Measuring Client-Perceived Page view

Response Time of Internet Services
Abstract
 As e-commerce services are exponentially growing, businesses need quantitative estimates of client-perceived response times to continuously improve the quality of their services. Current server-side nonintrusive measurement techniques are limited to no secured HTTP traffic. In this paper, we present the design and evaluation a monitor, namely sMonitor, which is able to measure client-perceived response times for both HTTP and HTTPS traffic. At the heart of sMonitor is a novel size-based analysis method that parses live packets to delimit different web pages and to infer their response times. The method is based on the observation that most HTTP(S)-compatible browsers send significantly larger requests for container objects than those for embedded objects. SMonitor is designed to operate accurately in the presence of complicated browser behaviors, such as parallel downloading of multiple web pages and HTTP pipelining, as well as packet losses and delays. It requires only to passively collecting network traffic in and out of the monitored secured services. We conduct comprehensive experiments across a wide range of operating conditions using live secured Internet services, on the Planet Lab, and on controlled networks. The experimental results demonstrate that sMonitor is able to control the estimation error within 6.7 percent, in comparison with the actual measured time at the client side.

Index Terms—Client-perceived service quality, monitoring and measurement, page view response time, secured Internet services.

Existing System:
 WITH recent technology developments, secured Internet services are the foundation for various e-commerce services, such as online banking, shopping, auctions, and payments. For these e-commerce services, the Internet is a highly competitive environment. Clients have many choices when they are seeking quality services. Whenever an ecommerce service cannot meet their quality requirements, they can turn to elsewhere much more easily than in traditional business environments. This makes it especially critical for e-commerce service providers to offer quantifiable service quality to attract new clients while retaining old ones. Client-perceived response time is a key measure of client-experienced service quality. In deciding whether to continue using one e-commerce service, 46 percent clients want to have quick checkout process and 40 percent want to have fast page view response time. Early experiments at Amazon even showed a one percent sales loss for an additional 100 ms delay. Therefore, obtaining quantitative measures of the response times in a timely and cost-effective manner is fundamental to manage e-commerce services across a diverse and rapidly changing client population. By obtaining the response times, businesses might employ techniques to match different clients’ requirements for service qualities. For example, the authors proposed mechanisms to dynamically allocate resources to different clients to support their requirements on response times. By obtaining the response times promptly, businesses can also quickly identify problems, get them fixed, reduce downtime costs, and thus, maintain high service availability. For example, if the response time is large while network latency is small, the service providers would expect issues in the back-end servers. Web server logs can be used to determine the exact objects that are requested for troubleshooting.
Disadvantages:

 An ecommerce service cannot meet their quality requirements; they can turn to elsewhere much more easily than in traditional business environments.
Proposed System:

 In this paper, we present sMonitor for measuring client perceived response times for both secured and unsecured Internet services nonintrusive. At the heart of sMonitor is a novel packet-size-based analysis method that parses live packets to delimit different WebPages retrieved by different clients at the same time and infers their response times. The analysis method is based on the observation that most HTTP(S)-compatible browsers send significantly larger requests for container objects than those for embedded objects. Note that the analysis method is based on protocol features of HTTP and HTTPS. Therefore, although the use of web services evolves very quickly, it does not affect the validity of the method as long as the underlying protocols do not change the features, which is the case for HTTP/1.1 bits. On the other hand, sMonitor actually is useful in monitoring such evolving and can help service providers to adapt to the evolving. Comparing with existing techniques, sMonitor offers a number of unique benefits.

1. SMonitor works for secured Internet services without requiring any modifications, such as embedding codes in webpages or decoupling encryption components from web servers. This feature would simplfy the deployment of sMonitor in real environments.

2. SMonitor accurately measures client-perceived response times by capturing different browser behaviors, such as parallel downloading of multiple webpages and pipelining of HTTP requests. Moreover, it is agile to the change of client access patterns.

3. SMonitor measures response times for all real clients who access the monitored service. It provides a much more complete view of the service performance than active sampling that uses customized browsers from a few locations that generally have better network connectivity’s than the real world.
Advantages:
1. SMonitor works for secured Internet services without requiring any modifications, such as embedding codes in webpages or decoupling encryption components from web servers. This feature would simplfy the deployment of sMonitor in real environments.

2. SMonitor accurately measures client-perceived response times by capturing different browser behaviors, such as parallel downloading of multiple webpages and pipelining of HTTP requests. Moreover, it is agile to the change of client access patterns.

