuple, and DB is kept confidentially at the
server. The users in Figure 1 can be treated as medical
researchers who have the access to DB. Since DB is
anonymous, the data provider’s privacy is protected
from these researchers. (Note that to follow the tradi-
tional convention, in Section 4 and later sections, we use
Bob and Alice to represent the data provider and the
server respectively.)

As mentioned before, since DB contains privacy-
sensitive data, one main concern is to protect the privacy
of patients. Such task is guaranteed through the use of
anonymization. Intuitively, if the database DB is anony-
mous, it is not possible to infer the patients’ identities
from the information contained in DB. This is achieved
by blending information about patients. See Section 3 for
a precise definition. Suppose now that a new patient has
to be treated. Obviously, this means that the database has
to be updated in order to store the tuple t containing the
medical data of this patient.

The modification of the anonymous database DB can
be naively performed as follows: the party who is man-
aging the database or the server simply checks whether
the updated database DB∪{t} is still anonymous. Under
this approach, the entire tuple t has to be revealed to
the party managing the database server, thus violating
the privacy of the patient. Another possibility would
be to make available the entire database to the patient
so that the patient can verify by himself/herself if the
insertion of his/her data violates his/her own privacy.
This approach however requires making available the
entire database to the patient thus violating data confi-
dentiality.

In order to devise a suitable solution, several problems
need to be addressed: Problem 1: without revealing the
contents of t and DB, how to preserve data integrity by
establishing the anonymity of DB ∪ {t}? Problem 2: once
such anonymity is established, how to perform this update?
Problem 3: what can be done if database anonymity is not
preserved? Finally, problem 4: what is the initial content of
the database, when no data about users has been inserted yet?
In this paper, we propose two protocols solving Problem
1, which is the central problem addressed by our paper.
However, because the other problems are crucial from a
more practical point of view, we discuss them as well in
Section 7.

Note that to assure a higher level of anonymity to
the party inserting the data, we require that the com-
munication between this party and the database occurs
through an anonymous connection, as provided by pro-
tocols like Crowds [27] or Onion routing [26]. This is
necessary since traffic analysis can potentially reveal
sensitive information based on users’ IP addresses. In
addition, sensitive information about the party inserting
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Requirement Objective Protocol
Anonymous
connection

Protect IP address
and sensitive info

Crowds [27], Onion
Routing [26]

Anonymous au-
thentication

Protect sensitive au-
thentication info

Policy-hiding access
control [20]

Anonymous up-
date

Protect non-
anonymous data

Proposed in this pa-
per

TABLE 1
Anonymous Database System Requirements

the data may be leaked from the access control policies
adopted by the anonymous database system, in that an
important requirement is that only authorized parties,
for example patients, should be able to enter data in
the database. Therefore, the question is how to enforce
authorization without requiring the parties inserting the
data to disclose their identities. An approach that can
be used is based on techniques for user anonymous au-
thentication and credential verification [20]. The above
discussion illustrates that the problem of anonymous up-
dates to confidential databases is complex and requires
the combination of several techniques, some of which
are proposed for the first time in this paper. Figure
1 summarizes the various phases of a comprehensive
approach to the problem of anonymous updates to confi-
dential databases, while Table 1 summarizes the required
techniques and identifies the role of our techniques in
such approach.

1.2 Proposed Solutions
All protocols we propose to solve Problem 1 rely on
the fact that the anonymity of DB is not affected by
inserting t if the information contained in t, properly
anonymized, is already contained in DB. Then, Problem
1 is equivalent to privately checking whether there is a
match between (a properly anonymized version of) t and
(at least) one tuple contained in DB. The first protocol is
aimed at suppression-based anonymous databases, and
it allows the owner of DB to properly anonymize the
tuple t, without gaining any useful knowledge on its
contents and without having to send to t’s owner newly
generated data. To achieve such goal, the parties secure
their messages by encrypting them. In order to per-
form the privacy-preserving verification of the database
anonymity upon the insertion, the parties use a commu-
tative and homomorphic encryption scheme. The second
protocol (see Section 5) is aimed at generalization-based
anonymous databases, and it relies on a secure set
intersection protocol, such as the one found in [3], to
support privacy-preserving updates on a generalization-
based k-anonymous DB.

The paper is organized as follows: Section 2 reviews
related work on anonymity and privacy in data man-
agement. Section 3 introduces notions about anonymity
and privacy that we need in order to define our protocols
and prove their correctness and security. The protocols
are defined respectively in Section 4 and Section 5 with

proofs of correctness and security. Section 6 analyzes
the complexity of the proposed protocol and presents
experimental complexity results we obtained by running
such protocols on real-life data. Section 7 concludes the
paper and outlines future work.

