www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

 CONTENTS
1) ABSTRACT
2) INTRODUCTION TO INNOVATIVE DEVELOPMENT USING J2EE ARCHITECTURE

3) DEFINATION OF J2EE ARCHITECTURE
4) ARCHITECTURE OF J2EE
5) APPLICATIONS

· APPLICATIONS DEPLOYMENT DESCRIPTOR
· ENTERPRISE APPLICATION PROJECTS

· CLIENT DEPLOYMENT DESCRIPTOR EDITOR

 6)ADVANTAGES & DISADVANTAGES

 7)CONCLUSION

ABSTRACT
Java Platform, Enterprise Edition or Java EE is a widely used platform for server programming in the Java programming language
Technically J2EE is not a language; it is a group of specifications, frameworks, technologies, etc. for building distributed enterprise systems. J2EE is comprised of a number of programming and scripting languages including Java, XML, JSP, HTML, SQL, and others
A J2EE application client container provides access to the J2EE service (JNDI naming services, deployment services, transaction services, and security services) and communications APIs (internet protocols, Remote Method Invocation protocols, Object Management Group protocols, Messaging protocols, and data formats).

. Some of the advantages of J2EE include cross-platform portability, availability of open-source libraries, a huge server-side deployment base, and coverage for most W3C standards
For projects that were created in earlier version of the workbench, the project structures may be different. You can use the J2EE Migration wizard to migrate the old project structures to the current project structures.

Defination of j2ee:

 Java 2 Platform Enterprise Edition is java based runtime platform for developing distributed multi-tier architecture applications, using modular components. J2EE is typically deployed on critical, large-scale networked developments, such as electronic ticketing and banking.

ARCHITECTURE OF J2EE
 The Java™ 2 Platform, Enterprise Edition (J2EE) provides a standard for developing multitier, enterprise services.
 The economy and technology of today have intensified the need for faster, more efficient, and larger-scale information management solutions. The J2EE specification satisfies these challenges by providing a programming model that improves development productivity, standardizes the platform for hosting enterprise applications, and ensures portability of developed applications with an extensive test suite.
J2EE architecture supports component-based development of multi-tier enterprise applications. A J2EE application system typically includes the following tiers:

· Client tier: In the client tier, Web components, such as Servlets and JavaServer Pages (JSPs), or standalone Java applications provide a dynamic interface to the middle tier.
· Middle tier: In the server tier, or middle tier, enterprise beans and Web Services encapsulate reusable, distributable business logic for the application. These server-tier components are contained on a J2EE Application Server, which provides the platform for these components to perform actions and store data.
· Enterprise data tier: In the data tier, the enterprise's data is stored and persisted, typically in a relational database.
J2EE applications are comprised of components, containers, and services. Components are application-level components. Web components, such as Servlets and JSPs, provide dynamic responses to requests from a Web page. EJB components contain server-side business logic for enterprise applications. Web and EJB component containers host services that support Web and EJB modules.

[image: image1]
[image: image2.png]
· Application Deployment Descriptor
 The Application Deployment Descriptor editor includes scrollable pages and collapsible sections that represent the various properties and settings in the deployment descriptor (application.xml) and other metadata written to bindings and extensions files. The editor is dynamic, and sections and pages are created based on the application deployment descriptor version and the workbench capabilities that are enabled.
The core function is typically located at the top of an editor page. To see core pages and sections, set focus on the editor and press alt-shift-c. The core pages, sections, headers, and tabs will highlight blue and remain in this state until you press alt-shift-c again. The extensions and bindings are usually nested sections and found at the bottom of the editor pages. Collapsing a section hides the content, but leaves the heading information. This is useful in filtering through the data and properties on each page. The editor remember the sections that you collapse when you close and reopen the editor. Also, you can resize sections by dragging a hidden border at the end or beginning of each section.

The application deployment descriptor editor typically modifies the following resources:
· application.xml

· ibm-application-bnd.xmi

· ibm-application-ext.xmi

· .modulemaps

The application deployment descriptor editor typically displays the following pages, sections, and views:

Overview page
 The Overview page in the application editor provides a quick summary of the contents in the application deployment descriptor. It includes the following sections: General Information, Modules, Security Roles, Icons, and WebSphere® Extensions.

General Information section

Use the General Information section to view the display name and description for the enterprise application, as stored in the application.xml file.

Modules section
 On the Overview page, the Modules section displays the names of the modules that are defined for the application, and provides a quick link to the Module page of the editor.

Security Roles section

On the Overview page, the Security roles section displays the security roles that are defined for the application, and provides a quick link to the Security page of the editor.

