www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

 A full paper report on Grid Computing

Abstract

“Grid” computing has emerged as an important new field.

In this article, defined it. we review the “Grid problem,” which we define as flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources—what we refer to as virtual organizations.

 In such settings, we encounter unique authentication, authorization, resource access, resource discovery, and other challenges. It is this class of problem that is addressed by Grid technologies. we present an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing.

Grid computing, most simply stated, is distributed computing taken to the next

evolutionary level. The goal is to create the illusion of a simple yet large and

powerful self managing virtual computer out of a large collection of connected

heterogeneous systems sharing various combinations of resources.

 We describe requirements that we believe any such mechanisms must satisfy and we discuss the importance of defining a compact set of intergrid protocols to enable interoperability among different Grid systems.

We mainly emphasis on:

Grid Computing can do

Grid Construction

Grid Architecture

Using a Grid:User’s Perspective

Using a Grid: An Administrators Perspective

Applications of Grid

. Finally, we discuss how Grid technologies relate to other contemporary technologies, including enterprise integration, application service provider, storage service provider, and peer-to-peer computing.

 We maintain that Grid concepts and technologies complement and have much to contribute to these other approaches.

Introduction:

Grid computing, most simply stated, is distributed computing taken to the next

evolutionary level. The goal is to create the illusion of a simple yet large and

powerful self managing virtual computer out of a large collection of connected

heterogeneous systems sharing various combinations of resources.

The standardization of communications between heterogeneous systems

created the Internet explosion. The emerging standardization for sharing

resources, along with the availability of higher bandwidth, are driving a possibly

equally large evolutionary step in grid computing.

The following major topics will be introduced to the readers in this chapter:

 Grid computing can do

When you deploy a grid, it will be to meet a set of customer requirements. To

better match grid computing capabilities to those requirements, it is useful to keep in mind the reasons for using grid computing.

 Applications

There are many factors to consider in grid –enabling an application. One must

understand that not all applications can be transformed to run in parallel on a grid and achieve scalability. There are some practical tools that skilled application designers can use to write a parallel grid application. However, automatic transformation of applications is a science in its infancy. This can be a difficult job and often requires top mathematics and programming talents, if it is even possible in a given situation. New computation intensive applications written today are being designed for parallel execution and these will be easily grid-enabled, if they do not already follow emerging grid protocols and standards.

 Virtual resources and virtual organizations for collaboration

Another important grid computing contribution is to enable and simplify

collaboration among a wider audience. The users of the grid can be organized dynamically into a number of virtual organizations, each with different policy

requirements.These virtual organizations can share their resources collectively

as a larger grid.

Sharing starts with data in the form of files or databases. A “data grid” can

expand data capabilities in several ways. First, files or databases can seamlessly

span many systems and thus have larger capacities than on any single system.

Such spanning can improve data transfer rates through the use of striping techniques. Data can be duplicated throughout the grid to serve as a backup and can be hosted on or near the machines most likely to need the data, in

conjunction with advanced scheduling techniques.

Sharing is not limited to files, but also includes many other resources, such as

equipment, software, services, licenses, and others. These resources are “virtualized” to give them a more uniform interoperability among heterogeneous grid participants.

Figure 1

[image: image1.png]patcgns e
i pogam

Partogants e

Figure I

resources. We show three actual o
aercspace d

gy s
g & Gt
i et

f—
Fmm
’ B

L
e s

An setual organization can paricipate in ene or more VOs by sharing
anizations (the ovals). and two VOs: P which links participants in an
cansartium, and Q. which links colleagues who have agreed to share spare computing

eyeles, for example to run ray tracing compuations, The organization on the Lot participates in P, the one:

o theri
involed.

t participates in Q. and the hird i a member of both P and Q. The policies governing aceess to
(summarized in “quotes”) vary according to the actual rganizations,resources, and VOs

 Resource balancing

A grid federates a large number of resources contributed by individual machines into a greater total virtual resource. This feature can prove invaluable for handling occasional peak loads of activity in parts of an larger organization. This can happen in two ways:

An unexpected peak can be routed to relatively idle machines in the grid.

