www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

OVERVIEW OF PARALLEL ARCHITECTURE

ABSTRACT

Nowadays, commercial applications are most used on parallel computers. A computer that runs such an application has to be able to process large amount of data in sophisticated ways. We can say with no doubt that commercial applications will define future parallel computers architecture. But scientific applications will still remain important users of parallel computing technology. Trends in commercial and scientific applications are merging as commercial applications perform more sophisticated computations and scientific applications become more data intensive. Today, a lot of parallel programming languages and compilers, based on dependencies detected in source code, are able to automatically split a program into multiple processes and/or threads to be executed concurrently on the available processors from a parallel system.

Parallel computing is an efficient form of information processing which emphasizes the exploitation of concurrent events in the computing process. Concurrency implies parallelism, simultaneity and pipelining. Parallel events may occur in multiple resources during the same time interval; simultaneous events may occur at the same time instant; and pipelined events may occur in overlapped time spans. Parallel processing demands concurrent execution of many programs in the computer. It is a cost effective means to improve system performance through concurrent activities in the computer.
The highest level of parallel processing is conducted among multiple jobs or programs through multiprogramming, time-sharing, and multiprocessing. This presentation covers the basics of parallel computing. Beginning with a brief overview and some concepts and terminology associated with parallel computing, the topics of parallel memory architectures, Parallel computer architectures and Parallel programming models are then explored.

Introduction:-

Parallel computing is an efficient form of information processing which emphasizes the exploitation of concurrent events in the computing process. Concurrency implies parallelism, simultaneity and pipelining. Parallel events may occur in multiple resources during the same time interval; simultaneous events may occur at the same time instant; and pipelined events may occur in overlapped time spans. Parallel processing demands concurrent execution of many programs in the computer. The highest level of parallel processing is conducted among multiple jobs or programs through multiprogramming, time-sharing, and multiprocessing.

What is Parallel Computing?

Traditionally, software has been written for serial computation. To be executed by a single computer having a single Central Processing Unit (CPU). Problems are solved by a series of instructions, executed one after the other by the CPU. Only one instruction may be executed at any moment in time.

Where as parallel computing is the simultaneous use of multiple compute resources to solve a computational problem. The compute resources can include a single computer with multiple processors, an arbitrary number of computers connected by a network, A combination of both.

The computational problem usually demonstrates characteristics such as the ability to be:

1) Broken apart into discrete pieces of work that can be solved simultaneously.

2) Execute multiple program instructions at any moment in time.

3) Solved in less time with multiple compute resources than with a single compute resource.

Why Use Parallel Computing?

There are two primary reasons for using parallel computing:

a) Save time - wall clock time

b) Solve larger problems

Other reasons might include:

A) Taking advantage of non-local resources - using available compute resources on a wide area network, or even the Internet when local compute resources are scarce.

B) Cost savings - using multiple "cheap" computing resources instead of paying for time on a supercomputer.

C) Overcoming memory constraints - single computers have very finite memory resources. For large problems, using the memories of multiple computers may overcome this obstacle.

D) Transmission speeds - the speed of a serial computer is directly dependent upon how fast data can move through hardware. Absolute limits are the speed of light (30 cm/nanosecond) and the transmission limit of copper wire (9 cm/nanosecond). Increasing speeds necessitate increasing proximity of processing elements.

1) Concepts of Parallel Computing
· Parallelism in Uniprocessor systems:

We can introduce parallelism techniques in Uniprocessor systems. Whose having single processor those techniques are.

A) Multiplicity of Functional units: Any functions of the ALU can be distributed to multiple and specialized functional units, which can operate in parallel. For example in CDC – 6600 Uniprocessor has 10 functional units built into its CPU. These 10 units are independent of each other and may operate simultaneously.

B) Parallelism and pipelining with in CPU: Parallel adders using such techniques as carry-look ahead and carry-save are now built into almost all ALU’s. High-speed multiplier recording and convergency division are techniques for exploring parallelism.

Various phases of Instructions executions are now pipelined. Including instruction fetch, decode, operand fetch arithmetic logic execution and store result. To facilitate overlapped instruction execution through pipe, instruction prefect and data buffering have been developed.

C) Overlapped CPU and I/O Operations:
I/O operations can be performed simultaneously with CPU computations by using separate I/O controllers, channels and I/O processors. The DMA channel can be used to provide direct information transfer between I/O devices and main memory.

· Flynn's Classical Taxonomy

There are different ways to classify parallel computers. One of the more widely used classifications, in use since 1966, is called Flynn's Taxonomy. Flynn's taxonomy distinguishes multi-processor computer architectures according to how they can be classified along the two independent dimensions of Instruction and Data. Each of these dimensions can have only one of two possible states: Single or Multiple.

The matrix below defines the 4 possible classifications according to Flynn.

