
FINITE STATE MACHINES

By:-

Abhinav Vishnoi

Assistant Professor

Lovely Professional University

Finite State Machines (FSMs)

 Finite-state machine (FSM) is a mathematical
model used to design computer programs and digital
logic circuits.

 Any Circuit with Memory Is a Finite State Machine

 Even computers can be viewed as huge FSMs

 Design of FSMs Involves

 Defining states

 Defining transitions between states

Optimization / minimization

 Above Approach Is Practical for Small FSMs Only

State diagram & State assignment

 A state diagram is a type of diagram to describe the

behavior of systems.

 State diagrams require that the system described is

composed of a finite number of states

 State assignment is a specification have been given

to a combination of flip-flops and combinational logic

 State assignment is to the number of present states in

a particular circuit

 N-number of flip flop 2^N state assignment

Types Of FSM’s

There are two basic ways to design clocked sequential

circuits.

1. Mealy Machine

2. Moore Machine

Moore FSM

 Output Is a Function of a Present State Only

Present State

Register

Next State

function

Output

function

Inputs

Present StateNext State

Outputs

clock

reset

Mealy FSM

 Output Is a Function of a Present State and Inputs

Next State

function

Output

function

Inputs

Present StateNext State

Outputs

Present State

Register

clock

reset

Moore Machine

state 1 /

output 1

state 2 /

output 2

transition

condition 1

transition

condition 2

Mealy Machine

state 1 state 2

transition condition 1 /

output 1

transition condition 2 /

output 2

Moore vs. Mealy FSM (1)

 Moore and Mealy FSMs Can Be Functionally

Equivalent

 Mealy FSM Has Richer Description and Usually

Requires Smaller Number of States

 Smaller circuit area

Moore vs. Mealy FSM (2)

 Mealy FSM Computes Outputs as soon as Inputs

Change

Mealy FSM responds one clock cycle sooner than

equivalent Moore FSM

Moore FSM - Example 1

 Moore FSM that Recognizes Sequence ―10‖

S0 / 0 S1 / 0 S2 / 1

0
0

0

1

1
1

reset

Meaning

of states:

S0: No

elements

of the

sequence

observed

S1: “1”

observed

S2: “10”

observed

Mealy FSM - Example 1

 Mealy FSM that Recognizes Sequence ―10‖

S0 S1

0 / 0 1 / 0 1 / 0

0 / 1reset

Meaning

of states:

S0: No

elements

of the

sequence

observed

S1: “1”

observed

Moore & Mealy FSMs – Example 1

clock

input

Moore

Mealy

0 1 0 0 0

S0 S1 S2 S0 S0

S0 S1 S0 S0 S0

Moore FSM – Example 2: State diagram

C z 1 = 

resetn

B z 0 = A z 0 = w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

Present Next state Output
state w = 0 w = 1

z

A A B 0

B A C 0

C A C 1

Moore FSM – Example 2: State table

A

w 0 = z 0 = 

w 1 = z 1 = B w 0 = z 0 = 

resetn

w 1 = z 0 = 

Mealy FSM – Example 3: State diagram

Present Next state Output z

state w = 0 w = 1 w = 0 w = 1

A A B 0 0

B A B 0 1

Mealy FSM – Example 3: State table

Sequential circuit design

18

 Now let’s reverse the process: In sequential circuit design, we turn some

description into a working circuit.

 We first make a state table or diagram to express the computation.

 Then we can turn that table or diagram into a sequential circuit.

Sequence recognizers
19

 A sequence recognizer is a special kind of sequential circuit that looks for a

special bit pattern in some input.

 The recognizer circuit has only one input, X.

 One bit of input is supplied on every clock cycle. For example, it would

take 20 cycles to scan a 20-bit input.

 This is an easy way to permit arbitrarily long input sequences.

 There is one output, Z, which is 1 when the desired pattern is found.

 Our example will detect the bit pattern ―1001‖:

Inputs: 11100110100 100110…

Outputs: 00000100000 100100…

Here, one input and one output bit appear every clock cycle.

 This requires a sequential circuit because the circuit has to ―remember‖ the

inputs from previous clock cycles, in order to determine whether or not a

match was found.

A basic state diagram
20

 What state do we need for the sequence recognizer?

 We have to ―remember‖ inputs from previous clock cycles.

 For example, if the previous three inputs were 100 and the current input is 1, then

the output should be 1.

 In general, we will have to remember occurrences of parts of the desired

pattern—in this case, 1, 10, and 100.

 We’ll start with a basic state diagram:

A B C D
1/0 0/0 0/0

State Meaning

A None of the desired pattern (1001) has been input yet.

B We’ve already seen the first bit (1) of the desired pattern.

C We’ve already seen the first two bits (10) of the desired pattern.

D We’ve already seen the first three bits (100) of the desired pattern.

Step 1: Making a state table
21

 The first thing you have to figure out is precisely how the use of state will

help you solve the given problem.

 Make a state table based on the problem statement. The table should

show the present states, inputs, next states and outputs.

 Sometimes it is easier to first find a state diagram and then convert that

to a table.

 This is usually the most difficult step. Once you have the state table, the rest

of the design procedure is the same for all sequential circuits.

 Sequence recognizers are especially hard! They’re the hardest example

we’ll see in this class, so if you understand this you’re in good shape.