If the grid is already fully utilized, the lowest priority work being performed on

the grid can be temporarily suspended or even cancelled and performed again later to make room for the higher priority work.

Without a grid infrastructure, such balancing decisions are difficult to prioritize and execute.

While the Resource layer is focused on interactions with a single resource, the next layer in the architecture contains protocols and services (and APIs and SDKs) that are not associated with any one specific resource but rather are global in nature and capture interactions across collections of resources.
[image: image2.emf]
Reliability

High-end conventional computing systems use expensive hardware to increase Reliability. They are built using chips with redundant circuits that vote on results,

And contain much logic to achieve graceful recovery from an assortment of

Hardware failures. The machines also use duplicate processors with hot Pluggability so that when they fail, one can be replaced without turning the other

off. Power supplies and cooling systems are duplicated. The systems are operated on special power sources that can start generators if utility power is interrupted. All of this builds a reliable system, but at a great cost, due to the duplication of high-reliability components.

In principle, most of the reliability attributes achieved using hardware in today’s high availability systems can be achieved using software in a grid setting in the future.

 Management

The goal to virtualize the resources on the grid and more uniformly handle heterogeneous systems will create new opportunities to better manage a larger, more disperse IT infrastructure. It will be easier to visualize capacity and utilization, making it easier for IT departments to control expenditures for computing resources over a larger organization.

The grid offers management of priorities among different projects. In the past, each project may have been responsible for its own IT resource hardware and the expenses associated with it. Often this hardware might be underutilized while another project finds itself in trouble, needing more resources due to unexpected events. With the larger view a grid can offer, it becomes easier to control and manage such situations.

Aggregating utilization data over a larger set of projects can enhance an organization’s ability to project future upgrade needs. When maintenance is required, grid work can be rerouted to other machines without crippling the projects involved.

Grid construction

An ad hoc grid may be installed by a few programmers in their spare time, but as the grid grows, and as users become more dependent on it for mission-critical work, a degree of planning is essential. It is best to understand the organization’s requirements and choose grid technologies that best fit these requirements. This section discussed some of the planning considerations and grid components that address the requirements.

Grid Architecture

Our goal in describing our Grid architecture is not to provide a complete enumeration of all required protocols (and services, APIs, and SDKs) but rather to identify requirements for general classes of component. The result is an extensible, open architectural structure within which can be placed solutions to key VO requirements.
By definition, the number of protocols defined at the neck must be small. In our architecture, the neck of the hourglass consists of Resource and Connectivity protocols, which facilitate the sharing of individual resources. Protocols at these layers are designed so that they can be implemented on top of a diverse range of resource types, defined at the Fabric layer, and can in turn be used to construct a wide range of global services and application-specific behaviors at the Collective layer—so called because they involve the coordinated (“collective”) use of multiple resources.

[image: image3.emf]
Figure 2: The layered Grid architecture and its relationship to the Internet protocol architecture. Because the Internet protocol architecture extends from network to application, there is a mapping from Grid layers into Internet layers.

Deployment planning

The use of a grid is often born from a need for increased resources of some type.

One of the first considerations is the hardware available and how it is connected via a LAN or WAN, if an organization may want to add additional hardware to augment the capabilities of the grid.

Security

Security is a much more important factor in planning and maintaining a grid than

in conventional distributed computing, where data sharing comprises the bulk of the activity. In a grid, the member machines are configured to execute programs rather than just move data. This makes an unsecured grid potentially fertile ground for viruses and Trojan horse programs. For this reason, it is important to understand exactly which components of the grid must be rigorously secured to deter any kind of attack.

Organization

The technology considerations are important in deploying a grid. However, organizational and business issues can be equally important. It is important to understand how the departments in an organization interact, operate, and contribute to the whole. Often, there are barriers built between departments and projects to protect their resources in an effort to increase the probability of timely success.

Grid software components

This section presents some of the key components that must be discussed before designing a grid computing architecture.

Management components

Any grid system has some management components. First, there is a component that keeps track of the resources available to the grid and which users are members of the grid.

