www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

Introduction:-

Information systems in corporations, government agencies and other organizations have undergone a steady evolution:

· Centralized data processing systems, with a central mainframe supporting a number of directly connected terminals.

· Local Area networks (LANs) interconnecting PCs and terminals to each other and the mainframe.

· Premises network, consisting of a number of LANs, interconnecting PCs servers, and perhaps a mainframe or two.

· Enterprises wide network, consisting of multiple, geographically distributes premises networks interconnects by a private wide area networks (WAN).

Interconnectivity is no longer an option for most organizations. The information and services available are essential to the organizations. Moreover, individual users within the organization want and need Internet access, and if this is not provided via LAN, they will use dial-up capability from their PC to an Internet service provider (ISP). However, while Internet access provides benefits to the organization, it enables the outside world to reach and interact with local network assets. This creates a threat to the organization. While it is possible to equip each workstation and server in the premises network with strong security features, such as intrusion protection, this is not a practical approach. Consider a network with hundreds or even thousands of systems, running a mix of various versions of UNIX, plus Windows. When a security flaw is discovered, each potentially affected system must be upgraded to fix this flaw. The alternative, increasingly accepted, is the firewall. The firewall is inserted between the premises network and the Internet to establish a controlled link and to erect an outer security wall or perimeter. The aim of this perimeter is to protect the premises network from Internet-based attacks and to provide a single choke point where security and audit can be imposed. The firewall may be a single computer system or a set of two or more systems that cooperate to perform the firewall function.
What are Firewalls? “The Basics”
A Firewall is basically a protective device. When one connects to the Internet, there are three things that are put to risk

· Local Data

· Secrecy

· Integrity

· Availability to Self

· Computer Resources

· One’s Reputation

Firewalls are essentially designed to protect against attacks that hamper local resources including data, not the communication over the Internet. They act as a barrier between the internal network and the Internet so as to screen through only the information that is considered safe by the Network Administrator.

In theory, a Firewall serves multiple purposes

· It restricts entering into the Network at carefully controlled points

· It prevents attacks from getting close to interior defenses

· It restricts leaving the Network at carefully controlled points

Logically, a Firewall is a separator, restrictor and an analyzer.

Where are Firewalls needed and Why?

Firewalls are one of the most indispensable components of the System for Security Conscious Users, Networks offering Services to a group of users or the World Wide Web, Corporations involved in e-commerce as well as Educational Institutions.

This is because any machine connected to the Internet is subject to several attacks. Some of them can be enumerated as

Intrusion: Penetrating into the Local System to utilize resources pretending to be a legitimate user. This is the most common attack on a machine connected to the Internet.

Denial of Service: This class of attacks is aimed purely at disrupting the services offered by the machine so that the users of the service are unable to use it at all.

Information Theft: This type of attack deals with compromising the Secrecy of Data by simply acquiring a copy of the information serviced by a computer with the only difference that the information is handed over into the wrong hands.

Firewalls are primarily needed to prevent, or at least, rarify the occurrence of such attacks. Besides, if and when they do occur, the firewall is meant to help in tracing down the origin of the crime.

What Can a Firewall Do?

Firewalls can do a lot for your site's security. In fact, some advantages of using firewalls extend even beyond security, as described below.

A firewall is a focus for security decisions

Think of a firewall as a choke point. All traffic in and out must pass through this single, narrow checkpoint. A firewall gives you an enormous amount of leverage for network security because it lets you concentrate your security measures on this checkpoint: the point where your network connects to the Internet.

Focusing your security in this way is far more efficient than spreading security decisions and technologies around, trying to cover all the bases in a piecemeal fashion. Although firewalls can cost tens of thousands of dollars to implement, most sites find that concentrating the most effective security hardware and software at the firewall is less expensive and more effective than other security measures - and certainly less expensive than having inadequate security.

A firewall can enforce security policy

Many of the services that people want from the Internet are inherently insecure. The firewall is the traffic cop for these services. It enforces the site's security policy, allowing only "approved" services to pass through and those only within the rules set up for them.

For example, one site's management may decide that certain services such as Sun's Network File System (NFS) and Network Information Services (formerly known as Yellow Pages) (NIS/YP) are simply too risky to be used across the firewall. It doesn't matter what system tries to run them or what user wants them. The firewall will keep potentially dangerous services strictly inside the firewall. (There, they can still be used for insiders to attack each other, but that's outside of the firewall's control.) Another site might decide that only one internal system can communicate with the outside world. Still another site might decide to allow access from all systems of a certain type, or belonging to a certain group; the variations in site security policies are endless.

A firewall may be called upon to help enforce more complicated policies. For example, perhaps only certain systems within the firewall are allowed to transfer files to and from the Internet; by using other mechanisms to control which users have access to those systems, you can control which users have these capabilities. Depending on the technologies you choose to implement your firewall, a firewall may have a greater or lesser ability to enforce such policies.

A firewall can log Internet activity efficiently

Because all traffic passes through the firewall, the firewall provides a good place to collect information about system and network use - and misuse. As a single point of access, the firewall can record what occurs between the protected network and the external network.