	S I S D

Single Instruction, Single Data
	S I M D

Single Instruction, Multiple Data

	M I S D

Multiple Instruction, Single Data
	M I M D

Multiple Instruction, Multiple Data

]

Single Instruction, Single Data (SISD):

A) It is a serial (non-parallel) computer

B) Single instruction: the CPU is acting only one instruction stream on during any one-clock cycle

C) Single data: only one data stream is being used as input during any one-clock cycle

D) Deterministic execution

E) This is the oldest and until recently, the most prevalent form of computer

F) Examples: most PCs, single CPU workstations and mainframes

[image: image1.jpg]

Single Instruction, Multiple Data (SIMD):

A) It is a type of parallel computer.

B) Single instruction: All processing units execute the same instruction at any given clock cycle.

C) Multiple data: Each processing unit can operate on a different data element.

D) Best suited for specialized problems characterized by a high degree of regularity, such as image processing.

E) Synchronous (lockstep) and deterministic execution.

F) Two varieties: Processor Arrays and Vector Pipelines.

G) Examples (some extinct):

Processor Arrays: Connection Machine CM-2, Maspar MP-1, P-2.

Vector Pipelines: IBM 9000, Cray C90, Fujitsu VP, NEC SX-2.

[image: image2.jpg]MM,

MM
.
.
MM
==

sM

DS,

PU,

DS,

DS,
'
.
.
.
PU,

IS

Is
cu

Multiple Instruction, Single Data (MISD):

A) Few actual examples of this class of parallel computer have ever existed.

B) Some conceivable examples might be:

 1) Multiple frequency filters operating on a single signal stream.

 2) Multiple cryptography algorithms attempting to crack a single coded message.

[image: image3.png]> CU

PU,

DS
MMl‘ MMJ‘ oo MM,
coe
DS
Is, 15 s

Multiple Instructions, Multiple Data (MIMD):

A) Currently, the most common type of parallel computer

B) Multiple Instructions: every processor may be executing a different instruction stream

C) Multiple Data: every processor may be working with a different data stream

D) Execution can be synchronous or asynchronous, deterministic or non- deterministic

E) Examples: most current supercomputers, networked parallel computer "grids" and multi-processor SMP computers - including some types of PCs.

[image: image4.jpg]

2) Parallel Computer Memory Architectures
A) Shared Memory:
General Characteristics:

Shared memory parallel computers vary widely, but generally have in common the ability for all processors to access all memory as global address space.

[image: image5.png]

A) Multiple processors can operate independently but share the same memory resources.

B) Changes in a memory location effected by one processor are visible to all other processors.

Advantages:

A) Global address space provides a user-friendly programming perspective to memory

B) Data sharing between tasks is both fast and uniform due to the proximity of memory to CPUs

Disadvantages:

A) Primary disadvantage is the lack of scalability between memory and CPUs. Adding more CPUs can geometrically increases traffic on the shared memory-CPU path, and for cache coherent systems, geometrically increase traffic associated with cache/memory management.

B) Programmer responsibility for synchronization constructs that insure "correct" access of global memory.

B) Distributed Memory

General Characteristics:

Distributed memory systems require a communication network to connect inter-processor memory.

[image: image6.png]

A) Processors have their own local memory. Memory addresses in one processor do not map to another processor, so there is no concept of global address space across all processors.

B) Because each processor has its own local memory, it operates independently. Changes it makes to its local memory have no effect on the memory of other processors. Hence, the concept of cache coherency does not apply.

C) When a processor needs access to data in another processor, it is usually the task of the programmer to explicitly define how and when data is communicated. Synchronization between tasks is likewise the programmer's responsibility.

D) The network "fabric" used for data transfer varies widely, though it can can be as simple as Ethernet.

Advantages:

A) Memory is scalable with number of processors. Increase the number of processors and the size of memory increases proportionately.

B) Cost effectiveness: can use commodity, off-the-shelf processors and networking.

Disadvantages:

A) The programmer is responsible for many of the details associated with data communication between processors.

B) It may be difficult to map existing data structures, based on global memory, to this memory organization.

C) Hybrid Distributed-Shared Memory

Summarizing a few of the key characteristics of shared and distributed memory machines. The largest and fastest computers in the world today employ both shared and distributed memory architectures.

[image: image7.png]

A) The shared memory component is usually a cache coherent SMP machine. Processors on a given SMP can address that machine's memory as global.

B) The distributed memory component is the networking of multiple SMPs. SMPs knows only about their own memory - not the memory on another SMP. Therefore, network communications are required to move data from one SMP to another.

C) Advantages and Disadvantages: whatever is common to both shared and distributed memory architectures.

