www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

File Compression Format -The algorithm and technique

ABSTRACT

This paper introduces VoiceXML, the Voice eXtensible Markup Language. VoiceXML is designed for creating audio dialogs that feature synthesized speech, digitized audio, recognition of spoken and DTMF key input, recording of spoken input, telephony, and mixed initiative conversations. Its major goal is to bring the advantages of web-based development and content delivery to interactive voice response applications. The primary goal is to analyze the computer language, understand speech grammar and determine the applications of the same.

Data compression has an undeserved reputation for being difficult to master, hard to implement, and tough to maintain.
Contents

1. Introduction

6
2. algorithmic complexity theory

3. self-extracting archive

8

4. image compression

5. speech compression

6. video compression

7. multimedia compression

8. The Constraints

18

9. Conclusion

19

10. References

 20

Introduction

Compression algorithms
 Lossless data compression
· run-length encoding
· dictionary coders

· LZ77 & LZ78
· LZW
· Burrows-Wheeler transform
· prediction by partial matching (also known as PPM)

· context mixing
· entropy encoding

· Huffman coding (simple entropy coding; commonly used as the final stage of compression)

· Adaptive Huffman coding
· arithmetic coding (more advanced)

· Shannon-Fano coding
· range encoding (same as arithmetic coding, but looked at in a slightly different way)

· T-code, A variant of Huffman code

· Golomb coding (simple entropy coding for infinite input data with a geometric distribution)

· universal codes (entropy coding for infinite input data with an arbitrary distribution)

· Elias gamma coding
· Fibonacci coding
Lossy data compression
· discrete cosine transform
· fractal compression

· fractal transform
· wavelet compression
· vector quantization
· linear predictive coding
· Distributed Source Coding Using Syndromes, for correlated data
· Modulo-N code for correlated data
· A-law Compander

· Mu-law Compander

 Example Implementations
· DEFLATE (a combination of LZ77 and Huffman coding) – used by ZIP, gzip and PNG files

· LZMA used by 7-Zip and StuffitX
· LZO (very fast LZ variation, speed oriented)

· LZX (an LZ77 family compression algorithm)

· Unix compress utility (the .Z file format), and GIF use LZW
· bzip2 (a combination of the Burrows-Wheeler transform and Huffman coding)

· PAQ (very high compression based on context mixing, but extremely slow; competing in the top of the highest compression competitions)

· JPEG (image compression using a discrete cosine transform, then quantization, then Huffman coding)

· MPEG (audio and video compression standards family in wide use, using DCT and motion-compensated prediction for video)

· MP3 (a part of the MPEG-1 standard for sound and music compression, using subbanding and MDCT, perceptual modeling, quantization, and Huffman coding)

· AAC (part of the MPEG-2 and MPEG-4 audio coding specifications, using MDCT, perceptual modeling, quantization, and Huffman coding)

· Vorbis (DCT based AAC-alike audio codec, designed with a focus on avoiding patent encumbrance)

· JPEG 2000 (image compression using wavelets, then quantization, then entropy coding)

· TTA (uses linear predictive coding for lossless audio compression)

· FLAC (linear predictive coding for lossless audio compression)

LZW Fundamentals

The original Lempel Ziv approach to data compression was first published in in 1977, followed by an alternate approach in 1978. Terry Welch's refinements to the 1978 algorithm were published in 1984. The algorithm is surprisingly simple. In a nutshell, LZW compression replaces strings of characters with single codes. It does not do any analysis of the incoming text. Instead, it just adds every new string of characters it sees to a table of strings. Compression occurs when a single code is output instead of a string of characters.

The code that the LZW algorithm outputs can be of any arbitrary length, but it must have more bits in it than a single character. The first 256 codes (when using eight bit characters) are by default assigned to the standard character set. The remaining codes are assigned to strings as the algorithm proceeds. The sample program runs as shown with 12 bit codes. This means codes 0-255 refer to individual bytes, while codes 256-4095 refer to substrings.

Compression

The LZW compression algorithm in its simplest form is shown in Figure 1. A quick examination of the algorithm shows that LZW is always trying to output codes for strings that are already known. And each time a new code is output, a new string is added to the string table.

Routine LZW_COMPRESS
CODE:
1. STRING = get input character

2. WHILE there are still input characters DO

3. CHARACTER = get input character

4. IF STRING+CHARACTER is in the string table then

5. STRING = STRING+character

6. ELSE

7. output the code for STRING

8. add STRING+CHARACTER to the string table

9. STRING = CHARACTER

10. END of IF

11. END of WHILE

12. output the code for STRING

The Compression Algorithm
Figure 1

A sample string used to demonstrate the algorithm is shown in Figure 2. The input string is a short list of English words separated by the '/' character. Stepping through the start of the algorithm for this string, you can see that the first pass through the loop, a check is performed to see if the string "/W" is in the table. Since it isn't, the code for '/' is output, and the string "/W" is added to the table. Since we have 256 characters already defined for codes 0-255, the first string definition can be assigned to code 256. After the third letter, 'E', has been read in, the second string code, "WE" is added to the table, and the code for letter 'W' is output. This continues until in the second word, the characters '/' and 'W' are read in, matching string number 256. In this case, the code 256 is output, and a three character string is added to the string table. The process continues until the string is exhausted and all of the codes have been output.

	Input String = /WED/WE/WEE/WEB/WET

	Character Input
	Code Output
	New code value
	New String

	/W
	/
	256
	/W

	E
	W
	257
	WE

	D
	E
	258
	ED

	/
	D
	259
	D/

	WE
	256
	260
	/WE

	/
	E
	261
	E/

	WEE
	260
	262
	/WEE

	/W
	261
	263
	E/W

	EB
	257
	264
	WEB

	/
	B
	265
	B/

	WET
	260
	266
	/WET

	EOF
	T
	
	

The Compression Process
Figure 2

The sample output for the string is shown in Figure 2 along with the resulting string table. As can be seen, the string table fills up rapidly, since a new string is added to the table each time a code is output. In this highly redundant input, 5 code substitutions were output, along with 7 characters. If we were using 9 bit codes for output, the 19 character input string would be reduced to a 13.5 byte output string. Of course, this example was carefully chosen to demonstrate code substitution. In real world examples, compression usually doesn't begin until a sizable table has been built, usually after at least one hundred or so bytes have been read in.