 A firewall limits your exposure

Although this point is most relevant to the use of internal firewalls, it's worth mentioning here. Sometimes, a firewall will be used to keep one section of your site's network separate from another section. By doing this, you keep problems that impact one section from spreading through the entire network. In some cases, you'll do this because one section of your network may be more trusted than another; in other cases, because one section is more sensitive than another. Whatever the reason, the existence of the firewall limits the damage that a network security problem can do to the overall network.

What Can't a Firewall Do?

Firewalls offer excellent protection against network threats, but they aren't a complete security solution. Certain threats are outside the control of the firewall. You need to figure out other ways to protect against these threats by incorporating physical security, host security, and user education into your overall security plan. Some of the weaknesses of firewalls are discussed below.

A firewall can't protect you against malicious insiders

A firewall might keep a system user from being able to send proprietary information out of an organization over a network connection; so would simply not having a network connection. But that same user could copy the data onto disk, tape, or paper and carry it out of the building in his or her briefcase.

If the attacker is already inside the firewall - if the fox is inside the henhouse - a firewall can do virtually nothing for you. Inside users can steal data, damage hardware and software, and subtly modify programs without ever coming near the firewall. Insider threats require internal security measures, such as host security and user education. Such topics are beyond the scope of this book.

A firewall can't protect you against connections that don't go through it

A firewall can effectively control the traffic that passes through it; however, there is nothing a firewall can do about traffic that doesn't pass through it. For example, what if the site allows dial-in access to internal systems behind the firewall? The firewall has absolutely no way of preventing an intruder from getting in through such a modem.

Sometimes, technically expert users or system administrators set up their own "back doors" into the network (such as a dial-up modem connection), either temporarily or permanently, because they chafe at the restrictions that the firewall places upon them and their systems. The firewall can do nothing about this. It's really a people-management problem, not a technical problem.

A firewall can't protect against completely new threats

A firewall is designed to protect against known threats. A well-designed one may also protect against new threats. (For example, by denying any but a few trusted services, a firewall will prevent people from setting up new and insecure services.) However, no firewall can automatically defend against every new threat that arises. Periodically people discover new ways to attack, using previously trustworthy services, or using attacks that simply hadn't occurred to anyone before. You can't set up a firewall once, and expect it to protect you forever.

A firewall can't protect against viruses

Firewalls can't keep PC and Macintosh viruses out of a network. Although many firewalls scan all incoming traffic to determine whether it is allowed to pass through to the internal network, the scanning is mostly for source and destination addresses and port numbers, not for the details of the data. Even with sophisticated packet filtering or proxying software, virus protection in a firewall is not very practical. There are simply too many types of viruses and too many ways a virus can hide within data.

Detecting a virus in a random packet of data passing through a firewall is very difficult; it requires:

· Recognizing that the packet is part of a program

· Determining what the program should look like

· Determining that the change is because of a virus

Even the first of these is a challenge. Most firewalls are protecting machines of multiple types with different executable formats. A program may be a compiled executable or a script (e.g., a UNIX shell script, or a HyperCard stack), and many machines support multiple, compiled executable types. Furthermore, most programs are packaged for transport, and are often compressed as well. Packages being transferred via email or Usenet news will also have been encoded into ASCII in different ways.

For all of these reasons, users may end up bringing viruses behind the firewall, no matter how secure that firewall is. Even if you could do a perfect job of blocking viruses at the firewall, however, you still haven't addressed the virus problem. You've done nothing about the far more common sources of viruses: software downloaded from dial-up bulletin-board systems, software brought in on floppies from home or other sites, and even software that comes pre-infected from manufacturers are more common than virus-infected software on the Internet. Whatever you do to address those threats will also address the problem of software transferred through the firewall.

The most practical way to address the virus problem is through host-based virus protection software, and user education concerning the dangers of viruses and precautions to take against them.

Types of Firewalls

There are basically three types of firewall: Packet filters, application-level gateways, and circuit level gateways, as shown in the following figure.
Packet Filtering Firewall:

A packet filtering firewall applies a set of rule to each IP packet and then forward or discards the packet. The router is typically configured to filter packets going in both directions (from and to the internal networks).Filtering rules are based on information contained in a network packet:

· Source IP address: The IP address of the system that originated the IP packet.
· Destination IP address: The IP address of the system the IP packet is trying to reach.

· Source and destination transport level address: The transport level(e.g. TCP or UDP)port number, which defined applications such as SNMP or TELNET.

· IP protocol field: Defines the transport field.

· Interface: for a router with three or more ports, which interface of the router the packet came from or which interface of the router the packet is destined for.
Because very little data is analyzed and logged, filtering firewalls take less CPU and create less latency in your network. Filtering firewalls do not provide for password controls. Users can’t identify themselves. The only identity a user has is the IP number assigned to their workstation.

Application level Gateway:

An application level gateway, also called a proxy server, acts as a relay of application level traffic. The user contacts the gateway using a TCP/IP application, such as Telnet or FTP, and the gateway asks the user for the name of the remote host to be accessed. When the user responds and provides a valid user ID and authentication information, the gateway contacts the application on the remote host and relays TCP segments containing the application data between the two endpoints. If the gateway does not implement the proxy code for a specific application, the services is not supported and cannot be forwarded across the firewall. Further, the gateway can be configured to support only specific features of an application that the network administrator considers acceptable while denying all other features.