Icons section

Use the Icons section to choose icons that represent your enterprise application. These icons are mainly used for identification on the server. In order to use an icon, you must first import the graphic file into the enterprise application project (basically, it must be contained inside the EAR file in order for it to be found at deploy time). Once the file has been imported into the project, you will be able to select it within the icon dialog on the application deployment descriptor editor. If you do not import the file into the project, you will not see any icons within the dialogs.

WebSphere Extensions section

 (For applications that target WebSphere Application Server) On the Overview page, the WebSphere Extension section provides a place to set the reload interval and shared session context properties.

[image: image3]
Module page
Use the Module page to add, edit, browse, and remove EJB, Web, and Application Client modules from the enterprise application. When you select a module in the Modules list, its attributes are displayed on the fields on the right side of the pane. The list of fields changes dynamically to match the type of module selected.

Adding modules to an enterprise application.

Project Utility JARs section

Use this section to add a Java™ project as a utility JAR file that can be used by modules in the enterprise application. For each Java project, a utility JAR will be created when the EAR file is exported.

 Security page

Use the Security page to view, add, remove, gather, and combine security roles. The Gather option rolls up all security roles defined in modules that are included in the application. The resulting list is the union of all roles in all modules in the application. The Replace option replaces an original role with another, existing role. The original role is removed from the application and any modules within the application.

Defining security roles.

WebSphere bindings section

(For applications that target WebSphere Application Server) On the Security page, the WebSphere bindings section provides a place to add users and groups to the security roles.

Security role run as bindings section

(For applications that target WebSphere Application Server) Use the Security role run as bindings section to specify the security identity that a bean will execute as.

Deployment page

For enterprise applications that are targeted to use a WebSphere Application Server runtime environment, you can use the Deployment page to specify additional options for deploying to the server. For example, you can define JDBC providers, data sources, resource properties, and the applications that you want to deploy on the server.

Source page

Use the Source page to view and modify the application.xml file directly. The XML on the source page changes dynamically when the deployment descriptor is edited, and the other pages of the application deployment descriptor editor reflect changes that you make on the Source page. Editing the XML source is not the recommended method for editing the deployment descriptor. It is suggested that you make as many changes as possible using the other pages and sections of the editor

[image: image4]
· Enterprise application projects
An enterprise application project contains the hierarchy of resources that are required to deploy a J2EE enterprise application, often referred to as an EAR file.

An enterprise application project also contains a set of references to other J2EE modules and Java™ projects that are combined to compose an EAR file. These projects can be Web modules, EJB modules, application client modules, connector modules, general utility Java JAR files, and EJB client JAR files. Enterprise application projects created in the workbench include a deployment descriptor (and WebSphere® extension documents if they are targeted to WebSphere Application Server), as well as files that are common to all J2EE modules that are defined in the deployment descriptor.

When a J2EE module project is created, it can be associated with an enterprise application project. The project wizards aid this by allowing you to specify a new or existing enterprise application project. Enterprise application projects are exported as EAR (enterprise archive) files that include all files defined in the Enterprise Application project as well as the appropriate archive file for each J2EE module or utility JAR project defined in the deployment descriptor and IBM® extensions, such as Web archive (WAR) files and EJB JAR files.

An enterprise application can contain utility JAR files that are to be used by the contained modules. This allows sharing of code at the application level by multiple Web, EJB, or application client modules. These JAR files are commonly referred to as utility JAR files. The utility JAR files defined for an enterprise application project can be actual JAR files in the project, or you can include utility Java projects that are designated to become the utility JAR files during assembly and deployment.

To start developing J2EE applications, you typically first create an enterprise application project to contain your Web, EJB, and application client modules. The enterprise application project is used to compose an entire application from the various modules. Since no source code is built directly into an enterprise application, these projects are not Java projects, and are not compiled by the Java builder.

When you create an enterprise application project using the workbench, the following key files are automatically created:

META-INF/application.xml

This file is the deployment descriptor for the enterprise application, as defined in the J2EE specification, that is responsible for associating J2EE modules to a specific EAR file. It is created in the META-INF folder.

META-INF/.modulemaps

This file contains the mappings to the contained modules and utility JAR projects.

The following workbench artifacts are also created in an enterprise application project but will not become part of the EAR file, and you should not edit them manually:

.j2ee

This is a workbench artifact that includes the product version and J2EE specification level for the project.

.project

This is a workbench artifact, the standard project description file. runtime This is a workbench artifact that contains the target server definition.