Decompression

The companion algorithm for compression is the decompression algorithm. It needs to be able to take the stream of codes output from the compression algorithm, and use them to exactly recreate the input stream. One reason for the efficiency of the LZW algorithm is that it does not need to pass the string table to the decompression code. The table can be built exactly as it was during compression, using the input stream as data. This is possible because the compression algorithm always outputs the STRING and CHARACTER components of a code before it uses it in the output stream. This means that the compressed data is not burdened with carrying a large string translation table.

Routine LZW_DECOMPRESS

CODE:
1. Read OLD_CODE

2. output OLD_CODE

3. WHILE there are still input characters DO

4. Read NEW_CODE

5. STRING = get translation of NEW_CODE

6. output STRING

7. CHARACTER = first character in STRING

8. add OLD_CODE + CHARACTER to the translation table

9. OLD_CODE = NEW_CODE

10. END of WHILE

The Decompression Algorithm
Figure 3

The algorithm is shown in Figure 3. Just like the compression algorithm, it adds a new string to the string table each time it reads in a new code. All it needs to do in addition to that is translate each incoming code into a string and send it to the output.

Figure 4 shows the output of the algorithm given the input created by the compression earlier in the article. The important thing to note is that the string table ends up looking exactly like the table built up during compression. The output string is identical to the input string from the compression algorithm. Note that the first 256 codes are already defined to translate to single character strings, just like in the compression code.

	Input Codes: / W E D 256 E 260 261 257 B 260 T

	Input/
NEW_CODE
	OLD_CODE
	STRING/
Output
	CHARACTER
	New table entry

	/
	/
	/
	
	

	W
	/
	W
	W
	256 = /W

	E
	W
	E
	E
	257 = WE

	D
	E
	D
	D
	258 = ED

	256
	D
	/W
	/
	259 = D/

	E
	256
	E
	E
	260 = /WE

	260
	E
	/WE
	/
	261 = E/

	261
	260
	E/
	E
	262 = /WEE

	257
	261
	WE
	W
	263 = E/W

	B
	257
	B
	B
	264 = WEB

	260
	B
	/WE
	/
	265 = B/

	T
	260
	T
	T
	266 = /WET

The Decompression Process
Figure 4

The Catch

Unfortunately, the nice simple decompression algorithm shown in Figure 4 is just a little too simple. There is a single exception case in the LZW compression algorithm that causes some trouble to the decompression side. If there is a string consisting of a (STRING,CHARACTER) pair already defined in the table, and the input stream then sees a sequence of STRING, CHARACTER, STRING, CHARACTER, STRING, the compression algorithm will output a code before the decompressor gets a chance to define it.

A simple example will illustrate the point. Imagine the the string JOEYN is defined in the table as code 300. Later on, the sequence JOEYNJOEYNJOEY occurs in the table. The compression output will look like that shown in Figure 5.

	Input String: ...JOEYNJOEYNJOEY

	Character Input
	New Code/String
	Code Output

	JOEYN
	300 = JOEYN
	288 (JOEY)

	A
	301 = NA
	N

	.
	.
	.

	.
	.
	.

	.
	.
	.

	JOEYNJ
	400 = JOEYNJ
	300 (JOEYN)

	JOEYNJO
	401 = JOEYNJO
	400 (???)

A problem
Figure 5

When the decompression algorithm sees this input stream, it first decodes the code 300, and outputs the JOEYN string. After doing the output, it will add the definition for code 399 to the table, whatever that may be. It then reads the next input code, 400, and finds that it is not in the table. This is a problem, what do we do?

Fortunately, this is the only case where the decompression algorithm will encounter an undefined code. Since it is in fact the only case, we can add an exception handler to the algorithm. The modified algorithm just looks for the special case of an undefined code, and handles it. In the example in Figure 5, the decompression routine sees a code of 400, which is undefined. Since it is undefined, it translates the value of OLD_CODE, which is code 300. It then adds the CHARACTER value, which is 'J', to the string. This results in the correct translation of code 400 to string "JOEYNJ".

Routine LZW_DECOMPRESS

CODE:
1. Read OLD_CODE

2. output OLD_CODE

3. CHARACTER = OLD_CODE

4. WHILE there are still input characters DO

5. Read NEW_CODE

6. IF NEW_CODE is not in the translation table THEN

7. STRING = get translation of OLD_CODE

8. STRING = STRING+CHARACTER

9. ELSE

10. STRING = get translation of NEW_CODE

11. END of IF

12. output STRING

13. CHARACTER = first character in STRING

14. add OLD_CODE + CHARACTER to the translation table

15. OLD_CODE = NEW_CODE

16. END of WHILE

The Modified Decompression Algorithm
Figure 6

The Implementation Blues

The concepts used in the compression algorithm are very simple -- so simple that the whole algorithm can be expressed in only a dozen lines. Implementation of this algorithm is somewhat more complicated, mainly due to management of the string table.

In the code accompanying this article, I have used code sizes of 12, 13, and 14 bits. In a 12 bit code program, there are potentially 4096 strings in the string table. Each and every time a new character is read in, the string table has to be searched for a match. If a match is not found, then a new string has to be added to the table. This causes two problems. First, the string table can get very large very fast. If string lengths average even as low as three or four characters each, the overhead of storing a variable length string and its code could easily reach seven or eight bytes per code.

In addition, the amount of storage needed is indeterminate, as it depends on the total length of all the strings.

The second problem involves searching for strings. Each time a new character is read in, the algorithm has to search for the new string formed by STRING+CHARACTER. This means keeping a sorted list of strings. Searching for each string will take on the order of log2 string comparisons. Using 12 bit words means potentially doing 12 string compares for each code. The computational overhead caused by this would be prohibitive.