Application level gateways tend to be more secure than packet filters. Rather than trying to deal with the numerous possible combinations that are to be allowed and forbidden at the TCP and IP level, the application level gateway need only scrutinize a few allowable applications. In addition, it is easy to log and audit all incoming traffic at the application level.

A prime disadvantage of this type of gateway is the additional processing over-head in each connection. In effect, there are two spliced connections between the end users, with the gateway at the splice point, and the gateway must examine and forward all traffic in both directions.
Circuit level gateway:

A third type of firewall is the circuit-level gateway. This can be a stand-alone system or it can be a specialized function performed by an application level gateway for certain applications. A circuit level function gateway does not permit end-to-end TCP connections; rather, the gateway sets up two TCP connections, one between itself and a TCP user on an inner host and one between itself and a TCP user on an outside host. Once the two connections are established, the gateway typically relays TCP segments from one connection to the other without examining the contents. The security functions consist of determining which connections will be allowed.

A typical use of circuit level gateways is a situation in which the system administrator trusts the internal users. The gateway can be configured to support application level or proxy service on inbound connections and circuit-level functions for outbound connections. In this configuration, the gateway can incur the processing overhead of examining incoming application data for forbidden functions but does not incur that overhead on outbound data.

[image: image1]

Typical Architectures for Firewall Implementation
Single-Box Architecture

These are the simplest Firewall Architectures and have a single object that acts as a Firewall.

The only advantage they have to offer is that they’re easy to implement, test and maintain.

They do not offer defense in depth and hence are not very secure. All the security is concentrated at a single point. If that fails, the entire security framework collapses.

Screening Routers and Dual-Homed Hosts are classic examples of Single Box Architectures. These are low cost implementations of Firewalls on a network.

[image: image2.png]
The most appropriate places to setup such architectures are:

· When the Network to be protected is small

· No Services are being provided to the Internet

Screened Host Architecture

Such architecture comprises of a router configured to permit or deny traffic based on a set of permission rules installed by the administrator and a host on a network behind the screening router. The degree to which a screened host may be accessed depends on the screening rules in the router. The screened host is connected to the Internal network using a separate router. The primary security is provided by packet filtering.

[image: image3.png] The most appropriate places to setup such architectures are:

· There are few connections to and from the Internet

· The Network being protected has a high level of host security

Screened Subnet Architecture

This architecture comprises of a subnet behind a screening router. This adds an extra layer of security to the Screened host architecture that provides defense in depth. Breaking into the host doesn’t make the internal hosts completely vulnerable. The degree to which the subnet may be accessed depends on the screening rules in the router.

[image: image4.png]
This and multiple variants of this architecture are suitable for most uses.

Security Strategies implemented using Firewalls

After satisfying the hardware requirements for the firewall desired, some configurations need to be put into place to make the firewall do its work. A firewall is able to screen out communication based on the policy defined by the Network Administrator. There are two basic approaches/stances that can be taken depending on the needs of the network..

Default Deny

Prohibit all communication that is not expressly permitted. This kind of stance makes sense from a security point of view and is an obvious choice for administrators. However, the implications of such a strategy is not very helpful to the users of the network.

Default Permit

Permit all communication that is not explicitly prohibited. This stance is more appealing to users but is extremely risky and takes into consideration only things that the Network Administrator can predict beforehand to be capable of compromising the security of the network.

Besides these, there are several simple strategies that can be employed to enhance the security of the network using Firewalls:

Least Privilege

This involves designing operational aspects of a system to operate with a minimum amount of system privilege. This reduces the authorization level at which various actions are performed and decreases the chance that a process or user with high privileges may be caused to perform unauthorized activity resulting in a security breach.

Defense in Depth

It is a security approach whereby each system on the network is secured to the greatest possible degree. This approach is usually used in conjunction with firewalls.

Choke Point

A Choke Point forces attackers to use a narrow channel to penetrate the network allowing for easy monitoring and screening of traffic entering and leaving the network.

Setting Up Linux for Firewalling

To build a Linux IP firewall, it is necessary to have a kernel built with IP firewall support and the appropriate configuration utility. In all production kernels prior to the 2.2 series, one can use the ipfwadm utility. The 2.2.x kernels marked the release of the third generation of IP firewall for Linux called IP Chains. IP chains use a program similar to ipfwadm called ipchains. Linux kernels 2.3.15 and later support the fourth generations of Linux IP firewall called netfilter. The netfilter code is the result of a large redesign of the packet handling flow in Linux. The netfilter is a multifaceted creature, providing direct backward-compatible support for ipfwadm and ipchains as well as a new alternative command called iptables.
Kernel Configured with IP Firewall

The Linux kernel must be configured to support IP firewalling. There isn't much more to it than selecting the appropriate options when performing a make menuconfig of your kernel. In 2.2 kernels one should select the following options:

Networking options --->
 [*] Network firewalls

 [*] TCP/IP networking

 [*] IP: firewalling

 [*] IP: firewall packet logging

Firewall packet logging is a special feature that writes a line of information about each datagram that matches a particular firewall rule out to a special device so you can see them.

In kernels 2.4.0 and later one should select this option instead:

 Networking options --->

 [*] Network packet filtering (replaces ipchains)

 IP: Netfilter Configuration --->

 .

