www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

Parallel Architecture

Abstract

 A parallel architecture is a collection of communicating processing elements that cooperate to solve large computational problems fast by dividing such problems into parallel tasks, exploiting Thread-Level Parallelism (TLP). In traditional trends Number of transistors on chip growing rapidly. Clock rates expected to continue to go up but only slowly. Actual performance returns diminishing due to deeper pipelines. Increased clock rates require deeper pipelines with longer latencies and higher CPIs.In order to avoid this problems at first a Coarser-level parallelism (at the task or thread level, TLP), utilized in multiprocessor systems is the most viable approach to further improve performance.

 So here we are going to discuss briefly about The increased utilization of commodity of-the-shelf (COTS) components in high performance parallel computing systems instead of costly custom components used in traditional supercomputers leading to much lower parallel system cost. Today’s microprocessors offer high-performance and have multiprocessor support eliminating the need for designing expensive custom PEs, also about the goals of parallel processing, elements of parallel computing, message processing-programming tools, a brief discussion about the parallel computer architecture, the need and feasibility of parallel computing in this trend, about the different types of parallel computing, its applications.

INTRODUCTION TO PARALLELISM:

· High-performance computers are increasingly in demand in the areas of structural analysis, weather forecasting, aerodynamics simulations, artificial intelligence etc.,

· Achieving high performance depends not only on using faster and more reliable hardware devices but also major improvements in computer architecture and processing techniques such as parallelism

· Parallelism can be applied at the hardware/software (or) at the algorithmic and programming level

Parallel Architectures History

· Parallel architectures tied closely to programming models

· Divergent architectures, with no predictable pattern of growth.

· Mid 80s rennaisance

Historically, parallel architectures were tied to programming models

· Divergent architectures, with no predictable pattern of growth.

[image: image9.bmp]
Current Trends In Parallel Architectures
· The extension of “computer architecture” to support communication and cooperation:

· OLD: Instruction Set Architecture (ISA)

· NEW: Communication Architecture

· Defines:

· Critical abstractions, boundaries, and primitives (interfaces)

· Organizational structures that implement interfaces (hardware or software)

· Compilers, libraries and OS are important bridges today.
The Goal of Parallel Processing:

· Goal of applications in using parallel machines:

 Maximize Speedup over single processor performance

Speedup (p processors) = Performance (p processors)

 Performance (p processors)
· For a fixed problem size (input data set), performance = 1/time

· Ideal speedup = number of processors = p

 Very hard to achieve

· Parallel processing goal is to maximize parallel speedup

· Ideal Speedup = p number of processors

· Very hard to achieve: Implies no parallelization overheads and perfect load balance among all processors.

· Maximize parallel speedup by:

· Balancing computations on processors (every processor does the same amount of work) and the same amount of overheads.

· Minimizing communication cost and other overheads associated with each step of parallel program creation and execution.

· Performance Scalability:

Achieve a good speedup for the parallel application on the parallel architecture as problem size and machine size (number of processors) are increased.

· Computing Problems:

· Numerical Computing: Science and and engineering numerical problems demand intensive integer and floating point computations.

· Logical Reasoning: Artificial intelligence (AI) demand logic inferences and symbolic manipulations and large space searches.
· Parallel Algorithms and Data Structures
· Special algorithms and data structures are needed to specify the computations and communication present in computing problems (from dependency analysis).

· Most numerical algorithms are deterministic using regular data structures.

· Symbolic processing may use heuristics or non-deterministic searches.

· Parallel algorithm development requires interdisciplinary interaction.

Hardware Resources

· Processors, memory, and peripheral devices (processing nodes) form the hardware core of a computer system.

· Processor connectivity (system interconnects, network), memory organization, influences the system architecture.

· Operating Systems

· Manages the allocation of resources to running processes. Mapping to match algorithmic structures with hardware architecture and vice versa: processor scheduling, memory mapping, and interprocessor communication.