2 RELATED WORK

A preliminary approach to this problem was investigated
in [33]. However these protocols have some serious
limitations, in that they do not support generalization-
based updates, which is the main strategy adopted for
data anonymization. Therefore, if the database is not
anonymous with respect to a tuple to be inserted, the
insertion cannot be performed. In addition one of the
protocols is extremely inefficient. In the current paper,
we present two efficient protocols, one of which also
support the private update of a generalization-based
anonymous database. We also provide security proofs
and experimental results for both protocols. So far no
experimental results had been reported concerning such
type of protocols; our results show that both protocols
perform very efficiently. In what follows, we briefly
address other research directions relevant for our work.

The first research direction deals with algorithms
for database anonymization. The idea of protecting
databases through data suppression or data perturba-
tion has been extensively investigated in the area of
statistical databases [1]. Relevant work has been car-
ried out by Sweeney [32], who initially proposed the
notion of k-anonymity for databases in the context of
medical data, and by Aggarwal et al. [2], who have
developed complexity results concerning algorithms
for k-anonymization. The problem of computing a k-
anonymization of a set of tuples while maintaining the
confidentiality of their content is addressed by Zhong et
al. [35]. However, these proposals do not deal with the
problem of private updates to k-anonymous databases.
The problem of protecting the privacy of time-varying
data has recently spurred an intense research activity
which can be roughly divided into two broad groups
depending on whether data is continuously released
in a stream and anonymized in an on-line fashion, or
data is produced in different releases and subsequently
anonymized in order to prevent correlations among dif-
ferent releases. Relevant work in this directions include
[9], [14], [18], [21] and [34]. Again, none of these works
address the problem of checking that

The second research direction is related to Secure
Multi-party Computation (SMC) techniques. SMC rep-
resents an important class of techniques widely investi-
gated in the area of cryptography. General techniques for
performing secure computations are today available [16].
However, these techniques generally are not efficient.
Such shortcomings has motivated further research in
order to devise more efficient protocols for particular
problems. Of particular relevance for data management
are the techniques presented in [3], [13], in which the
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authors address the problems of efficiently and privately
computing set intersection and (in case of [3]) database
oriented operations, such as joins.

The third research direction is related to the area of
private information retrieval, which can be seen as an
application of the secure multi-party computation tech-
niques to the area of data management. Here, the focus
is to devise efficient techniques for posing expressive
queries over a database without letting the database
know the actual queries [10], [22]. Again, the problem of
privately updating a database has not been addressed in
that these techniques only deal with data retrieval.

Finally, the fourth research direction is related to
query processing techniques for encrypted data [7], [17],
[30]. These approaches do not address the k-anonymity
problem since their goal is to encrypt data, so that
their management can be outsourced to external entities.
Thus, the goal is to protect data confidentiality from the
external entities managing the data; however, data are
fully available to the clients, which is not the case under
our approach.

3 BASIC DEFINITIONS AND PRIMITIVES

3.1 Anonymity Definitions

We consider a table T = {t1, . . . , tn} over the attribute set
A. The idea is to form subsets of indistinguishable tuples
by masking the values of some well-chosen attributes. In
particular, when using a suppression-based anonymization
method, we mask with the special value ∗, the value
deployed by Alice for the anonymization. When using a
generalization-based anonymization method, original val-
ues are replaced by more general ones, according to
apriori established value generalization hierarchies (VGHs)
[32]. We adopt the following notations thereafter:
• Quasi-Identifier (QI): a set of attributes that can be

used with certain external information to identify a
specific individual.

• T [QI]: T [QI] is the projection of T to the set of
attributes contained in QI .

Definition 3.1: T [QI] satisfies k-anonymity if and only
if each record in it appears at least k times [32].

With respect to suppression-based anonymization [23],
[32] QI can be classified into two subsets: suppressed
attributes QIs and non-suppressed attributes QIs. When
T is k-anonymous, then for every tuple t ∈ T , there
exists a subset of tuples {t1, . . . , tz} ⊆ T (z ≥ k − 1)
such that for every attribute in QIs, the corresponding
value is replaced by ∗ (indicating suppressions of the
original values), and for every attribute in QIs, the
condition t[QIs] = ti[QI

s] holds. Suppose QI = {AREA,
POSITION, SALARY}, Table 3 shows a suppression
based k-anonymization with k = 2. Choosing the sup-
pressed attributes for every tuple of T is referred as the
anonymization problem, and finding the anonymization
that minimizes the number of masked values is an NP-
hard problem [2], [23].