 <M> Userspace queueing via NETLINK (EXPERIMENTAL)

 <M> IP tables support (required for filtering/masq/NAT)

 <M> limit match support

 <M> MAC address match support

 <M> netfilter MARK match support

 <M> Multiple port match support

 <M> TOS match support

 <M> Connection state match support

 <M> Unclean match support (EXPERIMENTAL)

 <M> Owner match support (EXPERIMENTAL)

 <M> Packet filtering

 <M> REJECT target support

 <M> MIRROR target support (EXPERIMENTAL)

 .

 <M> Packet mangling

 <M> TOS target support

 <M> MARK target support

 <M> LOG target support

 <M> ipchains (2.2-style) support

 <M> ipfwadm (2.0-style) support

The ipfwadm Utility

The ipfwadm (IP Firewall Administration) utility is the tool used to build the firewall rules for all kernels prior to 2.2.0.

The ipchains Utility

Just as for the ipfwadm utility, the ipchains utility can be somewhat baffling to use at first. It provides all of the flexibility of ipfwadm with simplified command syntax, and additionally provides a "chaining" mechanism that allows you to manage multiple rulesets and link them together.
The ipchains command appears in most Linux distributions based on the 2.2 kernels.

The iptables Utility

The syntax of the iptables utility is quite similar to that of the ipchains syntax. The changes are improvements and a result of the tool being redesigned to be extensible through shared libraries. The iptables utility is included in the netfilter source package available at http://www.samba.org/netfilter/. It will also be included in any Linux distribution based on the 2.4 series kernels.
How can one filter an IP Packet?

Original IP Firewall (2.0 Kernels)

The first generation IP firewall support for Linux appeared in the 1.1 series kernel. It was a port of the BSD ipfw firewall support to Linux by Alan Cox. The firewall support that appeared in the 2.0 series kernels and is the second generation was enhanced by Jos Vos, Pauline Middelink, and others.

Using ipfwadm

The ipfwadm command was the configuration tool for the second generation Linux IP firewall. Perhaps the simplest way to describe the use of the ipfwadm command is by example.

A naïve example

Let's suppose that we have a network in our organization and that we are using a Linux-based firewall machine to connect our network to the Internet. Additionally, let's suppose that we wish the users of that network to be able to access web servers on the Internet, but to allow no other traffic to be passed.

We will put in place a forwarding rule to allow datagram with a source address on our network and a destination socket of port 80 to be forwarded out, and for the corresponding reply datagram to be forwarded back via the firewall.

Assume our network has a 24-bit network mask (Class C) and an address of 172.16.1.0. The rules we might use are:

ipfwadm -F -f
ipfwadm -F -p deny
ipfwadm -F -a accept -P tcp -S 172.16.1.0/24 -D 0/0 80
ipfwadm -F -a accept -P tcp -S 0/0 80 -D 172.16.1.0/24
The -F command-line argument tells ipfwadm that this is a forwarding rule. The first command instructs ipfwadm to "flush" all of the forwarding rules. This ensures we are working from a known state before we begin adding specific rules.

The second rule sets our default forwarding policy. We tell the kernel to deny or disallow forwarding of IP datagrams. It is very important to set the default policy, because this describes what will happen to any datagrams that are not specifically handled by any other rule. In most firewall configurations, you will want to set your default policy to "deny," as shown, to be sure that only the traffic you specifically allow past your firewall is forwarded.

The third and fourth rules are the ones that implement our requirement. The third command allows our datagrams out, and the fourth rule allows the responses back.

Let's review each of the arguments:

-F

This is a Forwarding rule.

-a accept

Append this rule with the policy set to "accept," meaning we will forward any datagrams that match this rule.

-P tcp

This rule applies to tcp datagrams (as opposed to UDP or ICMP).

-S 172.16.1.0/24

The Source address must have the first 24 bits matching those of the network address 172.16.1.0.

-D 0/0 80

The destination address must have zero bits matching the address 0.0.0.0. This is really a shorthand notation for "anything." The 80 is the destination port, in this case WWW. You may also use any entry that appears in the /etc/services file to describe the port, so -D 0/0 www would have worked just as well.

ipfwadm accepts network masks in a form with which you may not be familiar. The /nn notation is a means of describing how many bits of the supplied address are significant, or the size of the mask. The bits are always counted from left to right; some common examples are listed in table below:
	 Common Netmask Bit Values

	Netmask
	Bits

	255.0.0.0
	8

	255.255.0.0
	16

	255.255.255.0
	24

	255.255.255.128
	25

	255.255.255.192
	26

	255.255.255.224
	27

	255.255.255.240
	28

	255.255.255.248
	29

	255.255.255.252
	30

We mentioned earlier that ipfwadm implements a small trick that makes adding these sorts of rules easier. This trick is an option called -b, which makes the command a bidirectional rule.

The bidirectional flag allows us to collapse our two rules into one as follows:

ipfwadm -F -a accept -P tcp -S 172.16.1.0/24 -D 0/0 80 -b
An important refinement

Take a closer look at our ruleset. One can see that there is still one method of attack that someone outside could use to defeat our firewall?