· Parallelism exploitation possible at: algorithm design, program writing, compilation, and run time.
Shared Address Space (SAS) Parallel Programming Model

· Process: virtual address space plus one or more threads of control

· Portions of address spaces of processes are shared

[image: image1]
[image: image2]
· To shared address visible to other threads (in other processes too)

· Natural Writes extension of the uniprocessor model.

· Conventional memory operations used for communication

· Special atomic operations needed for synchronization

· OS uses shared memory to coordinate processes

· Writes to shared address visible to other threads (in other processes too)

· Natural extension of the uniprocessor model:

· Conventional memory operations used for communication

· Special atomic operations needed for synchronization

[image: image3.emf]EECC756

EECC756

-

-

Shaaban

Shaaban

#36 lec # 1 Spring 2005 3-8-2005

Models of Shared

Models of Shared

-

-

Memory Multiprocessors

Memory Multiprocessors

I/O ctrl

Mem Mem Mem

Interconnect

Mem

I/O ctrl

Processor Processor

Interconnect

I/O

devices

I/O ctrl

Mem Mem Mem

Interconnect

Mem

I/O ctrl

Processor Processor

Interconnect

I/O

devices

M



M M

Network

P

$

P

$

P

$



Network

D

P

C

D

P

C

D

P

C

Distributed memory or

Non-uniform Memory Access (NUMA) Model

Uniform Memory Access (UMA) Model

or Symmetric Memory Processors (SMPs).

, Crossbar, Multistage network

P: Processor

M: Memory Interconnect:

Bus

C: Cache

D: Cache directory

Cache-Only Memory Architecture (COMA)

I/O ctrl

Mem Mem Mem

Interconnect

Mem

I/O ctrl

Processor Processor

Interconnect

I/O

devices

 EMBED PowerPoint.Slide.8 [image: image4.emf]EECC756

EECC756

-

-

Shaaban

Shaaban

#38 lec # 1 Spring 2005 3-8-2005

Distributed Shared

Distributed Shared

-

-

Memory

Memory

Multiprocessor System Example:

Multiprocessor System Example:

Cray T3E

Cray T3E

Switch

P

$

XY

Z

External I/O

Mem

ctrl

and NI

Mem

•

. provide etc Scale up to 1024 processors, 480MB/s links

•

Memory controller generates communication requests for non-local

references

•

No hardware mechanism for coherence (SGI Origin this)

Message-Passing Multicomputers

· Comprised of multiple autonomous computers (nodes) connected via a suitable network.

· Each node consists of one or more processors, local memory, attached storage and I/O peripherals.

· Local memory is only accessible by local processors in a node (no shared memory among nodes).

· Inter-node communication is carried out by message passing through the connection network.

· Process communication achieved using a message-passing programming environment (e.g. PVM, MPI).

· Programming model more removed from basic hardware operations

· Include:

· A number of commercial Massively Parallel Processor systems (MPPs).

· Computer clusters that utilize commodity of-the-shelf (COTS) components.

[image: image5.emf]EECC756

EECC756

-

-

Shaaban

Shaaban

#42 lec # 1 Spring 2005 3-8-2005

Message

Message

-

-

Passing Example:

Passing Example:

Intel Paragon

Intel Paragon

Memory bus (64-bit, 50 MHz)

i860

L

1

 $

NI

DMA

i860

L

1

 $

Driver

Mem

ctrl

4-way

interleaved

DRAM

Intel

Paragon

node

8 bits,

175 MHz,

bidirectional

2D grid network

with processing node

attached to every switch

Sandia’ s Intel Paragon XP/S-based Supercomputer

2D grid

point to point

network

 Message-Passing Programming Tools:

· Message-passing programming environments include Fortran or Java are provided access to PVM through the use Message Passing Interface (MPI):

· Provides a standard for writing concurrent message-passing programs.

· MPI implementations include parallel libraries used by existing programming languages (C, C++).

 Parallel Virtual Machine (PVM):
· Enables a collection of heterogeneous computers to use as a coherent and flexible concurrent computational resource.

· PVM support software executes on each machine in a user-configurable pool, and provides a computational environment of concurrent applications.