TABLE 2
Original Dataset

AREA POSITION SALARY
Data Mining Associate Professor $90,000

Intrusion Detection Assistant Professor $78,000
Handheld Systems Research Assistant $17,000
Handheld Systems Research Assistant $15,500
Query Processing Associate Professor $100,000
Digital Forensics Assistant Professor $78,000

TABLE 3
Suppressed Data with k = 2

AREA POSITION SALARY
* Associate Professor *
* Assistant Professor *

Handheld Systems Research Assistant *
Handheld Systems Research Assistant *

* Associate Professor *
* Assistant Professor *

TABLE 4
Generalized Data with k = 2

AREA POSITION SALARY
Database Systems Associate Professor [61k, 120k]

Information Security Assistant Professor [61k, 120k]
Operating Systems Research Assistant [11k, 30k]
Operation Systems Research Assistant [11k, 30k]
Database Systems Associate Professor [61k, 120k]

Information Security Assistant Professor [61k, 120k]

TABLE 5
The witness Set

AREA POSITION SALARY
Database Systems Associate Professor [61k, 120k]

Information Security Assistant Professor [61k, 120k]
Operating Systems Research Assistant [11k, 30k]

For generalization-based anonymization [32], we as-
sume that each attribute value can be mapped to a more
general value. The main step in most generalization
based k-anonymity protocols is to replace a specific
value with a more general value. For instance, Figure
2 contains VGHs for attributes AREA, POSITION and
SALARY. According to the VGH of AREA, we say
that the value “Data Mining” can be generalized to
“Database Systems”. (Suppression can be viewed as an
extreme form of generalization, in which the generalized
attributes cannot be further generalized.) Let T refer
to Table 4 and QI = {AREA, POSITION, SALARY}.
Then T (T [QI]) satisfies 2-anonymity. According to the
three VGHs, it is easy to verify that the original data
represented by Table 2 can be generalized to T . When
T is k-anonymous, we can delete duplicate tuples, and
we call the resulting set the witness set of T . Table 5
represents a witness set of Table 4.

3.2 Cryptographic Primitives

The protocol in Section 4 uses a commutative, product-
homomorphic encryption scheme E. Loosely speak-
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ing, a commutative, product-homomorphic encryption
scheme ensures that the order in which encryptions are
performed is irrelevant (commutativity) and it allows
to consistently perform arithmetic operations over en-
crypted data (homomorphic property). Further, for the
security proofs we require that the encryption scheme E
satisfies the indistinguishability property. We extend the
definition of commutative, indistinguishable encryption
scheme presented in [3], in order to obtain an encryption
scheme which also product-homomorphic. Given a finite
set K of keys and a finite domain D, a commutative,
product-homomorphic encryption scheme E is a polynomial
time computable function E : K ×D → D satisfying the
following properties:

1) Commutativity. For all key pairs K1,K2 ∈ K and
value d ∈ D, the following equality holds:

EK1
(EK2

(d)) = EK2
(EK1

(d)) (1)

2) Product-homomorphism. For every K ∈ K and every
value pairs d1, d2 ∈ D, the following equality holds:

EK(d1) · EK(d2) = EK(d1 · d2) (2)

3) Indistinguishability [15]. It is infeasible to distin-
guish an encryption from a randomly chosen value

in the same domain and having the same length. In
other words, it is infeasible for an adversary, with
finite computational capability, to extract informa-
tion about a plaintext from the ciphertext.

We will use the indistinguishability property when prov-
ing in Section 4.1 the security of Protocols 4.1 and 5.1.
As an example of commutative, product-homomorphic,
indistinguishable encryption scheme, we consider the
following setting. Let D be a subgroup of prime order q
of Zp, with p prime, such that q is equal to (p−1)/2 and
is prime as well. Let d ∈ D and K ∈ K = {0, . . . , q − 1}.
Assuming the Decision Diffie-Hellman assumption [6],
the function

EK(d)
def
= dK mod p (3)

is a commutative, product-homomorphic, indistinguish-
able encryption scheme [3].

Finally, following [8], [25], we introduce a simple tuple
coding scheme that we will use in Protocol 5.1: Alice and
Bob agree on a set {g1, g2 . . . , gu} of generators of D. Let
d be a tuple 〈d1, d2, . . . , du〉 with elements taken from Zq ,
we define the encoding of a tuple d as

c(〈d1, d2, . . . , du〉) =

u∏
i=1

gdi
i mod q (4)

Such coding scheme is known in literature as DLREP
(Discrete Logarithm Representation). Note that such cod-
ing acts like a collision-free hash function, as explained
in [24, Section 4.3].

4 PRIVATE UPDATE FOR SUPPRESSION-
BASED ANONYMOUS AND CONFIDENTIAL
DATABASES

In this section, we assume that the database is
anonymized using a suppression-based method. Note
that our protocols are not required to further improve
the privacy of users other than that provided by the
fact that the updated database is still k-anonymous.
Suppose that Alice owns a k-anonymous table T over
the QI attributes. Alice has to decide whether T ∪ t –
where t is a tuple owned by Bob – is still k-anonymous,
without directly knowing the values in t (assuming t
and T have the same schema). This problem amounts
to decide whether t matches any tuple in T on the
non-suppressed QI attributes. If this is the case, then t,
properly anonymized, can be inserted into T . Otherwise,
the insertion of t into T is rejected.