Our ruleset allows all datagrams from outside our network with a source port of 80 to pass. This will include those datagrams with the SYN bit set! The SYN bit is what declares a TCP datagram to be a connection request. If a person on the outside had privileged access to a host, they could make a connection through our firewall to any of our hosts, provided they use port 80 at their end. This is not what we intended.

Fortunately there is a solution to this problem. The ipfwadm command provides another flag that allows us to build rules that will match datagrams with the SYN bit set. Let's change our example to include such a rule:

ipfwadm -F -a deny -P tcp -S 0/0 80 -D 172.16.10.0/24 -y
ipfwadm -F -a accept -P tcp -S 172.16.1.0/24 -D 0/0 80 -b
The -y flag causes the rule to match only if the SYN flag is set in the datagram. So our new rule says: "Deny any TCP datagrams destined for our network from anywhere with a source port of 80 and the SYN bit set," or "Deny any connection requests from hosts using port 80."

Why have we placed this special rule before the main rule? IP firewall rules operate so that the first match is the rule that is used. Both rules would match the datagrams we want to stop, so we must be sure to put the deny rule before the accept rule.

Listing our rules

After we've entered our rules, we ask ipfwadm to list them for us using the command:

ipfwadm -F -l
This command will list all of the configured forwarding rules. The output should look something like this:

ipfwadm -F -l
IP firewall forward rules, default policy: accept

type prot source destination ports

deny tcp anywhere 172.16.10.0/24 www -> any

acc tcp 172.16.1.0/24 anywhere any -> www

The ipfwadm command will attempt to translate the port number into a service name using the /etc/services if an entry exists there.
IP Firewall Chains (2.2 Kernels)

Most aspects of Linux are evolving to meet the increasing demands of its users; IP firewall is no exception. The traditional IP firewall implementation is fine for most applications, but can be clumsy and inefficient to configure for complex environments. To solve this problem, a new method of configuring IP firewall and related features was developed. This new method was called "IP Firewall Chains" and was first released for general use in the 2.2.0 Linux kernel.

The IP Firewall Chains support was developed by Paul Russell and Michael Neuling.

IP Firewall Chains allows you to develop classes of firewall rules to which you may then add and remove hosts or networks. An artifact of firewall rule chaining is that it may improve firewall performance in configurations in which there are lots of rules.

IP Firewall Chains are supported by the 2.2 series kernels and are also available as a patch against the 2.0.* kernels.

Using ipchains

There are two ways you can use the ipchains utility. The first way is to make use of the ipfwadm-wrapper shell script, which is mostly a drop-in replacement for ipfwadm that drives the ipchains program in the background. If you want to do this, then read no further. Instead, reread the previous sections describing ipfwadm, and substitute ipfwadm-wrapper in its place. This will work, but there is no guarantee that the script will be maintained, and you will not be taking advantage of any of the advanced features that the IP Firewall Chains have to offer.

The second way to use ipchains is to learn its new syntax and modify any existing configurations you have to use the new syntax instead of the old. With some careful consideration, you may find you can optimize your configuration as you convert. The ipchains syntax is easier to learn than the ipfwadm, so this is a good option.

The ipfwadm manipulated three rulesets for the purpose of configuring firewalling. With IP Firewall Chains you can create arbitrary numbers of rulesets, each linked to one another, but there are three rulesets related to firewalling that are always present. The standard rulesets are direct equivalents of those used with ipfwadm, except they have names: input, forward and output.

Let's first look at the general syntax of the ipchains command, then we'll look at how we'd use ipchains instead of ipfwadm without worrying about any of the advanced chaining features. We'll do this by revisiting our previous examples.

ipchains Command Syntax

The ipchains command syntax is straightforward. We'll now look at the most important of those. The general syntax of most ipchains commands is:

ipchains command rule-specification options
Commands

There are a number of ways we can manipulate rules and rulesets with the ipchains command. Those relevant to IP firewalling are:

-A chain

Append one or more rules to the end of the nominated chain. If a hostname is supplied as either source or destination and it resolves to more than one IP address, a rule will be added for each address.

-I chain rulenum

Insert one or more rules to the start of the nominated chain. Again, if a hostname is supplied in the rule specification, a rule will be added for each of the addresses it resolves to.

-D chain

Delete one or more rules from the specified chain that matches the rule specification.

-D chain rulenum

Delete the rule residing at position rulenum in the specified chain. Rule positions start at one for the first rule in the chain.

-R chain rulenum

Replace the rule residing at position rulenum in the specific chain with the supplied rule specification.

-C chain

Check the datagram described by the rule specification against the specific chain. This command will return a message describing how the datagram was processed by the chain. This is very useful for testing your firewall configuration, and we look at it in detail a little later.

-L [chain]

List the rules of the specified chain, or for all chains if no chain is specified.

-F [chain]

Flush the rules of the specified chain, or for all chains if no chain is specified.

-Z [chain]

Zero the datagram and byte counters for all rules of the specified chain, or for all chains if no chain is specified.

-N chain

Create a new chain with the specified name. A chain of the same name must not already exist. This is how user-defined chains are created.

-X [chain]

Delete the specified user-defined chain, or all user-defined chains if no chain is specified. For this command to be successful, there must be no references to the specified chain from any other rules chain.