The first problem can be solved by storing the strings as code/character combinations. Since every string is actually a combination of an existing code and an appended character, we can store each string as single code plus a character. For example, in the compression example shown, the string "/WEE" is actually stored as code 260 with appended character E. This takes only three bytes of storage instead of 5 (counting the string terminator). By backtracking, we find that code 260 is stored as code 256 plus an appended character E. Finally, code 256 is stored as a '/' character plus a 'W'.

Doing the string comparisons is a little more difficult. Our new method of storage reduces the amount of time for a string comparison, but it doesn't cut into the the number of comparisons needed to find a match. This problem is solved by storing strings using a hashing algorithm. What this means is that we don't store code 256 in location 256 of an array. We store it in a location in the array based on an address formed by the string itself. When we are trying to locate a given string, we can use the test string to generate a hashed address, and with luck can find the target string in one search.

Since the code for a given string is no longer known merely by its position in the array, we need to store the code for a given string along with the string data. In the attached program, there are three array elements for each string. They are code_value[i], prefix_code[i], and append_character[i].

When we want to add a new code to the table, we use the hashing function in routine find_match to generate the correct value of i. First find_match generates an address, then checks to see if the location is already in use by a different string. If it is, it performs a secondary probe until an open location is found.

The hashing function in use in this program is a straightforward XOR type hash function. The prefix code and appended character are combined to form an array address. If the contents of the prefix code and character in the array are a match, the correct address is returned. If that element in the array is in use, a fixed offset probe is used to search new locations. This continues until either an empty slot is found, or a match is found. By using a table about 25% larger than needed, the average number of searches in the table usually stays below 3. Performance can be improved by increasing the size of the table.

Note that in order for the secondary probe to always work, the size of the table needs to be a prime number. This is because the probe can be any integer between 0 and the table size. If the probe and the table size were not mutually prime, a search for an open slot could fail even if there were still open slots available.

Implementing the decompression algorithm has its own set of problems. One of the problems from the compression code goes away. When we are compressing, we need to search the table for a given string. During decompression, we are looking for a particular code. This means that we can store the prefix codes and appended characters in the table indexed by their string code. This eliminates the need for a hashing function, and frees up the array used to store code values.

Unfortunately, the method we are using of storing string values causes the strings to be decoded in reverse order. This means that all the characters for a given string have to be decoded into a stack buffer, then output in reverse order. In the program here this is done in the decode_string function. Once this code is written, the rest of the algorithm turns into code very easily.

One problem encountered when reading in data streams is determining when you have reached the end of the input data stream. In this particular implementation, I have reserved the last defined code, MAX_VALUE, as a special end of data indicator. While this may not be necessary when reading in data files, it is very helpful when reading compressed buffers out of memory. The expense of losing one defined code is minimal in comparison to the convenience.

Results

It is somewhat difficult to characterize the results of any data compression technique. The level of compression achieved varies quite a bit depending on several factors. LZW compression excels when confronted with data streams that have any type of repeated strings. Because of this, it does extremely well when compressing English text. Compression levels of 50% or better should be expected. Likewise, compressing saved screens and displays will generally show very good results.

Trying to compress binary data files is a little more risky. Depending on the data, compression may or may not yield good results. In some cases, data files will compress even more than text. A little bit of experimentation will usually give you a feel for whether your data will compress well or not.

Your Implementation

The code accompanying this article works. However, it was written with the goal of being illuminating, not efficient. Some parts of the code are relatively inefficient. For example, the variable length input and output routines are short and easy to understand, but require a lot of overhead. An LZW program using fixed length 12 bit codes could experience real improvements in speed just by recoding these two routines.

One problem with the code listed here is that it does not adapt well to compressing files of differing sizes. Using 14 or 15 bit codes gives better compression ratios on large files, (because they have a larger string table to work with), but actually has poorer performance on small files. Programs like ARC get around this problem by using variable length codes. For example, while the value of next_code is between 256 and 511, ARC inputs and outputs 9 bit codes. When the value of next_code increases to the point where 10 bit codes are needed, both the compression and decompression routines adjust the code size. This means that the 12 bit and 15 bit versions of the program will do equally well on small files.

Another problem on long files is that frequently the compression ratio begins to degrade as more of the file is read in. The reason for this is simple. Since the string table is of finite size, after a certain number of strings have been defined, no more can be added. But the string table is only good for the portion of the file that was read in while it was built. Later sections of the file may have different characteristics, and really need a different string table.

The conventional way to solve this problem is to monitor the compression ratio. After the string table is full, the compressor watches to see if the compression ratio degrades. After a certain amount of degradation, the entire table is flushed, and gets rebuilt from scratch. The expansion code is flagged when this happens by seeing a special code from the compression routine.

An alternative method would be to keep track of how frequently strings are used, and to periodically flush values that are rarely used. An adaptive technique like this may be too difficult to implement in a reasonably sized program.

One final technique for compressing the data is to take the LZW codes and run them through an adaptive Huffman coding filter. This will generally exploit a few more percentage points of compression, but at the cost of considerable more complexity in the code, as well as quite a bit more run time.

LZW compression provided a better compression ratio, in most applications, than any well-known method available up to that time. It became the first widely used universal data compression method on computers. It would typically compress large English texts to about half of their original sizes.

Today, an implementation of the algorithm is contained within the popular Adobe Acrobat software program.