· User programs written for example of calls to PVM library routines

[image: image6.emf]EECC756

EECC756

-

-

Shaaban

Shaaban

#45 lec # 1 Spring 2005 3-8-2005

Dataflow Architectures

Dataflow Architectures

•

Represent computation as a graph of essential data dependencies

–

Logical processor at each node, activated by availability of operands

–

Message (tokens) carrying tag of next instruction sent to next processor

–

Tag compared with others in matching store; match fires execution

1 b

a

+

 





c e

d

f

Dataflow graph

f = a



 d

Network

Token

store

Waiting

Matching

Instruction

fetch

Execute

Token queue

Form

token

Network

Network

Program

store

a = (b +1)



 (b



 c)

d = c



 e

Research Dataflow machine

prototypes include:

• The MIT Tagged Architecture

• The Manchester Dataflow Machine

The Tomasulo approach

of dynamic

instruction execution utilizes dataflow

driven execution engine:

• The data dependency graph for a small

window of instructions is constructed

dynamically when instructions are issued

in order of the program.

•The execution of an issued instruction

is triggered by the availability of its

operands (data it needs) over the CDB.

 EMBED PowerPoint.Slide.8 [image: image7.emf]EECC756

EECC756

-

-

Shaaban

Shaaban

#46 lec # 1 Spring 2005 3-8-2005

Systolic Architectures

Systolic Architectures

M

PE

M

PE PE

PE

•

Replace single processor with an array of regular processing elements

•

Orchestrate data flow for high throughput with less memory access

•

Different from pipelining

–

Nonlinear array structure, multidirection data flow, each PE may have

(small) local instruction and data memory

•

Different from SIMD: each PE may do something different

•

Initial motivation: VLSI Application-Specific Integrated Circuits (ASICs)

•

Represent algorithms directly by chips connected in regular pattern

A possible example of MISD in Flynn’s

A possible example of MISD in Flynn’s

Classification of Computer Architecture

Classification of Computer Architecture

· Highly integrated, targeted at high volume

· All coherence and multiprocessing glue in processor module

· Low latency and bandwidth

· Uniform Memory Access Example: SUN Enterprise
Parallel Computer Architecture

 A parallel computer is a collection of communicating processing element that cooperate to solve large computational problems fast by dividing such problems into parallel tasks, exploiting Thread-Level Parallelism (TLP).

· Broad issues involved:

· The concurrency and communication characteristics of parallel algorithms for a given computational problem (represented by dependency graphs)

· Computing Resources and Computation Allocation:

· The number of processing elements (PEs), computing power of each element and amount/organization of physical memory used.

· What portions of the computation and data are allocated or mapped to each PE.

· Data access, Communication and Synchronization

· How the processing elements cooperate and communicate.

· How data is shared/transmitted between processors.

· Abstractions and primitives for cooperation.

· The characteristics and performance of parallel system network.

· Parallel Processing Performance and Scalability Goals:

· Maximize performance enhancement of parallelism: Speedup.

· By minimizing parallelization overheads

· Scalability of performance to larger systems/problems.

The Need And Feasibility of Parallel Computing

· Application demands: More computing cycles needed
· Scientific/Engineering computing: CFD, Biology, Chemistry, Physics, ...

· General-purpose computing: Video, Graphics, CAD, Databases, Transaction Processing, Gaming…

· Mainstream multithreaded programs, are similar to parallel programs
· Technology Trends:

· Number of transistors on chip growing rapidly. Clock rates expected to continue to go up but only slowly. Actual performance returns diminishing due to deeper pipelines.

· Architecture Trends:
· Instruction-level parallelism (ILP) is valuable (superscalar, VLIW) but limited.

· Increased clock rates require deeper pipelines with longer latencies and higher CPIs.

· Coarser-level parallelism (at the task or thread level, TLP), utilized in multiprocessor systems is the most viable approach to further improve performance.
· Economics:

· The increased utilization of commodity of-the-shelf (COTS) components in high performance parallel computing systems instead of costly custom components used in traditional supercomputers leading to much lower parallel system cost.