Second, there are measurement components that determine both the capacities

of the nodes on the grid and their current utilization rate at any given time. This information is used to schedule jobs in the grid.
Third, advanced grid management software can automatically manage many aspects of the grid. This is known as autonomic computing, or “recovery oriented computing.” This software would automatically recover from various kinds of grid failures and outages, finding alternative ways to get the workload processed.

Donor software

Each machine contributing resources typically needs to enroll as a member of

the grid and install some software that manages the grid’s use of its resources.

Some grid systems provide their own login to the grid while others depend on the native operating systems for user authentication. In the latter case, a user ID mapping system may be needed to match the user’s rights properly on different machines.

Most importantly, the software installed on a given machine can accept an executable job from the grid management system and execute it. More advanced implementations can dynamically adjust the priority of a running job, suspend it and resume running it later, or checkpoint it with the possibility of resuming its execution on a different machine. These kinds of actions may be necessary to respond to load balancing problems or priority or policy changes in the grid.

Submission software

Usually any member machine of a grid can be used to submit jobs to the grid and initiate grid queries. In some grid systems, this function is implemented

as a separate component installed on “submission nodes” or “submission clients.” When a grid is built using dedicated resources rather than scavenged resources, separate submission software is usually installed on the user’s desktop or workstation.

Distributed grid management

Larger grids may have a hierarchical or other type of organizational topology usually matching the connectivity topology. That is, machines locally connected together with a LAN form a “cluster” of machines. The grid may be organized in a hierarchy consisting of clusters of clusters. The work involved in managing the grid is distributed to increase the scalability of the grid. The collection and grid operation and resource data as well as job scheduling is distributed to match the topology of the grid.

Schedulers

Most grid systems include some sort of job scheduling software. This software locates a machine on which to run a grid job that has been submitted by a user.

In the simplest cases, it may just blindly assign jobs in a round-robin fashion to the next machine matching the resource requirements.

Some schedulers implement a job priority system. This is sometimes done by using several job queues, each with a different priority. As grid machines become available to execute jobs, the jobs are taken from the highest priority queues first.

Policies of various kinds are also implemented using schedulers.

More advanced schedulers will monitor the progress of scheduled jobs managing the overall work-flow.

Communications

A grid system may include software to help jobs communicate with each other.

The open standard Message Passing Interface (MPI) and any of several variations is often included as part of the grid system for just this kind of communication.

 Using a grid: A user’s perspective

This section describes the typical usage activities in using the grid from an user’s perspective.

 Logging onto the grid

To use the grid, most grid systems require the user to log on to a system using a user ID that is enrolled in the grid. Other grid systems may have their own grid login ID separate from the one on the operating system. A grid login is usually more convenient for grid users. It eliminates the ID matching problemsamong different machines. To the user, it makes the grid look more like one large virtual computer rather than a collection of individual machines. Some grid implementations permit some query functions if the user is not logged into the grid or even if the user is not enrolled in the grid.

 Queries and submitting jobs

The user will usually perform some queries to check to see how busy the grid is,

to see how his submitted jobs are progressing, and to look for resources on the grid. Grid systems usually provide command line tools as well as graphical user interfaces (GUIs) for queries. Command line tools are especially useful when the user wants to write a script that automates a sequence of actions. First, some input data and possibly the executable program or execution script file are sent to the machine to execute the job. Sending the input is called “staging the input data.” Alternatively, the data and program files may be pre-installed on the grid machines or accessible via a mountable networked file system. A nice feature provided by some grid systems is

to register these multiple versions of the program so that the grid system can automatically choose a correctly matching version to the grid machine that will run the program. Some grid technologies require that the program and input data be first processed or “wrappered” in some way by the grid system.

Second, the job is executed on the grid machine. The grid software running on the donating machine executes the program in a process on the user’s behalf. It may use a common user ID on the machine or it may use the user’s own user ID, depending on which grid technology is used. Some grid systems implement a Introduction to Grid Computing with Globus protective “sandbox” around the program so that it cannot cause any disruption to the donating machine if it encounters a problem during execution.

Third, the results of the job are sent back to the submitter. In some implementations, intermediate results can be viewed by the user who submitted the job.