-P chain policy

Set the default policy of the specified chain to the specified policy. Valid firewalling policies are ACCEPT, DENY, REJECT, REDIR, or RETURN. ACCEPT, DENY, and REJECT have the same meanings as those for the tradition IP firewall implementation. REDIR specifies that the datagram should be transparently redirected to a port on the firewall host. The RETURN target causes the IP firewall code to return to the Firewall Chain that called the one containing this rule and continues starting at the rule after the calling rule.

Rule specification parameters

A number of ipchains parameters create a rule specification by determining what types of packets match. If any of these parameters is omitted from a rule specification, its default is assumed:

-p [!]protocol

Specifies the protocol of the datagram that will match this rule. Valid protocol names are tcp, udp, icmp, or all. You may also specify a protocol number here to match other protocols. For example, you might use 4 to match the ipip encapsulation protocol. If the ! is supplied, the rule is negated and the datagram will match any protocol other than the protocol specified. If this parameter isn't supplied, it will default to all.

-s [!]address[/mask] [!] [port]

Specifies the source address and port of the datagram that will match this rule. The address may be supplied as a hostname, a network name, or an IP address. The optional mask is the netmask to use and may be supplied either in the traditional form (e.g., /255.255.255.0) or the modern form (e.g., /24). The optional port specifies the TCP or UDP port, or the ICMP datagram type that will match. You may supply a port specification only if you've supplied the -p parameter with one of the tcp, udp, or icmp protocols. Ports may be specified as a range by specifying the upper and lower limits of the range with a colon as a delimiter. For example, 20:25 described all of the ports numbered from 20 up to and including 25. Again, the ! character may be used to negate the values.

-d [!]address[/mask] [!] [port]

Specifies the destination address and port of the datagram that will match this rule. The coding of this parameter is the same as that of the -s parameter.

-j target

Specifies the action to take when this rule matches. You can think of this parameter as meaning "jump to." Valid targets are ACCEPT, DENY, REJECT, REDIR, and RETURN. We described the meanings of each of these targets earlier. However, you may also specify the name of a user-defined chain where processing will continue. If this parameter is omitted, no action is taken on matching rule datagrams at all other than to update the datagram and byte counters.

-i [!]interface-name

Specifies the interface on which the datagram was received or is to be transmitted. Again, the ! inverts the result of the match. If the interface name ends with +, then any interface that begins with the supplied string will match. For example, -i ppp+ would match any PPP network device and -i ! eth+ would match all interfaces except Ethernet devices.

[!] -f

Specifies that this rule applies to everything but the first fragment of a fragmented datagram.

Options

The following ipchains options are more general in nature. Some of them control rather esoteric features of the IP chains software:

-b

Causes the command to generate two rules. One rule matches the parameters supplied, and the other rule added matches the corresponding parameters in the reverse direction.

-v

Causes ipchains to be verbose in its output. It will supply more information.

-n

Causes ipchains to display IP address and ports as numbers without attempting to resolve them to their corresponding names.

-l

Enables kernel logging of matching datagrams. Any datagram that matches the rule will be logged by the kernel using its printk() function, which is usually handled by the sysklogd program and written to a log file. This is useful for making unusual datagrams visible.

-o[maxsize]

Causes the IP chains software to copy any datagrams matching the rule to the userspace "netlink" device. The maxsize argument limits the number of bytes from each datagram that are passed to the netlink device. This option is of most use to software developers, but may be exploited by software packages in the future.

-m markvalue

Causes matching datagrams to be marked with a value. Mark values are unsigned 32-bit numbers. In existing implementations this does nothing, but at some point in the future, it may determine how the datagram is handled by other software such as the routing code. If a markvalue begins with a + or -, the value is added or subtracted from the existing markvalue.

-t andmask xormask

Enables you to manipulate the "type of service" bits in the IP header of any datagram that matches this rule. The type of service bits are used by intelligent routers to prioritize datagrams before forwarding them. The Linux routing software is capable of this sort prioritization. The andmask and xormask represent bit masks that will be logically ANDed and ORed with the type of service bits of the datagram respectively. This is an advanced feature that is discussed in more detail in the IPCHAINS-HOWTO.

-x

Causes any numbers in the ipchains output to be expanded to their exact values with no rounding.

-y

Causes the rule to match any TCP datagram with the SYN bit set and the ACK and FIN bits clear. This is used to filter TCP connection requests.

Our Naïve Example Revisited

Let's again suppose that we have a network in our organization and that we are using a Linux-based firewall machine to allow our users access to WWW servers on the Internet, but to allow no other traffic to be passed.

If our network has a 24-bit network mask (class C) and has an address of 172.16.1.0, we'd use the following ipchains rules:

ipchains -F forward
ipchains -P forward DENY
ipchains -A forward -s 0/0 80 -d 172.16.1.0/24 -p tcp -y -j DENY
ipchains -A forward -s 172.16.1.0/24 -d 0/0 80 -p tcp -b -j ACCEPT
The first of the commands flushes all of the rules from the forward rulesets and the second set of commands sets the default policy of the forward ruleset to DENY. Finally, the third and fourth commands do the specific filtering we want. The fourth command allows datagrams to and from web servers on the outside of our network to pass, and the third prevents incoming TCP connections with a source port of 80.