A trivial solution requires as a first step Alice to send
Bob the suppressed attributes names, for every tuple in
the witness set {δ1, . . . , δw} of T . In this way, Bob knows
what values are to be suppressed from his tuple. After
Bob computes the anonymized or suppressed versions
t̄i of tuple t, 1 ≤ i ≤ w, he and Alice can start a
protocol (e.g., the Intersection Size Protocol in [3]) for
privately testing the equality of t̄i and δi. As a drawback,
Bob gains knowledge about the suppressed attributes of
Alice.
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A solution that addresses such drawback is based on
the following protocol. Assume Alice and Bob agree on
a commutative and product-homomorphic encryption
scheme E and QI = {A1, . . . , Au}. Further, they agree
on a coding c(·) (Equation 4) as well. Since other non-
QI attributes do not play any role in our computation,
without loss of generality, let δi = 〈v′1, . . . , v′s〉 be the
tuple containing only the s non-suppressed QI attributes
of witness wi, and t = 〈v1, . . . , vu〉. Protocol 4.1 allows
Alice to compute an anonymized version of t without
letting her know the contents of t and, at the the same
time, without letting Bob know what are the suppressed
attributes of the tuples in T .

The protocol works as follows: at Step 1, Alice sends
Bob an encrypted version of δi, containing only the s
non-suppressed QI attributes. At Step 2, Bob encrypts
the information received from Alice and sends it to her,
along with encrypted version of each value in his tuple
t. At Steps 3-4, Alice examines if the non-suppressed QI
attributes of δi is equal to those of t.

Protocol 4.1:

1) Alice codes her tuple δi into c(〈v′1, . . . , v′s〉), denoted
as c(δi). Then, she encrypts c(δi) with her private
key and sends EA(c(δi)) to Bob.

2) Bob individually codes each attribute value in t
to get the tuple of coded values 〈c(v1), . . . , c(vu)〉,
encrypts each coding and EA(c(δi)) with his key
B and sends (i) 〈EB(c(v1)), . . . , EB(c(vu))〉, and (ii)
EB(EA(c(δi))) to Alice.

3) Since E is a commutative encryption scheme,
EB(EA(c(δi))) = EA(EB(c(δi))), Alice decrypts
EA(EB(c(δi))) to obtain EB(c(δi)).

4) Since the encrypted values sent by Bob are ordered
according to the ordering of the attributes in T
(assume this is a public information known to both
Alice and Bob), Alice knows which are, among
the encrypted values sent by Bob, the one corre-
sponding to the suppressed and non-suppressed QI
attributes. Thus, Alice computes

EB(c(v1))× . . .× EB(c(vs)) (5)

where v1, . . . , vs are the values of non-suppressed
attributes contained in tuple t. As already men-
tioned, E is a product-homomorphic encryption
scheme. Based also on the definition of function
c(·), this implies that Expression 5 is equal to

EB(c(〈v1, . . . , vs〉)) (6)

5) Alice checks whether

EB(c(〈v1, . . . , vs〉)) = EB(c(〈v′1, . . . , v′s〉))

If true, t (properly anonymized) can be inserted to
table T . Otherwise, when inserted to T , t breaks
k-anonymity.

4.1 Proof of Correctness

Basically, Protocol 4.1 determines if given an anonymous
tuple in Alice’s database, its unsuppressed attribute
values match those of Bob’s tuple. Following the same
notations used previously, the next two propositions
guarantee the correctness of Protocol 4.1.

Proposition 4.1: Given Bob’s tuple t and Alice’s tuple
δi, if every non-suppressed attribute value in δi is equal
to the corresponding attribute value in t, the condition
that EB(c(v1, . . . , vs)) = EB(c(v′1, . . . , v

′
s)) always holds.

Proof. The proof is trivial. Since v1 = v′1, . . . , vs = v′s,
c(〈v1, . . . , vs〉) = c(〈v′1, . . . v′s〉). As a result, the condition
EB(c(〈v1, . . . , vs〉)) = EB(c(〈v′1, . . . , v′s〉)) holds. 2

Proposition 4.2: Given Bob’s tuple t and Alice’s tu-
ple δi, if there exists any non-suppressed attribute
value in δi is not equal to the corresponding attribute
value in t, then the condition EB(c(〈v1, . . . , vs〉)) =
EB(c(〈v′1, . . . , v′s〉)) does hold with negligible probability
(almost 0) provided that c is collision-free.
Proof. Let ~a = 〈v′1, . . . , v′s〉 and ~b = 〈v1, . . . , vs〉. The
expression ~a 6= ~b means there exists at least one pair
(v′i, vi) (1 ≤ i ≤ s) such that v′i 6= vi. Suppose the claim
not to be true, then

Prob[EB(c(~a)) = EB(c(~b))|~a 6= ~b] ≥ 1

p(·)
(7)

where p(·) is some positive polynomial. The above equa-
tion is equivalent to

Prob[c(~a) = c(~b)|~a 6= ~b] ≥ 1

p(·)
(8)

However, because the encoding c is collision-free [24,
Section 4.3], we have:

Prob[c(~a) = c(~b)|~a 6= ~b] <
1

p(·)
(9)

This contradicts Equation 8, and thus contradicts the
initial assumptions, and the proposition follows. 2

4.2 Proof of Security

We rely on the notion of security of a two-party protocol
with semi-honest parties as in [16]. We underline that the
adopted proof methodology is a standard cryptographic
tool. What follows is an informal, concise presentation
of what is needed in the proof of Proposition 4.3. For
the formal definitions we refer to [16, Section 7.2.2].
By view of party P (where P is chosen among Alice
and Bob) of Protocol 4.1, we mean the sequence vP =
(inP ,mP

1 ,m
P
2 , . . . ,m

P
u ), where inP is the input provided

by party P to Protocol 4.1 and mP
1 , mP

2 ,. . ., mP
u are

the messages that party P receives during the execution
of Protocol 5.1. Note that the output of Protocol 4.1 is
implicit in the sequence of messages received by party
P . Protocol 4.1 is secure (in the semi-honest model) iff
the views vAlice and vBob are efficiently simulated only
knowing, respectively, the inputs inAlice, inBob and the
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output of Protocol 4.1. This holds provided that both
Alice and Bob are semi-honest: they follow Protocol 4.1
properly, except that they keep track of all their inter-
mediate computations.

Proposition 4.3: Protocol 4.1 is secure.
Proof. The parties of Protocol 4.1, Alice and Bob, are
alternatively replaced by their corresponding simulators
SAlice and SBob. By hypothesis, the simulator SP , where
P ∈ {Alice,Bob}, knows the input inP and the output
of Protocol 4.1. Further, it does not know the messages
both parties exchange during the execution of Protocol
4.1. The simulator SP acts as her/his corresponding
party P , but instead of sending to the other party the
messages requested by Protocol 4.1, SP sends a random
message. We now show in details how the simulators
SAlice and SBob behave and show that they cannot be
(easily) distinguished from their respective parties.

Simulating Alice: The simulator SAlice follows Proto-
col 4.1 as Alice does, except in Step 1. Instead of sending
the value EA(c(δi)), SAlice sends a random message r,
where r is uniformly drawn from D. There is no poly-
nomial time algorithm that tells apart EA(c(δi)) from
r, since E is an indistinguishable encryption scheme
(Property 3 of Section 3.2). This means that the simulator
SAlice cannot be distinguished from Alice in polynomial
time.

Simulating Bob: The simulator SBob is more complex
to define. The simulator SBob behaves as Bob, following
Protocol 4.1, except in Step 2. Concerning message (a),
the simulator SBob – instead of sending EB(EA(c(δi)))
and to Alice – produces a random values r uniformly
drawn from the domain D, and sends it to Alice. Like
for the Alice’s simulation, there is no polynomial time
algorithm able of telling apart EB(EA(c(δi))) from r.
This amount to say, regarding message (a) in Step 2 of
Protocol 4.1, that Alice and her simulator SAlice are not
polynomial-time distinguishable. Proving that message
(b) can be simulated requires the following:

Fact Let v1, v2, . . . , vu, r1, r2, . . . , ru and K be uni-
formly chosen respectively from D and K. Let t =
〈v1, v2, . . . , vu〉, r = 〈r1, r2, . . . , ru〉 and EK(t) =
〈EK(v1), EK(v2), . . . , EK(vu)〉. Then, 〈t, EK(t)〉 is indistin-
guishable from 〈t, r〉. This fact follows from the general-
ized Diffie-Hellman assumption [31] which states that
the tuple 〈gK1 , gK2 , . . . , gKu , gK1· ··· ·Ku〉 is indistinguish-
able from the tuple 〈gK1 , gK2 , . . . , gKu , r〉, where g is a
generator of D, K1, . . .Ku,K, r are uniformly drawn
respectively from K and D.

We prove the case in which u = 2. By DDH,
the triple 〈gK1 , gK2 , gK1·K2〉 is indistinguishable from
〈gK1 , gK2 , r〉 (we recall that g is a generator of D,
K1, K2, r are uniformly chosen from K and D,
and the exponentiation is made modulo a prime p).
Let K be another key uniformly chosen from K.
Then we have that 〈gK1 , gK2 , gK1·K2·K〉 is indistin-
guishable from 〈gK1 , gK2 , r′ = rK〉. Let’s consider the
quadruple 〈gK1 , gK2 , gK1·K2·K , gK1·K2·K〉, indistinguish-
able from 〈gK1 , gK2 , r′, r′〉, from which, we derive a

new quadruple 〈gK1 , gK2 , gK1·K2 , gK2·K〉, by deleting
K2 and K1 in the exponents of the 3rd and 4th
items. Such quadruple is indistinguishable from the
quadruple 〈gK1 , gK2 , r1 = r′/rK2 , r2 = r′/rK1〉. Rewrit-
ing gK1 and gK2 respectively as v1 and v2, we get
that 〈v1, v2, EK(v1), EK(v2)〉 is indistinguishable from
〈v1, v2, r1, r2〉.