Data configuration

The data accessed by the grid jobs may simply be staged in and out by the grid
system. However, depending on its size and the number of jobs, this can potentially add up to a large amount of data traffic. For this reason, some thought is usually given on how to arrange to have the minimum of such data movement on the grid.

There are many considerations in efficiently planning the distribution and sharing of data on a grid. This type of analysis is necessary for large jobs to better utilize the grid and not create unnecessary bottlenecks.

 Monitoring progress and recovery

The user can query the grid system to see how his application and its sub jobs are progressing. When the number of subjobs becomes large, it becomes too difficult to list them all in a graphical window. Instead, there may simply be a one large bar graph showing some averaged progress metric. It becomes more difficult for the user to tell if any particular subjob is not running properly.

A grid system, in conjunction with its job scheduler, often provides some degree of recovery for subjobs that fail. A job may fail due to a:

Programming error: The job stops part way with some program fault.

Hardware or power failure: The machine or devices being used stop working

in some way.

Communications interruption: A communication path to the machine has failed or is overloaded with other data traffic.

Excessive slowness: The job might be in an infinite loop or normal job progress may be limited by another process running at a higher priority or some other form of contention.

Using a grid:An administrato’r perspective
This section describes the typical usage activities in using the grid from an administrator’s perspective.

 Planning

The administrator should understand the organization’s requirements for the grid
to better choose the grid technologies that satisfy those requirements. The following sections briefly describe the steps the administrator may take to manage the grid. It is suggested that one should start by deploying a small grid first, to learn about its installation and management, before having to confront more complicated issues involved with a large grid.

 Installation

First, the selected grid system must be installed on an appropriately configured

set of machines. These machines should be connected using networks with sufficient bandwidth to other machines on the grid. Of prime importance is understanding the fail-over scenarios for the given grid system so that the grid can continue operating even if any of the management machines fails in some way. Machines should be configured and connected to facilitate recovery scenarios. Any critical databases or other data essential for keeping track of the jobs in the grid, members of the grid, and machines on the grid should have suitable backups. The software to be installed on the donor machines may need to be customized so that it can find the grid management machines automatically and include pre-installed public keys for the grid. This software may be provided to potential donors on an FTP or equivalent server or be made available on physical media.

Once, the grid is operational, there may be application software and data that should be installed on donor machines as well. This software may have specific licensing restrictions that should be understood and adhered to. Some grid systems include tools to assist with grid-wide license management. This can both help in following the rules of the licenses and most efficiently exploit those licenses.

 Managing enrollment of donors and users

An ongoing task for the grid administrator is to manage the members of the grid,

both the machines donating resources and the users. Users may be further

organized as project groups. The administrator is responsible for controlling the

rights of the users in the grid. Donor machines may have access rights that

require management as well. Grid jobs running on donor machines may be

executed under a special grid user ID on behalf of the users submitting the jobs.

The rights of these grid user IDs must be properly set so that grid jobs do not allow access to parts of the donor machine to which the users are not entitled.

As users join the grid, their identity must be positively established and entered in

the Certificate Authority. The user and his certificate credentials must be added

to the user list using the software appropriate for the grid system deployed. In some cases, the administrator must propagate the user information to several or all grid machines.

The administrator must enter the machine’s identification credentials, addresses, and resource characteristics using the appropriate software for enrolling the donor machine into the grid. In some cases, the administrator may need to manually propagate this information to other machines in the grid.

Corresponding procedures for removing users and machines must be executed by the administrator.

 Certificate authority

It is critical to ensure the highest levels of security in a grid because the grid is designed to execute code and not just share data. Thus, it can be fertile ground for viruses, Trojan horses, and other attacks if the grid system is compromised in any way. The Certificate Authority is one of the most important aspects of maintaining strong grid security. An organization may choose to use an external

Certificate Authority or operate one itself. You must be able to trust the Certificate Authority to strictly adhere to its responsibilities.

The primary responsibilities of a Certificate Authority are:

· Positively identify entities requesting certificates

· Issuing, removing, and archiving certificates

· Protecting the Certificate Authority server

· Maintaining a namespace of unique names for certificate owners

· Serve signed certificates to those needing to authenticate entities

· Logging activity

Briefly, a Certificate Authority is based on the public key encryption system. In

this system, keys are generated in pairs, a public key and a private key. Either

one can be used to encrypt some data such that the other is needed to decrypt it.