Example

This example shows the LZW algorithm in action, showing the status of the output and the dictionary at every stage, both in encoding and decoding the message. In order to keep things clear, let us assume that we're dealing with a simple alphabet - capital letters only, and no punctuation or spaces. This example has been constructed to give reasonable compression on a very short message; when used on real data, repetition is generally less pronounced, and so the initial parts of a message will see little compression. As the message grows, however, the compression ratio tends asymptotically to the maximum.[2] A message to be sent might then look like the following:

TOBEORNOTTOBEORTOBEORNOT#

The # is a marker used to show that the end of the message has been reached. Clearly, then, we have 27 symbols in our alphabet. A computer will render these as strings of bits; 5-bit strings are needed to give sufficient combinations to encompass the entire dictionary. As the dictionary grows, the strings will need to grow in length to accommodate the additional entries. A 5-bit string gives 25 = 32 possible combinations of bits, and so when the 33rd dictionary word is created, the algorithm will have to start using 6-bit strings. Note that since the all-zero string 00000 is used, and is labeled "0", the 33rd dictionary entry will be labeled 32. The initial dictionary, then, will consist of the following:

= 00000

A = 00001

B = 00010

C = 00011

.

.

.

Z = 11010

Encoding

If we weren't using LZW, and just sent the message as it stands (25 symbols at 5 bits each), it would require 125 bits. We will be able to compare this figure to the LZW output later. We are now in a position to apply LZW to the message.

Symbol: Bit Code: New Dictionary Entry:

 (= output)

T 20 = 10100 28: TO

O 15 = 01111 29: OB

B 2 = 00010 30: BE

E 5 = 00101 31: EO

O 15 = 01111 32: OR <--- start using 6-bit strings

R 18 = 010010 33: RN

N 14 = 001110 34: NO

O 15 = 001111 35: OT

T 20 = 010100 36: TT

TO 28 = 011100 37: TOB

BE 30 = 011110 38: BEO

OR 32 = 100000 39: ORT

TOB 37 = 100101 40: TOBE

EO 31 = 011111 41: EOR

RN 33 = 100001 42: RNO

OT 35 = 100011 43: OT#

0 = 000000

Total Length = 5*5 + 12*6 = 97 bits.

In using LZW we have made a saving of 28 bits out of 125 -- we have reduced the message by almost 22%. If the message were longer, then the dictionary words would begin to represent longer and longer sections of text, allowing repeated words to be sent very compactly.

Decoding

Imagine now that we have received the message produced above, and wish to decode it. We need to know in advance the initial dictionary used, but we can reconstruct the additional entries as we go, since they are always simply concatenations of previous entries.

Bits: Output: New Entry:

 Full: Partial:

10100 = 20 T 28: T?

01111 = 15 O 28: TO 29: O?

00010 = 2 B 29: OB 30: B?

00101 = 5 E 30: BE 31: E?

01111 = 15 O 31: EO 32: O? <--- start using 6-bit strings

010010 = 18 R 32: OR 33: R?

001110 = 14 N 33: RN 34: N?

001111 = 15 O 34: NO 35: O?

010100 = 20 T 35: OT 36: T?

011100 = 28 TO 36: TT 37: TO? <--- for 36, only add 1st element

011110 = 30 BE 37: TOB 38: BE? of next dictionary word

100000 = 32 OR 38: BEO 39: OR?

100101 = 37 TOB 39: ORT 40: TOB?

011111 = 31 EO 40: TOBE 41: EO?

100001 = 33 RN 41: EOR 42: RN?

100011 = 35 OT 42: RNO 43: OT?

000000 = 0 #

The only slight complication comes if the newly-created dictionary word is sent immediately. In the decoding example above, when the decoder receives the first symbol, T, it knows that symbol 28 begins with a T, but what does it end with? The problem is illustrated below. We are decoding part of a message that reads ABABA:

Bits: Output: New Entry:

 Full: Partial:

.

.

.

011101 = 29 AB 46: (word) 47: AB?

101111 = 47 AB? <--- what do we do here?

At first glance, this may appear to be asking the impossible of the decoder. We know ahead of time that entry 47 should be ABA, but how can the decoder work this out? The critical step is to note that 47 is built out of 29 plus whatever comes next. 47, therefore, ends with "whatever comes next". But, since it was sent immediately, it must also start with "whatever comes next", and so must end with the same symbol it starts with, namely A. This trick allows the decoder to see that 47 must be ABA.

More generally the situation occurs whenever the encoder encounters the input of the form cScSc, where c is a single character, S is a string and cS is already in the dictionary. The encoder outputs the symbol for cS putting new symbol for cSc in the dictionary. Next it sees the cSc in the input and sends the new symbol it just inserted into the dictionary. By the reasoning presented in the above example this is the only case where the newly-created symbol is sent immediately.

#Lempel-Ziv-Welch compression algorithm

#Translated to python by Thomas Van Durme

#Last edited: September 20, 2006

class LZW:

 """Returns the compressed string in utf8 format"""

 def compress(self,uncompressed):

 if isinstance(uncompressed, str):

 chars = int(256)

 mydict = dict()

 buffer = list()

 result = str()

 for i in range(chars):

 mydict[str(i)] = i

 for i in uncompressed:

 if len(buffer) == 0:

 xstr = str(ord(i))

 else:

 xstr = self.__join(buffer,"-")+"-"+str(ord(i))

 if mydict.has_key(xstr):

 buffer.append(ord(i))

 else:

 result += unichr(mydict[self.__join(buffer,"-")]).encode('utf8')

 mydict[xstr] = chars

 chars += 1

 del buffer

 buffer = list()

 buffer.append(ord(i))

 if len(buffer) != 0:

 result += unichr(mydict[self.__join(buffer,"-")]).encode('utf8')

 return result

 else:

 raise TypeError

 """Returns the decompressed string, input is a utf8 compressed string"""

 def decompress(self,compressed):

 if isinstance(compressed, str):

 chars = int(256)

 mydict = dict()

 for i in range(chars):

 mydict[i] = unichr(i).encode('utf8')

 decoded = compressed.decode('string_escape').decode('utf8')

 buffer = str()

 chain = str()

 result = str()

 for i in decoded:

 code = ord(i)

 current = mydict[code]

 if buffer == "":

 buffer = current

 result += current

 else:

 if code<=255:

 result += current

 chain = buffer+current

 mydict[chars] = chain

 chars += 1

 buffer = current

 else:

 if mydict.has_key(code):

 chain = mydict[code]

 else:

 chain = buffer+buffer[0]

 result += chain

 mydict[chars] = buffer+chain[0]

 chars += 1

 buffer = chain

 return result

 else:

 raise TypeError

 def __join(self,mylist,delimiter):

 if isinstance(mylist,list) and isinstance(delimiter,str):

 result = str()

 for i in range(0,len(mylist)):

 try:

 if i+1 == len(mylist):

 result += str(mylist[i])

 else:

 result+= str(mylist[i])+delimiter

 except TypeError:

 pass

 return result

 else:

 raise TypeError

How to use:

lzw = LZW()

a = lzw.compress("<sample><name>test</name></sample>")

print a

b = lzw.decompress(a)

print b

Lempel-Ziv-Welch (LZW) Encoding Discussion and Implementation

The need to explore a compression algorithm has struck again. After playing with LZSS (LZ77) I thought LZW (LZ78) was something I should eventually get around to studying. I've played with several other things since having that thought, but it finally took hold, and became the thing that consumed "free time"

As with my other compression implementations, my intent is to publish an easy to follow ANSI C implementation of the Lempel-Ziv-Welch Encoding (LZW) encoding/decoding algorithm. Anyone familiar with ANSI C and LZW or LZ78 should be able to follow and learn from my implementation. I'm sure that there's room for improvement of compression ratios, speed, and memory usage, but this project is about learning and sharing, not perfection.

Click here for a link to my LZW source. The rest of this page discusses LZW and my implementation.

Algorithm Overview

Like it's predecessor LZSS (LZ77), the Lempel-Ziv-Welch algorithm uses a dynamically generated dictionary and and encodes strings by a reference to the dictionary. It is intended that the dictionary reference should be shorter than the string it replaces. As you will see, LZW achieves it's goal for all strings larger than 1.

Encoding

The LZSS algorithm uses a sliding window dictionary, where each entry is a character. LZSS code words consist of an offset to a sliding window and the number of characters following the offset to include in an encoded string. Entries in the LZW dictionary are strings, and every LZW code word is a reference to a string in the dictionary.

Okay, so where does the dictionary come from, and why can't I find an entry for my whole file in it?

The Dictionary and Encoded Strings

The LZW dictionary is not an external dictionary that lists all known symbol strings. Instead, the dictionary is initialized with an entry for every possible byte. Other strings are added as they are built from the input stream. The code word for a string is simply the next available value at the time it is added to the dictionary.

An "encoded" string is used to add new strings to the dictionary. The encoded string is built from the input stream. The input stream is read 1 byte at a time. If the string formed by concatenating the new byte to the encoded string is in the dictionary, the new byte is added to the end of the encoded string. Otherwise a dictionary entry is made for the new string and the code word for the coded string is written to the output stream. Then the encoded string is set to the byte that was just read.

The Basic Encoding Algorithm

Based on the discussion above, encoding input consists of the following steps:

	Step 1.
	Initialize dictionary to contain one entry for each byte.
Initialize the encoded string with the first byte of the input stream.

	Step 2.
	Read the next byte from the input stream.

	Step 3.
	If the byte is an EOF goto step 6.

	Step 4.
	If concatenating the byte to the encoded string produces a string that is in the dictionary:

· concatenate the the byte to the encoded string

· go to step 2

	Step 5.
	If concatenating the byte to the encoded string produces a string that is not in the dictionary:

· add the new sting to the dictionary

· write the code for the encoded string to the output stream

· set the encoded string equal to the new byte

· go to step 2

	Step 6.
	Write out code for encoded string and exit.

example 1: The string "this_is_his_thing" is encoded as follows:

	New Byte
	Encoded String
	New Code
	Code Output

	t
	t
	None
	None

	h
	h
	256 (th)
	t

	i
	i
	257 (hi)
	h

	s
	s
	258 (is)
	i

	_
	_
	259 (s_)
	s

	i
	i
	260 (_i)
	_

	s
	is
	None
	None

	_
	_
	261 (is_)
	258 (is)

	h
	h
	262 (_h)
	_

	i
	hi
	None
	None

	s
	s
	263 (his)
	257 (hi)

	_
	s_
	None
	None

	t
	t
	264 (s_t)
	259 (s_)

	h
	th
	None
	None

	i
	i
	265 (thi)
	256 (th)

	n
	n
	266 (in)
	i

	g
	g
	267 (ng)
	n

	None
	None
	None
	g

In the example above, a 17 character string is represented by 13 code words. Any actual compression that would occur would be based on the size of the code words. In this example code words could be as short as 9 bits. Typically code words are 12 to 16 bits long. Of course the typical input stream is also longer than 17 characters.

Decoding

It shouldn't be a big surprise that LZW data is decoded pretty much the opposite of how it's encoded. The dictionary is initialized so that it contains an entry for each byte. Instead of maintaining an encoded string, the last code word and the first character in the string it encodes are maintained. New code words are read from the input stream one at a time and string encoded by the new code is output.

During the encoding process, the code prior to the current code is written because concatenating the first character of the current code with the string encoded by the prior code generated a code that wasn't in the dictionary. When that happened the string formed by the concatenation was added to the dictionary. The same string needs to be added to the dictionary this time around.

The Basic Decoding Algorithm

Based on the discussion above, decoding input consists of the following steps:

The Basic Decoding Algorithm

	Step 1.
	Initialize dictionary to contain one entry for each byte.

	Step 2.
	Read the first code word from the input stream and write out the byte it encodes.

	Step 3.
	Read the next code word from the input stream.

	Step 4.
	If the code word is an EOF exit.

	Step 5.
	Write out the string encoded by the code word.

	Step 6.
	Concatenate the first character in the new code word to the string produced by the previous code word and add the resulting string to the dictionary.