The simulator SBob sends a sequence 〈r1, r2, . . . , ru〉
of uniformly chosen values from D to Alice, instead
of the sequence 〈EB(v1), EB(v2), . . . , EB(vu)〉. Having
previously proved that sequences of encrypted values
from D are indistinguishable from sequences of ran-
domly chosen values from the same domain, we have
that one cannot tell apart Bob from its simulator SBob in
polynomial time. 2

5 PRIVATE UPDATE FOR GENERALIZAT-
ION-BASED ANONYMOUS AND CONFIDENTIAL
DATABASES

In this section, we assume that the table T is anonymized
using a generalization-based method; let Γ1, . . . ,Γu be u
disjoint value generalization hierarchies (VGHs) corre-
sponding to A1, . . . , Au ∈ Aanon

t known to Alice. Let δ ∈
T , and let GetSpec(δ[A1, . . . , Au],Γ1, . . . ,Γu) (GetSpec(δ)
for short) denote a function which returns a set γ of
specific values (values at the bottom of a VGH) related
to each attribute Ai ∈ Aanon

t such that every value in
γ can be generalized to δ[Ai] for some i according to
Γi. For example, let T refer to Table 4 and Aanon

t =
{AREA, POSITION, SALARY}. If δ = [Operating Sys-
tems, Research Assistant, [11k,30k]], then based on the
VGHs (presented in Figure 2) GetSpec(δ) = {Distributed
Systems, Handheld Systems, Research Assistant, $15,000,
$17,000, $15,500}.

Let t be Bob’s private tuple, and assume that Bob
knows the set Aanon

t . Bob can generate a set τ containing
the corresponding values t[A1], . . . , t[Au]; the size of τ is
always u. We denote by SSI(γ, τ) as a secure protocol
that computes the cardinality of γ ∩ τ . (Either protocol
proposed in [3], [13] can be adopted as SSI . However,
we used the protocol in [3] for our implementation.)
Upon receiving an initial request from Bob, Alice starts
the protocol by randomly choosing a tuple δ from
the witness set Tw of T . After Alice computes γ =
GetSpec(δ), she and Bob privately compute SSI(γ, τ).
Note that Bob does not need to know any Γi. We claim
that if SSI(γ, τ) = u (the size of Aanon

t ), t[A1, . . . , Au] can
be generalized to δ, and hence this insertion into T can
be safely performed without breaking the k-anonymity
property. We will prove this claim later in the section.
The protocol’s details follow:

Protocol 5.1:
1) Alice randomly chooses a δ ∈ Tw
2) Alice computes γ = GetSpec(δ)
3) Alice and Bob collaboratively compute s =

SSI(γ, τ)
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4) If s = u then t’s generalized form can be safely
inserted to T

5) Otherwise, Alice computes Tw ← Tw − {δ} and
repeat the above procedures until either s = u or
Tw = ∅

The following example illustrates the execution of the
protocol. Suppose Alice has the witness set Tw (Table
5) of T (Table 4), and u = 3 in this example. If Bob’s
tuple t = [Data Mining, Teaching Assistant, $15,000],
then τ = {Data Mining, Teaching Assistant, $15,000}.
Suppose δ = [Database Systems, Associate Professor,
[61k, 120k]], then γ = {Data Mining, Data Warehousing,
Query Processing, Associate Professor, $78,000, $90,000,
$91,000, $95,000, $100,000}. Since |γ ∩ τ | = 1 < u
(or τ * γ), SSI(γ, τ) returns 1, and we can conclude
that t cannot be anonymized (or generalized) to δ. Us-
ing the same analysis, we can verify that t cannot be
anonymized to any record in Tw. On the other hand, if
t = [Distributed System, Research Assistant, $17,000], t
can be anonymized to δ = [Operating Systems, Research
Assistant, [11k, 30k]].

5.1 Proof of Correctness

Proposition 5.1: Referring to Protocol 5.1, given τ (gen-
erated from t) and γ = GetSpec(δ), if SSI(γ, τ) = u
(τ ⊆ γ), t[A1, . . . , Au] can be generalized to δ.
Proof. We prove this claim via a contrapositive argu-
ment. Assume SSI(γ, τ) = u and t[A1, . . . , Au] cannot
be generalized to δ, then ∃τi ∈ τ such that τi cannot
be generalized to any value in {δ[A1], . . . , δ[Au]} be-
cause Γ1, . . . ,Γu are disjoint. On the other hand, since
SSI(γ, τ) = u implies τ ⊆ γ, τi must match some
value γj ∈ γ. Based on the definition of GetSpec(δ),
we know that every value in γ can be generalized to
some value in {δ[A1], . . . , δ[Au]}. Therefore, it must be
the case that τi can be generalized to some value in
{δ[A1], . . . , δ[Au]}. This contradicts the assumption. In
addition, since we assume Γ1, . . . ,Γu are disjoint, for
any two τi, τj ∈ τ , they cannot be generalized to the
same value in {δ[A1], . . . , δ[Au]}. This guarantees that for
1 ≤ i ≤ u, t[Ai] (or τi) can be generalized to δ[Ai] as long
as SSI(γ, τ) = u holds. 2