Listing Our Rules with ipchains

To list our rules with ipchains, we use its -L argument. Just as with ipfwadm, there are arguments that control the amount of detail in the output. In its simplest form, ipchains produces output that looks like:

ipchains -L -n
Chain input (policy ACCEPT):

Chain forward (policy DENY):

target prot opt source destination ports

DENY tcp -y---- 0.0.0.0/0 172.16.1.0/24 80 -> *

ACCEPT tcp ------ 172.16.1.0/24 0.0.0.0/0 * -> 80

ACCEPT tcp ------ 0.0.0.0/0 172.16.1.0/24 80 -> *

ACCEPT tcp ------ 172.16.1.0/24 0.0.0.0/0 * -> 20

ACCEPT tcp ------ 0.0.0.0/0 172.16.1.0/24 20 -> *

ACCEPT tcp ------ 172.16.1.0/24 0.0.0.0/0 * -> 21

ACCEPT tcp ------ 0.0.0.0/0 172.16.1.0/24 21 -> *

Chain output (policy ACCEPT):

If you don't supply the name of a chain to list, ipchains will list all rules in all chains. The -n argument in our example tells ipchains not to attempt to convert any address or ports into names. The information presented should be self-explanatory.

A verbose form, invoked by the -u option, provides much more detail. Its output adds fields for the datagram and byte counters, Type of Service AND and XOR flags, the interface name, the mark, and the outsize.

All rules created with ipchains have datagram and byte counters associated with them. This is how IP Accounting is implemented and will be discussed in detail in Chapter 10. By default these counters are presented in a rounded form using the suffixes K and M to represent units of one thousand and one million, respectively. If the -x argument is supplied, the counters are expanded to their full unrounded form.

Making Good Use of Chains

You now know that the ipchains command is a replacement for the ipfwadm with a simpler command-line syntax and some interesting enhancements, but you're no doubt wanting to know where you'd use the user-defined chains and why. You'll also probably want to know how to use the support scripts that accompany the ipchains command in its software package. We'll now explore these subjects and address the questions.

User-defined chains

The three rulesets of the traditional IP firewall code provided a mechanism for building firewall configurations that were fairly simple to understand and manage for small networks with simple firewalling requirements. When the configuration requirements are not simple, a number of problems become apparent. Firstly, large networks often require much more than the small number of firewalling rules we've seen so far; inevitably needs arise that require firewalling rules added to cover special case scenarios. As the number of rules grows, the performance of the firewall deterioriates as more and more tests are conducted on each datagram and managability becomes an issue. Secondly, it is not possible to enable and disable sets of rules atomically; instead, you are forced to expose yourself to attack while you are in the middle of rebuilding your ruleset.

The design of IP Firewall Chains helps to alleviate these problems by allowing the network administrator to create arbitrary sets of firwewall rules that we can link to the three inbuilt rulesets. We can use the -N option of ipchains to create a new chain with any name we please of eight characters or less. (Restricting the name to lowercase letters only is probably a good idea.) The -j option configures the action to take when a datagram matches the rule specification. The -j option specifies that if a datagram matches a rule, further testing should be performed against a user-defined chain. We'll illustrate this with a diagram.

Consider the following ipchains commands:

ipchains -P input DENY

ipchains -N tcpin

ipchains -A tcpin -s ! 172.16.0.0/16

ipchains -A tcpin -p tcp -d 172.16.0.0/16 ssh -j ACCEPT

ipchains -A tcpin -p tcp -d 172.16.0.0/16 www -j ACCEPT

ipchains -A input -p tcp -j tcpin

ipchains -A input -p all

We set the default input chain policy to deny. The second command creates a user-defined chain called "tcpin." The third command adds a rule to the tcpin chain that matches any datagram that was sourced from outside our local network; the rule takes no action. This rule is an accounting rule and will be discussed in more detail in Chapter 10. The next two rules match any datagram that is destined for our local network and either of the ssh or www ports; datagrams matching these rules are accepted. The next rule is when the real ipchains magic begins. It causes the firewall software to check any datagram of protocol TCP against the tcpin user-defined chain. Lastly, we add a rule to our input chain that matches any datagram; this is another accounting rule. They will produce the following Firewall Chains shown in Figure .

input

[image: image5]
deny

The sequence of rules tested for a received UDP datagram
Testing a Firewall Configuration

After you've designed an appropriate firewall configuration, it's important to validate that it does in fact do what you want it to do. One way to do this is to use a test host outside your network to attempt to pierce your firewall: this can be quite clumsy and slow, though, and is limited to testing only those addresses that you can actually use.

A faster and easier method is available with the Linux firewall implementation. It allows you to manually generate tests and run them through the firewall configuration just as if you were testing with actual datagrams. All varieties of the Linux kernel firewall software, ipfwadm, ipchains, and iptables, provide support for this style of testing. The implementation involves use of the relevant check command.

The general test procedure is as follows:

1. Design and configure your firewall using ipfwadm, ipchains, or iptables.

2. Design a series of tests that will determine whether your firewall is actually working as you intend. For these tests you may use any source or destination address, so choose some address combinations that should be accepted and some others that should be dropped. If you're allowing or disallowing only certain ranges of addresses, it is a good idea to test addresses on either side of the boundary of the range -- one address just inside the boundary and one address just outside the boundary. This will help ensure that you have the correct boundaries configured, because it is sometimes easy to specify netmasks incorrectly in your configuration. If you're filtering by protocol and port number, your tests should also check all important combinations of these parameters. For example, if you intend to accept only TCP under certain circumstances, check that UDP datagrams are dropped.