[image: image9.png]
 Enterprise application modal
· Client Deployment Descriptor editor
The client deployment descriptor editor is organized with scrollable pages and collapsible sections that represent the various properties and settings that can be defined in the deployment descriptor (application-client.xml) and other extensions and bindings files. The editor is dynamic, and sections and pages are created based on the client deployment descriptor version and the workbench capabilities preferences.

The core function is typically located at the top of the page. The extensions and bindings are usually nested sections at the bottom of the editor pages. Collapsing a section hides the content, but leaves the heading information. This is useful in filtering through the data and properties on each page.

Depending on the properties of the project and the enabled capabilities, the client deployment descriptor editor typically helps you to modify the following resources:

· application-client.xml

· ibm-application-client-bnd.xmi

· ibm-application-client-ext.xmi

· webservicesclient.xml

· ibm-webservicesclient-bnd.xmi

· ibm-webservicesclient-ext.xmi

The client deployment descriptor editor typically displays the following pages:

[image: image5]
Overview page

The Overview page in the client editor provides a quick summary of the contents in the client deployment descriptor. This page includes the following sections:

General Information section

Use the General Information section to view and edit the display name and description for the application client.

References section

On the Overview page, the References section shows the currently defined references and links you to the References page of the editor.

Environment Variables

Use the Environment Variables section to define environment variables for the application client module.

Icons section

Use the Icons section to choose icons that represent your client application. These icons are mainly used for identification on the server. In order to use an icon, you must first import the graphic file into the enterprise application project (basically, it must be contained inside the EAR file in order for it to be found at deploy time). Once the file has been imported into the project, you will be able to select it within the icon dialog on the client deployment descriptor editor. If you do not import the file into the project, you will not see any icons within the dialogs.

Main-Class section

Use the Main-Class section to edit or refresh the Main-Class for the application client. Clicking Edit opens the JAR dependency editor where the Main-Class attribute is defined. Clicking Refresh forces an update of the field in the application client editor.

Callback Handler

For J2EE 1.3 and 1.4 only, use the Callback Handler section to specify the class that the application client will use for handling callback.

WebSphere® Extensions

This section shows additional extension properties that you can define specifically for the WebSphere Application Server. For example, you could specify whether you want to allow JTA demarcation.

References page

Use the References page to define references for the application client deployment descriptor.

 Defining references for J2EE modules
On this page, you can also define a JNDI name for the reference. This is a WebSphere Application Server binding property. For more information, see the WebSphere Application Server documentation.

WS Extension page

For J2EE 1.4 project only, use this page to define Web service client security extensions for WebSphere Application Server.

WS Binding page

For J2EE 1.4 project only, use this page to define Web service client bindings for WebSphere Application Server.

WS Handler page

For J2EE 1.3 and 1.4 project only, use the Handlers page to define Web service handlers for each Web service reference that is defined for the enterprise beans in the EJB module.
 Defining Web service handlers
Source page

Use the Source page to view and modify the XML source code directly. The XML on the source page changes dynamically when the deployment descriptor is edited, and the other pages of the application deployment descriptor editor reflect changes that you make on the Source page. Editing the XML source is not the recommended method for editing the deployment descriptor. It is suggested that you make as many changes as possible using the other pages and sections of the editor.

[image: image6.png]
Advantages:
1. It supports development by a team which has varying and diverse levels of application development skill and experience. The web designers and develepor roles can be clearly separated.

2. The facilities provided by the container (application server) can be leveraged for fast development and deployment (as well as prototyping).

3. Standards based application server ensures interoperatability and vendor neutrality.

[image: image7.png]4. Since J2EE is based on Java, hence all the advatages of java can be leveraged here also, like standards based cross platform development that is guaranteed to run on multiple platforms (all those supported by java).

5. Availability of world class open source, free development environments live Eclipse and NetBeans lowers the overall the cost of development.

6. Similarly availability of open source application servers like JBoss along with database server like MySql, allows both development and deployment to be extremely cost effective as compared to other proprietary application development platforms
Disadvantages:
1. Since the specifications have grown to huge proportions, there is a large learning curve associated with J2EE.

2. Restrictions on the developer, like anything that interferes with the App Server's control of the system, e.g., writing your own control threads or periodically scheduled tasks is not allowed.

3. Availability of large number of proprietary vendor extensions leads to the temptation to use them and hence making the system non interoperable across various application servers.

Conclusion:

Overall if you are looking at a croo platform, standards based application platform J2EE is an excellent choice. But if you want to stick to Microsoft windows alone, then dot net is a better alternative
References
www.j2eearchitecture.com
www.innovative application development.com
[image: image8.png]
www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

[image: image10.png][image: image11.png][image: image12.png][image: image13.png]