5.2 Security Analysis

The security of Protocol 5.1 depends on that of the
SSI protocol, and detailed security analyses of SSI
can be found in [3], [13]. The SSI protocol presented
in [3] is easy to implement and efficient to perform.
Although the protocol leaks the intersection size between
γ and τ to the participating parties, it does provide
sufficient privacy protection in our application.. In case
this linkage of intersection sizes is not acceptable, we
can adopt one variation of the SSI protocol presented
in [13]. We can make the protocol only return whether or
not |γ ∩ τ | = u without disclosing the intersection size.
Under the context of Secure Multi-party Computation
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Fig. 3. Prototype architecture overview

[16], this variation of SSI does not leak any information
that cannot be inferred from the final result and the
private input data. Thus, using SSI proposed in [13],
Protocol 5.1 can achieve very high security.

6 ARCHITECTURE AND EXPERIMENTAL RE-
SULTS

Our prototype of a Private Checker (that is, Alice) is com-
posed by the following modules: a crypto module that is
in charge of encrypting all the tuples exchanged between
an user (that is, Bob) and the Private Updater, using
the techniques exposed in Sections 4 and 5; a checker
module that performs all the controls, as prescribed by
Protocols 4.1 and 5.1; a loader module that reads chunks
of anonymized tuples from the k-anonymous DB. The
chunk size is fixed in order to minimize the network
overload. In Figure 3 such modules are represented
along with labeled arrows denoting what information
are exchanged among them. Note that the functional-
ity provided by the Private Checker prototype regards
the check on whether the tuple insertion into the k-
anonymous DB is possible. We do not address the issue
of actually inserting a properly anonymized version of
the tuple.

The information flow across the above mentioned
modules is as follows: after an initial setup phase in which
the user and the Private Checker prototype exchange
public values for correctly performing the subsequent
cryptographic operations, the user sends the encryption
E(c(δi)) of of her/his tuple to the Private Checker;
the loader module reads from the k-anonymous DB the
first chunk of tuples to be checked with E(c(δi)). Such
tuples are then encrypted by the crypto module. The
checker module performs the above mentioned check
one tuple at time in collaboration with the user, accord-
ing to either Protocol 4.1 (in the case of suppression-
based anonymization) or Protocol 5.1 (in the case of
generalization-based anonymization). If none of the tu-
ples in the chunk matches the User tuple, then the loader
reads another chunk of tuples from the k-anonymous
DB. Note the communication between the prototype and
User is mediated by an anonymizer (like Crowds, not
shown in figure) and that all the tuples are encrypted.
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We briefly discuss the complexity of our protocols in
terms of the number of messages exchanged and their
size. It turns out that the number of messages exchanged
during executions of Protocol 4.1 and Protocol 5.1 is
bounded by a linear function of the number of witnesses
of the anonymous database. Protocol 4.1 requires that
Alice sends Bob the encrypted version of tuple δi. Bob
encrypts it with his own private key and sends it back
to Alice. Further, Bob sends Alice the encrypted version
of tuple t. Then, Bob sends Alice the encrypted values
contained in t, in order to let Alice compute the actual,
encrypted version of anonymized tuple t. Finally, Alice
and Bob exchange the encrypted version of tuple δi
for checking whether such tuple and the encrypted,
anonymized version of t match. Assuming the worst-
case scenario, this has to be executed w times. Thus, the
number of messages is 6 ·w. The complexity of Protocol
5.1 relies on the size of Tw (|Tw|) and the complexity
of the SSI protocol. The number of calls to the SSI
protocol is bounded by Tw, and detailed complexity
analyses of SSI can be found in [3], [13].

We implemented both Protocols 4.1 and 5.1 using
mySQL 5.1 and C++ using the NTL libraries version 5.5
for the numerical computations. We tested our imple-
mentation on the Income database from the UC Irvine
Machine Learning Repository [4]. The database has size
equal to 50.7 MB and contains about 286k tuples. Such
database has been anonymized using both suppression
and generalization-based approaches, for values of pa-
rameter k equal to 2, 5, 10, 20 and 50. The resulting
anonymized databases have been imported into MySQL
5.0. We then tested several times the insertion of a tuple
in such anonymized databases. All the experiments were
run on an Intel(R) Core(TM)2 1.8 GHz CPU with 1 GB
of physical memory running Linux Debian.