	Step 7.
	Go to step 3.

example 2: Decode the stream 't' 'h' 'i' 's' '_' 258 '_' 257 259 256 'i' 'n' 'g' produced by the previous example
	Input Code
	Encoded String
	Added Code
	String Output

	t
	t
	None
	t

	h
	h
	256 (th)
	h

	i
	i
	257 (hi)
	i

	s
	s
	258 (is)
	s

	_
	_
	259 (s_)
	_

	258
	is
	260 (_i)
	is

	_
	_
	261 (is_)
	_

	257
	hi
	262 (_h)
	hi

	259
	s_
	263 (his)
	s_

	256
	th
	264 (s_t)
	th

	i
	i
	265 (thi)
	i

	n
	n
	266 (in)
	n

	g
	g
	267 (ng)
	g

The decode string matches the original encoded string, so I must have done something right. One of my favorite things about LZW is that the decoder doesn't require any additional information from the encoder. There's no need to include extra information commonly required by statistical algorithms like Huffman Code and Arithmetic Code. So the space savings is never offset by extra data cost.

Exception to the Rules

Whoever said that there's an exception for every rule must have studied LZW. It turns out that an exception may occur. When decoding certain input streams the decoder may see a code word that's one larger than anything that it has in it's dictionary. Fortunately for me others have figured out when the exception happens and how to deal with it.

The exception occurs if the dictionary contains an entry for string + character and the input stream string + character + string + character + string is read.

When the exception occurs, concatenate the first character of the string encoded by the previous code word to the end of the string encoded by the previous code word. The resulting string is the value of the new code word. Write it to the output stream and add it to the dictionary.

example 3: The string "abcabcabcabcabcabc" demonstrates an occurrence of the special exception:

	New Byte
	Encoded String
	New Code
	Code Output

	a
	a
	None
	None

	b
	b
	256 (ab)
	a

	c
	c
	257 (bc)
	b

	a
	a
	258 (ca)
	c

	b
	ab
	None
	None

	c
	c
	259 (abc)
	ab (256)

	a
	ca
	None
	None

	b
	b
	260 (cab)
	ca (258)

	c
	bc
	None
	None

	a
	a
	261 (bca)
	257 (bc)

	b
	ab
	None
	None

	c
	abc
	None
	None

	a
	a
	262 (abca)
	259 (abc)

	b
	ab
	None
	None

	c
	abc
	None
	None

	a
	abca
	None
	None

	b
	b
	263 (abcab)
	262 (abca)

	c
	bc
	None
	None

	None
	None
	None
	257 (bc)

Wow! That's a lot of work to force an exception to occur. The results still need to be decoded in order to witness the exception in action.

	Input Code
	Encoded String
	Added Code
	String Output

	a
	a
	None
	a

	b
	b
	256 (ab)
	b

	c
	c
	257 (bc)
	c

	256
	ab
	258 (ca)
	ab

	258
	ca
	259 (abc)
	ca

	257
	bc
	260 (cab)
	bc

	259
	abc
	261 (bca)
	

	262
	Not In Dictionary
	abca
	abca

	NOTE: The above step demonstrates the exception and how it is handled. (New encoded string = old encoded string + the first character of the old encoded string = abc + a = abca)

	257
	bc
	263 (abcab)
	bc

There you have it, the exception and how it's handled. It can be made to occur with a shorter pattern of repeated 2 character strings like "ababababababab", but I doesn't make as nice of an example.

That's all there is to the LZW algorithm. There are a few more issues to consider when actually implementing the algorithm on a computer. You should to read on if you care about them.

Implementation Issues

As I have stated the introduction, my intent is to publish an easy to follow ANSI C implementation of the Lempel-Ziv-Welch Encoding (LZW) encoding/decoding algorithm. I have also tried to make the code portable. Those goals drove much of this implementation.

Size of Code Word

One of the first things that needs to be decided when implementing LZW is how big of a code word to use. The following items should be considered when choosing a code word size:

· Code words must be bigger than a length 1 string of what ever is encoded.

· All encoded strings (including length 1 strings) will require a code word to represent them.

· Larger code words mean more entries may be contained in a dictionary.

· Consider code word endian/byte order issues if the LZW is implementation will be used on different platforms.

I encode strings of bytes, so the size of a code word must be bigger than a byte. That rules out any code words 8 bits or less.

I also don't want the code word to be huge, because even size 1 strings will be written as a code word. Example 1 encodes a 17 byte (136 bit) string into 13 code words. If the code words were only 9 bits long, the encoded data would be 117 bits. However if the code words were 16 bits long, the encoded data would be 208 bits. Typically, a larger data set must be encoded before longer code words produce any compression.

Code word size also has an impact on the maximum number of strings in a dictionary. An n bit code word may have as many as 2n strings in it's dictionary. If you're encoding bytes the first 256 of those strings will be single bytes.

Larger dictionaries can contain codes for more strings and that typically improves compression. The downside is that the encoding algorithm needs to search the dictionary for matches to the current string. Search time increases with the size of the dictionary.

With so many factors to consider, I ended up using 12 bit code words for my version 0.1 implementation. It's really easy to modify my version 0.1 implementation to use 9 to 15 bits. I settled on 12 bits after trying all values between 9 and 15 on a random set of files between 1K and 128K in size. The test was highly unscientific, but the 12 bit code words had the best average compression results.

I got a little fancier with my version 0.2 implementation. I begin with a 9 bit code word, but allow the bit length to increase up to 15 bits as more code words are generated. It is usually the case that a data stream can be compressed with code words that start at 9 bits and grow to n bits better than it can be compressed with a fixed n bit code word. I use the word "usually", because there is a little overhead required to indicate that the code word size has changed (see Indicating Code Word Length).

Feel free to change the code word size for any reason that you might have. If you increase it beyond 15 bits, things will blow up on machines with 16 bit integers. If you increase the code word size to more than 16 bits, you'll need to modify the routines that read and write code words.

Representing Strings in the Dictionary

The dictionary in the Lempel-Ziv-Welch algorithm provides a way of associating strings with code words. Code words are of limited length. However, the LZW algorithm does not impose a limit on the length of strings that are encoded.