· Today’s microprocessors offer high-performance and have multiprocessor support eliminating the need for designing expensive custom PEs

· Commercial System Area Networks (SANs) offer an alternative to custom more costly networks
Why is Parallel Processing Needed? Challenging Applications in Applied Science/Engineering

· Atmospheric and Ocean Modeling

· Bioinformatics

· Biomolecular simulation: Protein folding

· Computational Chemistry

· Computational Fluid Dynamics (CFD)

· Computational Physics

· Computer vision and image understanding

· Data Mining and Data-intensive Computing

· Engineering analysis (CAD/CAM)

· Mate modeling and forecasting

· Material Sciences

· Military applications

· Quantum chemistry

· VLSI design

[image: image8.emf]EECC756

EECC756

-

-

Shaaban

Shaaban

#6 lec # 1 Spring 2005 3-8-2005

Why is Parallel Processing Needed?

Why is Parallel Processing Needed?

Scientific Computing Demands

Scientific Computing Demands

(Memory Requirement)

Demands exceed the capabilities

of even the fastest current

uniprocessor systems

(Memory Requirement)

Demands exceed the capabilities

of even the fastest current

uniprocessor systems

APPLICATIONS:

Here we can discuss the applications of parallel architecture in different aspects

Summary of Application Trends

n sequential workloads Transition to parallel computing has occurred for scientific and

· In rapid progress in commercial computing

· Database and transactions as well as financial

· Usually smaller-scale, but large-scale systems also used

· Desktop also uses multithreaded programs, which are a lot like parallel programs

· Demand for improving throughput o

· Greatest use o engineering computing f small-scale multiprocessors

· Solid application demand exists and will increase

Technology: A Closer Look

Architectural Trends

· Architecture translates technology’s gifts into performance and capability

· Resolves the trade Current microprocessor: 1/3 compute, 1/3 cache, 1/3 off-chip ff between parallelism and locality

Current microprocessor: 1/3 compute, 1/3 cache, 1/3 off-chip connect

· Tradeoffs may change with scale and technology advances

· Understanding microprocessor architectural trends

=> Helps build intuition about design issues or parallel machines

=> Shows fundamental role of parallelism even in “sequential” computers

Engineering computing demand

Large parallel machines a mainstay in many industries

· Petroleum (reservoir analysis)

· Automotive (crash simulation, drag analysis, combustion efficiency),

· Aeronautics (airflow analysis, engine efficiency, structural mechanics, electromagnetism),

· Pharmaceuticals (molecular modeling)

· Computer-aided design

· Visualization

· In all of the above

· Entertainment (films like Toy Story)

· Architecture (walk-through and rendering)

· Financial modeling (yield and derivative analysis)

· Etc.

Proving ground and driver for innovative architecture and techniques

· Market smaller relative to commercial as MPs become mainstream

· Dominated by vector machines starting in 70s

· Microprocessors have made huge gains in floating-point performance

· High clock rates

· Pipelined floating point units (e.g., multiply-add every cycle)

· Instruction-level parallelism

· Effective use of caches (e.g., automatic blocking)

· Plus economics

· Large-scale multiprocessors replace vector supercomputer

Conclusion:

· In the present trend we have to do any work in a little period, accurately and with lower cost then only it can come to social view.

· AS like as that in the aspect of computing also it is necessary.

· From these explanations, we can conclude that PARALLELISM is the only key to open such new era in computing.

Architecture

Systolic

Arrays

Dataflow

Shared Memory

Message Passing

SIMD

System

 Software

Application Software

Common physical

addresses

Private portion

of address space

Shared portion

of address space

Machine physical address space

Virtual address spaces for a

collection of processes communicating

via shared addresses

e

t

a

v

i

r

p

n

P

e

t

a

v

i

r

p

2

P

e

t

a

v

i

r

p

1

P

e

t

a

v

i

r

p

0

P

d

a

o

L

0

P

n

P

2

P

1

P

e

r

o

t

S

www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