We report the average execution times (expressed
in milliseconds) of Protocol 4.1 and Protocol 5.1 re-
spectively in Figures 4 and 5. The experiments con-
firm the fact that the time spent by both protocols
in testing whether the tuple can be safely inserted in
the anonymized database decreases as the value of k
increases. Intuitively, this is due to the fact that the
larger the k is, the smaller the witness set. fewer are
the partitions in which table T is divided Consequently,
fewer protocol runs are needed to check whether the
update can be made. Further, we report that the exper-
iments confirm the fact that the execution times of of
Protocols 4.1 and 5.1 grow as (dataset size)/k. That is,
each protocol has to check the anonymized tuple to be
inserted against every witness in the worst case, and the
larger the parameter k is, the fewer the witnesses are.

We report in Figures 6 and 7 the cpu and network
latency times for Protocols 4.1 and 5.1, as the parameter
k increases. As it is shown, latency time accounts for a
very large portion of the elapsed time for the executions
of Protocols 4.1 and 5.1.

Fig. 4. Execution times of Protocol 4.1 as the parameter
k increases

Fig. 5. Execution times of Protocol 5.1, as the parameter
k increases

7 CONCLUSION / FUTURE WORK

In this paper, we have presented two secure protocols
for privately checking whether a k-anonymous database
retains its anonymity once a new tuple is being inserted
to it. Since the proposed protocols ensure the updated
database remains k-anonymous, the results returned
from a user’s (or a medical researcher’s) query are also
k-anonymous. Thus, the patient or the data provider’s
privacy cannot be violated from any query. As long as
the database is updated properly using the proposed
protocols, the user queries under our application domain

Fig. 6. Execution times of Protocol 4.1 as the parameter
k increases
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Fig. 7. Execution times of Protocol 5.1, as the parameter
k increases

are always privacy-preserving.
In order for a database system to effectively perform

privacy preserving updates to a k-anonymous table,
Protocols 4.1 and 5.1 are necessary but clearly not suf-
ficient. As already mentioned in Section 1, other impor-
tant issues are to be addressed: (i) the definition of a
mechanism for actually performing the update, once k-
anonymity has been verified; (ii) the specification of the
actions to take in case Protocols 4.1 or 5.1 yield a negative
answer; (iii) how to initially populate an empty table. (iii)
the integration with a privacy-preserving query system.
In the following, we sketch the solutions developed in
order to address these questions and which comprise our
overall methodology for the private database update.

As a general approach, we separate the process of
database k-anonymity checking and the actual update
into two different phases, managed by two different
sub-systems: the Private Checker and the Private Up-
dater. In the first phase, the Private Checker proto-
type presented in Section 6 , following Protocol 4.1 or
Protocol 5.1, checks whether the updated database is
still k-anonymous, without knowing the content of the
user’s tuple. In the second phase, the Private Updater
actually updates the database based on the result of
the anonymity check; we refer to this step as update
execution. At each phase, the database system and the
user1 communicate via an anonymous connection as
mentioned in Section 1 by using a protocol like Crowds
[27] or Onion routing [26]. Also, legitimate users are
authenticated anonymously via the protocol presented
in [20]. Thus, the system cannot link the user who has
entered the update request to the user who actually
performs it.

Concerning the actual execution of the database up-
date, once the system has verified that the user’s tuple
can be safely inserted to the database without compro-
mising k-anonymity, the user is required to send to the
Private Updater the non-anonymous attributes’ values
to be stored in the k-anonymous database as well. The

1. Here, the user is referred as an abstraction. In the real world, an
user may be the actual owner of the data being inserted or an agent
acting on her/his behalf.

deployment of an anonymity system ensures that the
system cannot associate the sender of the tuple with the
subject who made the corresponding insertion’s request.

Suppose that a tuple fails the tests of Protocols 4.1
and 5.1. Then, the system does not insert the tuple to
the k-anonymous database, and waits until k − 1 other
tuples fail the insertion. At this point, the system checks
whether such set of tuples, referred to as pending tuple
set, are k-anonymous. Such test can be performed on en-
crypted data by using the methods proposed by Zhong
et al. [35]. In the affirmative case, the system proceeds
to insert the k-anonymous tuples to the database. In the
negative case, the k-anonymization of the set of tuples
failing the insertion is periodically checked, again by
methods presented in [35]. Note that many issues need
to be addressed for the approach described above to be
effective. For instance, where and who is responsible
for keeping the pending tuple set; how to inform and
communicate with data users in order to initiate the
protocol. We will address these issues in future.

In addition to the problem of falling insertion, there
are other interesting and relevant issues that remain to
be addressed:
• Devising private update techniques to database sys-

tems that supports notions of anonymity different
than k-anonymity (see the discussion in [11]);

• Dealing with the case of malicious parties by the
introduction of an untrusted, non-colluding third
party [12];

• Implementing a real-world anonymous database
system;

• Improving the efficiency of protocols, in terms of
number of messages exchanged and in terms of their
sizes, as well.

We believe that all these issues are very important and
worthwhile to be pursued in the future.
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