One way to represent strings of arbitrary length is by a null terminated array. With LZW, it's possible to have thousands of strings thousands of bytes long. As machine memory sizes increase, there may come a time when the memory requirements of null terminated strings isn't a big deal. I'm still using a vintage PC, so null terminated strings are out of the question.

Fortunately, somebody much smarter than me observed that all strings entered into the dictionary either have a size of 1, or consist of a character appended to a string that is in the dictionary. The string that's already in the dictionary must also have a code word associated with it. Rather then representing the new string as old string + character, it can be represented as code word for old string + character.

In example 1 the code 263 represent the string "his". Rather than creating a dictionary entry for code word 263 and "his", an entry can be made for the code word 263, the prefix code 257, and byte 's'. Every dictionary entry consist of the code word, the prefix code, and the last character in the string.

The big advantage to this scheme is that all strings in the dictionary are a stored as a small, fixed length value. The downside to this scheme is that you need to traverse the dictionary to determine what string a code word encodes. 263 encodes 257 + 's'. 257 encodes 'h' + 'i'. That's not too bad with 3 character strings, but it's not that fun with 1000 character strings. Still, having a known fixed length for dictionary entries outweighs the need to traverse the dictionary

Encoding Issues

The biggest considerations when implementing the LZW encoding algorithm are:

· Writing of code words that aren't an integral number of bytes.

· Indicating the length of a code word.

· The layout of the dictionary.

· Finding string matches in the dictionary.

· Inserting new strings into the dictionary.

Fortunately, writing code words wasn't that big of a deal. I have a bit file library containing functions for writing files one bit at a time. I use the same library for all my other compression implementations, and it works just fine for LZW.

Indicating Code Word Length

The problem of indicating how long code words are only occurs when variable length code words are used. If fixed length code words are used, there's no question about how many bits the decoder should use when reading the encoded data.

I'm not sure what the common practice is on variable length code words and leaving hints that allow the decoder to recognize a code word length change. My implementation is based on some ideas that kept me up one night, and it works just fine. There are two observations that lead me to my implementation:

1. Code words may be n bits long until the encoder is required to write a code word that needs n + 1 bits to represent it.

2. The indication that n + 1 bits are needed must be n bits long, because decoder is still reading n bits at time.

With those observations, everything fell into place. When the encoder needs n + 1 bits to write out a code word, it writes an n bit indicator Then all code words from that indicator until the next indicator will be written using n + 1 bits. An indicator only signals increased code word size. There is no way to decrease code word size.

For my indicator I use a code word of all ones at the current code word length. The consequence of using an all ones indicator is that the code word represented by that value also requires an extra bit. Suppose the encoder is using 9 bits and it needs to output the code word 511. 511 is 9 bits of all ones. A single 511 will cause the decoder to switch to reading 10 bit code words without decoding code word 511. To get around this, the encoder must write an indicator (511 in this case) to switch to 10 bits, then it must write the code word 511 using 10 bits.

Version 0.2 of my implementation starts out using 9 bit code words and allows the code word length to grow to 15 bits.

Dictionary Layout

Determining the layout of the dictionary most definitely impacts finding and inserting strings. The dictionary stores strings represented as a code word prefix and a byte suffix.

Initially, the dictionary will contain one entry for every one character string. However, the number of strings in the dictionary may grow as the encoding process proceeds. Fortunately there is an upper bound on the number of strings that may be in the dictionary. If code words are n bits long, there can only be 2n unique code words.

The only real requirement for an LZW dictionary is that it can store 2n code word/string pairs. It seemed natural to use an array of 2n code word/string entries to me. I started out with a dictionary that was an array of 2n entries, but as I started playing with the algorithm I realized that all strings 1 byte long are encoded by the value of the byte. It's much faster to just write out the value of the byte than it is to look them up in the dictionary. So my implementation using an array based dictionary only stored up to (2n - 256) strings. Single byte strings were handled without using the dictionary.

As natural as an array based dictionary seems, it can be really slow to search when the dictionary fills up (see below). Recently I have replaced the array based dictionary with a binary tree based dictionary to speed up average search time. Anybody who has seen a binary tree should be comfortable with my implementation.

Searching for and Inserting Strings in Dictionary

Though being able to store all the code words is the only real dictionary requirement, the ability to perform fast search and insertion operations is also desirable.

Every time the encoding algorithm reads a byte, it appends it to a string that it is building. The first thing it does with the string is look for it in the dictionary. If the string isn't in the dictionary and the dictionary isn't full, the encoding algorithm will insert the string into the dictionary. There is one dictionary search for each byte in the uncoded data stream, and there will be one insertion for each new code word.

The simplest way to search an array based dictionary is by brute force, from start to finish. Similarly the simplest way to insert strings into the dictionary is to start at the beginning and keep looking until an empty location is found. These simple brute force approaches are O(N), where N is the number of code words (which is O(2n) where n is the number of bits in a code word).

It would really be nice to have something faster without adding much computational overhead. Others have successfully used hashing to speed up searches and insertions. The ideal hash function will make searching and insertion O(1) operations. I haven't come up with that function yet. Rather than being creative I used a simple function to generate a hash key that is used as an initial index into the dictionary. First I shifted the string's code prefix by 8 bits and OR in it's final character. That gives me an n + 8 bit number. I used that number modulo the size of the dictionary to get my initial key.

 key = (codeWord << 8) | lastCharacter;

 key = key % dictionarySize;

The first dictionary index I checked is the value of the key. Unfortunately collisions are possible. In the case of searching for a match, a collision occurs when there's a string already located in the dictionary position, but it doesn't match the string that we're looking for. My collision resolution was simple, but no more efficient than a brute force source. I search the next dictionary indices until I've either: found a match, searched the entire dictionary, or found an empty dictionary location.

If the dictionary is full, the array based algorithm will take O(N) searches to discover that a string is not in the dictionary. I realized that I could increase the size of the dictionary array, so that it will always include empty entries and stop the search if I arrive at an empty entry, but that just cuts the search time to an average of O(N/2).