The private key is guarded by the owner and never revealed to anyone. The public one is given to anyone needing it. A Certificate Authority is used to hold these public keys and to guarantee who they belong to. When a user uses his private key to encrypt something, the receiver uses the corresponding public key to decrypt it. The receiver knows that only that user’s public key can decrypt the message correctly. However, anyone could intercept this message and decrypt it because anyone can get the originator’s public key. If the originator instead doubly encrypts the message with his private key and the intended recipient’s public key, a secure communication link is formed. The receiver uses his private key to decrypt the message and then uses the sender’s public key for the second decryption. Now the recipient knows that if the message decrypts properly, then only the sender could have sent it and furthermore, the sender knows that only

the intended receiver can decrypt it. The beauty of all of this is that nobody had to securely carry an encryption key from the sender to the receiver, as must be done for conventional encryption systems, and any tampering with the communication is revealed.

 Resource management

Another responsibility of the administrator is to manage the resources of the grid.

This includes setting permissions for grid users to use the resources as well astracking resource usage and implementing a corresponding accounting or billing system. Usage statistics are useful in identifying trends in an organization that may require the acquisition of additional hardware, reduction in excess hardware to reduce costs, and adjustments in priorities and policies to achieve utilization that is fairer or better achieves the overall goals of an organization.

Software license managers can be used in a grid setting to control the proper utilization.

These may be configured to work with job schedulers to prioritize the use of the limited licenses.

 Data sharing

For small grids, the sharing of data can be fairly easy, using existing networked file systems, databases, or standard data transfer protocols. As a grid grows and the users become dependent on any of the data storage repositories, the administrator should consider procedures to maintain backup copies and replicas to improve performance. All of the resource management concerns apply to data on the grid.

Applications Of Grid:

Grid applications include

· Distributed Supercomputing

· Distributed Supercomputing applications couple multiple computational resources – supercomputers and/or workstations

· Distributed supercomputing applications include SFExpress (large-scale modeling of battle entities with complex interactive behavior for distributed interactive simulation), Climate Modeling (modeling of climate behavior using complex models and long time-scales)

· High-Throughput Applications

Grid used to schedule large numbers of independent or loosely coupled tasks with the goal of putting unused cycles to work

High-throughput applications include RSA key cracking.

· Data-Intensive Applications

Sharing relationships can vary dynamically over time, in terms of the resources involved, the nature of the access permitted, and the participants to whom access is permitted. The dynamic nature of sharing relationships means that we require mechanisms for discovering and characterizing the nature of the relationships that exist at a particular point in time.

Sharing relationships are often not simply client-server, but peer to peer: providers can be consumers, and sharing relationships can exist among any subset of participants. Sharing relationships may be combined to coordinate use across many resources, each owned by different organizations.

These characteristics and requirements define what we term a virtual organization, a concept that we believe is becoming fundamental to much of modern computing. VOs enable disparate groups of organizations and/or individuals to share resources in a controlled fashion, so that members may collaborate to achieve a shared goal.

 Conclusion:

We have provided in this article a concise statement of the “Grid problem,” which we define as controlled and coordinated resource sharing and resource use in dynamic, scalable virtual organizations.

Finally, we have discussed in some detail how Grid technologies relate to other important technologies.

We also hope that our analysis will help establish connections among Grid developers and proponents of related technologies.

 References

1. Barry, J., Aparicio,M., Durniak, T., Herman, P., Karuturi, J.,Woods, C., Gilman, C.,

Ramnath, R. and Lam, H., NIIIP-SMART: An Investigation of Distributed Object

Approaches to Support MES Development and Deployment in a Virtual Enterprise. In

2nd Intl Enterprise Distributed Computing Workshop, 1998, IEEE Press.

2. Berman, F., Wolski, R., Figueira, S., Schopf, J. and Shao, G. Application-Level

Scheduling on Distributed Heterogeneous Networks. In Proc. Supercomputing '96, 1996.
www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