3)Parallel Computer Architectures:
Parallel computers are those systems that emphasize parallel processing The basic architectural features of parallel computers are introduced below. We divide parallel computers into three architectural configurations:

A) Pipeline computers

B) Array processors

C) Multiprocessor systems

D) Data Flow Computers

A) Pipeline computers

A pipeline computer performs overlapped computations to exploit temporal parallelism. The concept of pipeline processing in a computer is similar to assembly lines in an industrial plant. To achieve pipelining, one must subdivide the input task (process) into a sequence of subtasks, each of which can be executed by a specialized hardware stage that operates concurrently with other stages in the pipeline. Successive tasks are streamed into the pipe and get executed in an over lapped fashion at the subtask level.

Classification of Pipeline Processors

> Arithmetic pipelining.

> Instruction pipelining.

> Processor pipelining.

> Unifunction vs multifunction pipelines.
B) Array Computers

An array processor uses multiple synchronized arithmetic logic units to achieve spatial parallelism. Array computers are synchronous array of multiple arithmetic logic units, called “processing elements (PE)”. That can operate in parallel in a lock step fashion. The PE’s are synchronized to perform the same function at the same time. An appropriate data routing mechanism must be established among the PE’s. Scalar and control type instructions are directly executed in control unit. Vector instructions can be passed to all PE’s for execution.

Best example of array processor is Massively array processor architecture.

C) Multi Processor Systems
A multiprocessor system achieves asynchronous parallelism through a set of interactive processors with shared resources (memories, database, etc.). Multiprocessing is traditionally known as the use of multiple concurrent processes in a system as opposed to a single process at any one instant. Like multitasking which allows multiple processes to share a single CPU multiple CPUs may be used to execute multiple within a single process.

Multiprocessing systems fall into one of two general classes:

· Tightly Coupled Multi Processors

· Loosely Coupled Multi Processor

Tightly coupled multiprocessor systems contain multiple CPUs that are connected at the bus level. The IBM p690 Regatta is an example of a high end SMP system.

Loosely coupled multiprocessor systems (often referred to as clusters are based on multiple standalone single or dual processor interconnected via a high speed communication system (gigabit Ethernet is common). A Linux is an example of a loosely coupled system.

D) Data Flow Computers

To exploit maximum parallelism in a program , data flow computers are introduced in recent years. The basic concept is to enable the execution of an instruction whenever its required operands become available. Programs for data driven computations can be represented by data flow graphs. Each instruction in a data flow computer is implemented as a template, which consists of the operator, operand receivers and result destinations. Operands are marked on the incoming arcs and results are on outgoing arcs.

Depending on the way the handling of data tokens data flow computers are divided in to 2 architectures. Those are

1) Static data flow computer

2) Dynamic data flow computer.

4) Parallel Programming Models
There are several parallel programming models in common use:

> Shared Memory

> Threads

> Message Passing

Parallel programming models exist as an abstraction above hardware and memory architectures.

Shared Memory Model

A) In the shared-memory programming model, tasks share a common address space, which they read and write asynchronously.

B) Various mechanisms such as locks/semaphores are used to control access to the shared memory.

C) An advantage of this model from the programmer's point of view is , the notion of data "ownership" is lacking, so there is no need to specify the communication of data between tasks.

Threads Model

A) In the threads model of parallel programming, a single process can have multiple, concurrent execution paths.

B) Each thread has local data, but also, shares the entire resources of a. out. This saves the overhead associated with replicating a program's resources for each thread. Each thread also benefits from a global memory view because it shares the memory space of a. out.

C) Threads communicate with each other through global memory (updating address locations). This requires synchronization constructs to insure that more than one thread is not updating the same global address at any time.

D) Threads can come and go, but a. out remains present to provide the necessary shared resources until the application has completed.

E) Threads are commonly associated with shared memory architectures and operating systems.

Message Passing Model

The message-passing model demonstrates the following characteristics:

A) A set of tasks that use their own local memory during computation. Multiple tasks can reside on the same physical machine as well across an arbitrary number of machines.

B) Tasks exchange data through communications by sending and receiving messages.

C) Data transfer usually requires cooperative operations to be performed by each process. For example, a send operation must have a matching receive operation.

Conclusion

Nowadays, commercial applications are most used on parallel computers. A computer that runs such an application has to be able to process large amount of data in sophisticated ways. We can say with no doubt that commercial applications will define future parallel computers architecture. But scientific applications will still remain important users of parallel computing technology. Trends in commercial and scientific applications are merging as commercial applications perform more sophisticated computations and scientific applications become more data intensive.

Today, a lot of parallel programming languages and compilers, based on dependencies detected in source code, are able to automatically split a program into multiple processes and/or threads to be executed concurrently on the available processors from a parallel system. The operating system of parallel system has to make possible the communication between the processes and thread using shared memory or message passing mechanisms. Also, it has to support the applications in detecting, analyzing and managing the dependencies in complex programs. The mutual exclusion techniques have to be used in order to serialize the concurrent access to the shared resources of the distributed systems.

www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

_976656602