Rather than using a larger array, I chose to use a binary tree. It takes an average of O(log(N)) searches to discover that a string isn't in the full dictionary. I'm not making much of an effort to balance my tree, so worst case is still O(N), but I don't think there will be many naturally occurring data streams that produce that result.

In order to keep the binary tree close to balanced, dictionary entries are ordered using a simple key. I append the code for the prefix sting to the MS nibble of the new character, then I append the LS nibble to that.

 key = (lastCharacter & 0xF0) << (codeWordLength)

 key |= (prefix << 4);

 key |= (lastCharacter & 0x0F)

It's possible that I may have future code release using balanced trees. But that will take motivation and time.

One nice side effect of these methods are that they don't require any additional work to find an insertion location for a new string. Strings are only inserted into the dictionary when a match isn't found and there is room to insert the string. If the array based search algorithm ends because it found an empty dictionary location, there wasn't a match and the dictionary isn't full. The new string and its new code word is inserted into the dictionary location found by the search algorithm. In the case of the tree base search, when it ends without a match, the new entry is inserted as the child of the leaf that the search ended at.

Idea for Super-fast Search/Insertion

The whole dictionary search and insertion process may be trivialize by increasing the size of the dictionary so that it has one index for every possible code word prefix/byte suffix string. If code words are n bits long, then there are 2n + 8 different possible strings; no more than 2n of which will actually be used. The dictionary can then be implemented as a 2n + 8 array, where each entry is either empty or contains the code word for the code word prefix/byte suffix pair represented by that index.

Decoding Issues

The biggest considerations when implementing the LZW decoding algorithm are:

· Reading of code words that aren't an integral number of bytes.

· Determining the length of a code word.

· The layout of the dictionary

· Decoding code words to strings.

As with writing code words, reading code words wasn't that big of a deal. I use my bit file library here too.

Determining Code Word Length

The problem of determining the length of code words is only an issue when variable length code words are allowed. In the section on encoding, I discuss a method that uses an all ones indicator when code word bit lengths are to increase by one. When my decoder reads a code word that is all ones bits, it must increase the code word length by one bit without decoding that code word. All code words that follow are read using the new length and operation proceeds normally.

Version 0.2 of my implementation starts out using 9 bit code words and allows the code word length to grow to 15 bits.

Dictionary Layout

The dictionary organization used for encoding would work just fine for decoding, however it's more complicated then it needs to be. During the encoding process strings are created and the dictionary is searched to see if code words already exits for that string. The decoding algorithm reads the encoded stream 1 code word at a time and uses the dictionary to find out how to decode a code word. Simply restated, encoding searches the dictionary based on string value. Decoding searches the dictionary based on code word value.

My decoding dictionary is just an array of 2n strings where the array index is the code word that encodes the string.

Decoding Code Words into Strings

After it reads a code word, the decoding algorithm will look up the code word in the dictionary and write out the encoded string that it encodes. Normally that wouldn't be an issue. However, strings in the dictionary are stored as a prefix code word + a suffix byte. In order to decode a code word into a string of bytes, the prefix code of the string must also be decoded. The process of decoding prefix strings continues until a prefix string decodes to a 1 byte string. The process of decoding strings results in the string being decoded in reverse order.

The processes of decoding code words into another code word and a byte and writing all the bytes out in reverse order made me think of recursion. I don't have much of an opportunity to use recursion in my paying job, so the idea of implementing a recursive decode routine seemed "fun". If you'd rather avoid recursion, store the decoded characters into an array that is at least 2n - 256 bytes long, then write out the results in reverse order.

Actual Software

I am releasing my implementations of Lempel-Ziv-Welch encoding/decoding under the LGPL . At this time I have four revisions of the code to offer. As I add enhancements or fix bugs, I will post them here as newer versions. The larger the version number, the newer the version. I'm retaining the older versions for historical reasons. I recommend that most people download the newest version unless there is a compelling reason to do otherwise.

Each version is contained in its own zipped archive which includes the source files and brief instructions for building an executable. None of the archives contain executable programs. A copy of the archives may be obtained by clicking on the links below.

	Version 0.4
	Uses latest bit file library. This may fix memory access errors with non-GNU compilers.

	Version 0.3
	Separated encoded and decode source to simplify creation of encode or decode only programs.

	
	Uses a binary tree to store encoding dictionary.

	Version 0.2
	Uses variable length code words 9 to 15 bits long.

	Version 0.1
	Initial release using 12 bit fixed length code words.

	
	Once the dictionary is full, it does not change.

Conclusion
VoiceXML based applications have become popular over the last few years. The ease of programming, implementation and added features pertaining to AI have made it very popular, especially for end-user products. Speech interaction based servers provide a more natural way of communication, especially targeted for general public with minimum or no technical knowledge. Considering the entertainment industry, it enhances specially gaming. Games may implement voice commands and scripts with grammars can make conversations natural, simulating human-to-human conversations.
[VoiceXML 2.0, which has been key in the growth of speech applications by providing a standards-based framework, allows businesses to deploy applications today that leverage existing development skills and resources. Because it allows speech deployments to be built over a standard web-application infrastructure, VoiceXML also provides a clear upgrade path as applications grow - unlike closed, proprietary languages. VoiceXML forms the foundation for IBM's voice middleware, including WebSphere Voice Server and WebSphere Voice Application Access. By committing to open standards, we provide a clear path to future upgrades that leverage existing skills, allowing enterprises to extend their infrastructure. This commitment, and the W3C's work, is driving us toward the next phase of speech interaction and in the near future, multimodality.

-- Igor Jablokov, Program Director, IBM Pervasive Computing, IBM]
References

1. http://www.datacompression.info/lzw.shtml
2. Terry Welch, "A Technique for High-Performance Data Compression", Computer, June 1984

3. J. Ziv and A. Lempel, "A Universal Algorithm for Sequential Data Compression", IEEE Transactions on Information Theory, May 1977

4. Rudy Rucker, "Mind Tools", Houghton Mifflin Company, 1987

PAGE
2
www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