3. SMonitor measures response times for all real clients who access the monitored service. It provides a much more complete view of the service performance than active sampling that uses customized browsers from a few locations that generally have better network connectivity’s than the real world.
Software Requirements Specification:

Software Requirements:

Front End : Jsp, Servlet
Back End : Oracle 10g
IDE : my eclipse 8.0

Language : java (jdk1.6.0)

Operating System : windows XP
Hardware Requirements:

System

 : Pentium IV 2.4 GHz.

Hard Disk
 : 80 GB.

Floppy Drive
 : 1.44 Mb.

Monitor
 : 14’ Colour Monitor.

Mouse

 : Optical Mouse.

Ram

 : 512 Mb.
Keyboard
 : 101 Keyboards

Module Description:
SMonitor consists of three modules
· The first part is to process packets
· The second part processes server responses
· The third part of packet processing
 In general, client-perceived page view response time of an Internet service corresponds to the duration from the time when the client clicks/inputs the address of its web page to the time when all objects of the webpage are retrieved. We design sMonitor to measure the time for Internet services in a nonintrusive manner so that it can be deployed without needs for any modification to existing Internet services. As shown in Fig. 1, sMonitor runs as a stand-alone application, keeps capturing packets in and out of the monitored service. It analyzes the traffic using a size-based analysis method to infer client-perceived page view response times. sMonitor works for both secured HTTPS and unsecured HTTP traffic. Because of its unique strengths in the treatment of HTTPS traffic,
[image: image1.png]
 We elaborate the system architecture details in the context of secured Internet services. sMonitor consists of three modules. A packet sniffer passively collects live network packets using pcap (libpcap on Unix-like systems or Win cap on Windows). A packet analyzer then parses the packets to extract HTTP transaction information, such as HTTP request sizes, and passes them to a performance analyzer. To obtain such information, the analyzer only needs TCP/IP and SSL/TLS record headers, which are not encrypted. The parsed packets are discarded to reduce storage requirements. Based on the HTTP transaction information, the performance analyzer uses the packet-size-based analysis method to delimit pages and measure their response times.

 In sMonitor, the control flow is as far as possible data driven: The packet processing loop is driven by the presence of packets. It is composed of three parts.
 The first part is to process packets for connection establishments and releases. Upon capturing a SYN packet from a client, sMonitor creates a new connection object. If the packet is from a new client, sMonitor also creates a new client object. If the packet is for connection releases, e.g., a FIN or RST packet, the corresponding connection will be deleted.

 The second part processes server responses. SMonitor classifies a server packet with nonempty application data as a server response. A response packet is identified as the end of the response if no further response packets are captured within a timeout period or if a new request arrives over the same connection after it.
 The third part of packet processing is for client requests. It parses TCP/IP and SSL/TLS record headers to obtain HTTP request sizes. After that, combining with identified response ends, it uses the packet-size-based analysis method to delimit pages and infers their response times. Page retrieval is a complicated process. A browser may retrieve multiple pages at the same time using pipelined HTTP requests over multiple persistent TCP connections.
[image: image2.png]
Fig. 2 shows the HTTP protocol for accessing a web page containing multiple embedded objects. It starts with a request for the page container object, followed by requests for the embedded objects. Essential to the inference of page view response times is identification of the requests for

containers in the traffic flow. This is nontrivial, because a client can have many different ways (persistent versus no persistent connections, pipelining, parallel downloading, etc.) to access the webpages of an Internet service. The request and response packets with respect to different webpages are mixed in the captured traffic, which makes the issue of page delimitation challenging. At the heart of sMonitor is a packet-size-based analysis approach to determine retrieval beginning and end of a webpage in a traffic flow without decrypting HTTPS messages.

The overhead of sMonitor is small because only TCP/IP and SSL/TLS record headers need to be captured and analyzed. In general, TCP/IP headers are 40 bytes and the SSL/TLS record headers are only 5 bytes. In this work, we designed sMonitor as a user-space application for good portability. To further improve monitor’s performance, it can be easily implemented in the kernel space. For example, in, the authors reported that their sniffers approached a capacity near gigabit traffic rates without packet losses. We believe that sMonitor should have the same capacity as or even higher capacity than sniffers. This is because snuffer requires to parse packets up to HTTP layer while sMonitor does not. Because the focus of this paper is on sMonitor accuracy, we will not present the detailed discussion and evaluation of sMonitor capacity. It is worth noting that the accuracy of sMonitor is not affected by the capacity when there is no loss in capturing packets.
System Architecture:

[image: image3.png]
Algorithm used:
· Encryption algorithms,

· MAC algorithms

Measuring Client-Perceived Page view PARALLEL AND DISTRIBUTED SYSTEMS