3. Develop ipfwadm, ipchains, or iptables rules to implement each test. It is probably worthwhile to write all the rules into a script so you can test and re-test easily as you correct mistakes or change your design. Tests use almost the same syntax as rule specifications, but the arguments take on slightly differing meanings. For example, the source address argument in a rule specification specifies the source address that datagrams matching this rule should have. The source address argument in test syntax, in contrast, specifies the source address of the test datagram that will be generated. For ipfwadm, you must use the -c option to specify that this command is a test, while for ipchains and iptables, you must use the -C option. In all cases you must always specify the source address, destination address, protocol, and interface to be used for the test. Other arguments, such as port numbers or TOS bit settings, are optional.

4. Execute each test command and note the output. The output of each test will be a single word indicating the final target of the datagram after running it through the firewall configuration -- that is, where the processing ended. For ipchains and iptables, user-specified chains will be tested in addition to the built-in ones.

5. Compare the output of each test against the desired result. If there are any discrepancies, you will need to analyse your ruleset to determine where you've made the error. If you've written your test commands into a script file, you can easily rerun the test after correcting any errors in your firewall configuration. It's a good practice to flush your rulesets completely and rebuild them from scratch, rather than to make changes dynamically. This helps ensure that the active configuration you are testing actually reflects the set of commands in your configuration script.

Let's take a quick look at what a manual test transcript would look like for our naïve example with ipchains. You will remember that our local network in the example was 172.16.1.0 with a netmask of 255.255.255.0, and we were to allow TCP connections out to web servers on the net. Nothing else was to pass our forward chain. Start with a transmission that we know should work, a connection from a local host to a web server outside:

ipchains -C forward -p tcp -s 172.16.1.0 1025 -d 44.136.8.2 80 -i eth0
accepted

Note the arguments had to be supplied and the way they've been used to describe a datagram. The output of the command indicates that that the datagram was accepted for forwarding, which is what we hoped for.

Now try another test, this time with a source address that doesn't belong to our network. This one should be denied:

ipchains -C forward -p tcp -s 172.16.2.0 1025 -d 44.136.8.2 80 -i eth0
denied

Try some more tests, this time with the same details as the first test, but with different protocols. These should be denied, too:

ipchains -C forward -p udp -s 172.16.1.0 1025 -d 44.136.8.2 80 -i eth0
denied

ipchains -C forward -p icmp -s 172.16.1.0 1025 -d 44.136.8.2 80 -i eth0
denied

Try another destination port, again expecting it to be denied:

ipchains -C forward -p tcp -s 172.16.1.0 1025 -d 44.136.8.2 23 -i eth0
denied

You'll go a long way toward achieving peace of mind if you design a series of exhaustive tests. While this can sometimes be as difficult as designing the firewall configuration, it's also the best way of knowing that your design is providing the security you expect of it.

CONCLUSION

“On the day that you take up your command, block the frontier passes, destroy the official tallies, and stop the passage of all emissaries”
THE ART OF WAR-SAN TZU
To conclude, Firewalls can be an effective means of protecting a local system on network of systems from network based security threats while at the same time affording access to the outside world via wide area networks and the Internet.

The following capabilities are within the scope of a firewall:

1. A firewall defines a single choke point that keeps unauthorized users out of the protected network, prohibits potentially vulnerable services from entering or leaving the network, and provides protection from various kinds of IP spoofing and routing attacks.
2. A firewall provides a location for monitoring security related events, Audits and alarms can be implemented on the firewall system.

3. A firewall is a convenient platform foe several internet functions that are not security related. These include a network address translator which maps local address to Internet addresses, and a network management function that audits and logs Internet usage.

4. A firewall can serve as the platform for IPSec.

However firewalls have their own limitations:
1. It cannot protect against attacks that bypass the firewall.

2. The firewall does not protect against internal threats such as a disgruntled employee or an employee who unwittingly cooperates with an external attacker.

3. The firewall cannot protect against the transfer of virus infected programs or files.

Bibliography

1. Linux Network Administrator's Guide, 2nd Edition

 By Olaf Kirch & Terry Dawson
 2nd Edition June 2000

2. Linux complete(Linux documentation project)
 - compiled by Grant Taylor

3.Firewall and Proxy Server HOWTO

 Mark Grennan, mark@grennan.com

 Feb. 26, 2000
4.Cryptography and Network Security

 -William Stallings.

5.www.firewall.com

Out In

Out In

Out In

Application level Gateway

Outside connection

Inside connection

Application level Gateway

TELNET

FTP

SMTP

HTTP

 Packet Filtering Firewall

Packet Filtering Firewall

Security Perimeter

Private Network

Internet

-s ! 172.16.0.0/15

-p tcp –d 172.16.0.0/16 ssh –j ACCEPT

-p tcp –d 172.16.0.0/16 -j ACCEPT

-p icmp -j ACCEPT

-p tcp -j tcpin

-p all

 Firewall Types

Inside connection

Outside connection

 Circuit Level Gateways

www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