A basic state diagram

22

 What state do we need for the sequence recognizer?

 We have to ―remember‖ inputs from previous clock cycles.

 For example, if the previous three inputs were 100 and the current input

is 1, then the output should be 1.

 In general, we will have to remember occurrences of parts of the desired

pattern—in this case, 1, 10, and 100.

 We’ll start with a basic state diagram:

A B C D
1/0 0/0 0/0

State Meaning

A None of the desired pattern (1001) has been input yet.

B We’ve already seen the first bit (1) of the desired pattern.

C We’ve already seen the first two bits (10) of the desired pattern.

D We’ve already seen the first three bits (100) of the desired pattern.

Overlapping occurrences of the

pattern
23

 What happens if we’re in state D (the last three inputs were 100), and the current

input is 1?

 The output should be a 1, because we’ve found the desired pattern.

 But this last 1 could also be the start of another occurrence of the pattern! For

example, 1001001 contains two occurrences of 1001.

 To detect overlapping occurrences of the pattern, the next state should be B.

A B C D
1/0 0/0 0/0

1/1

State Meaning

A None of the desired pattern (1001) has been input yet.

B We’ve already seen the first bit (1) of the desired pattern.

C We’ve already seen the first two bits (10) of the desired pattern.

D We’ve already seen the first three bits (100) of the desired pattern.

Filling in the other arrows
24

 Remember that we need two outgoing arrows for each node, to account for the

possibilities of X=0 and X=1.

 The remaining arrows we need are shown in blue. They also allow for the correct

detection of overlapping occurrences of 1001.

A B C D
1/0 0/0 0/0

1/1

0/0

0/0

1/0

1/0

State Meaning

A None of the desired pattern (1001) has been input yet.

B We’ve already seen the first bit (1) of the desired pattern.

C We’ve already seen the first two bits (10) of the desired pattern.

D We’ve already seen the first three bits (100) of the desired pattern.

Finally, making the state table
25

A B C D
1/0 0/0 0/0

1/1

0/0

0/0

1/0

1/0

Present

State Input

Next

State Output

A 0 A 0

A 1 B 0

B 0 C 0

B 1 B 0

C 0 D 0

C 1 B 0

D 0 A 0

D 1 B 1

input/output
present

state

next

state

Remember how the state diagram

arrows correspond to rows of the state

table:

Sequential circuit design procedure
26

Step 1:
Make a state table based on the problem statement. The table should show the present
states, inputs, next states and outputs. (It may be easier to find a state diagram first, and
then convert that to a table.)

Step 2:
Assign binary codes to the states in the state table, if you haven’t already. If you have n
states, your binary codes will have at least
log2 n digits, and your circuit will have at least log2 n flip-flops.

Step 3:
For each flip-flop and each row of your state table, find the flip-flop input values that
are needed to generate the next state from the present state. You can use flip-flop
excitation tables here.

Step 4:
Find simplified equations for the flip-flop inputs and the outputs.

Step 5:
Build the circuit!

Step 2: Assigning binary codes to

states
27

 We have four states ABCD, so we need at least two flip-flops Q1Q0.

 The easiest thing to do is represent state A with Q1Q0 = 00, B with 01, C with 10,

and D with 11.

 The state assignment can have a big impact on circuit complexity, but we won’t

worry about that too much in this class.

Present

State Input

Next

State Output

A 0 A 0

A 1 B 0

B 0 C 0

B 1 B 0

C 0 D 0

C 1 B 0

D 0 A 0

D 1 B 1

Present

State Input

Next

State Output

Q1 Q0 X Q1 Q0 Z

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 1 1 0 1 0

1 0 0 1 1 0

1 0 1 0 1 0

1 1 0 0 0 0

1 1 1 0 1 1

Step 3: Finding flip-flop input values
28

 Next we have to figure out how to actually make the flip-flops change from their

present state into the desired next state.

 This depends on what kind of flip-flops you use!

 We’ll use two JKs. For each flip-flip Qi, look at its present and next states, and

determine what the inputs Ji and Ki should be in order to make that state change.

Present

State Input

Next

State Flip flop inputs Output

Q1 Q0 X Q1 Q0 J1 K1 J0 K0 Z

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 1 1 0 1 0

1 0 0 1 1 0

1 0 1 0 1 0

1 1 0 0 0 0

1 1 1 0 1 1

Finding JK flip-flop input values
29

 For JK flip-flops, this is a little tricky. Recall the characteristic table:

 If the present state of a JK flip-flop is 0 and we want the next state to be 1, then we
have two choices for the JK inputs:

 We can use JK=10, to explicitly set the flip-flop’s next state to 1.

 We can also use JK=11, to complement the current state 0.

 So to change from 0 to 1, we must set J=1, but K could be either 0 or 1.

 Similarly, the other possible state transitions can all be done in two different ways as
well.

J K Q(t+1) Operation

0 0 Q(t) No change

0 1 0 Reset

1 0 1 Set

1 1 Q’(t) Complement

JK excitation table
30

 An excitation table shows what flip-flop inputs are required in order to make a

desired state change.

 This is the same information that’s given in the characteristic table, but presented

―backwards.‖
J K Q(t+1) Operation

0 0 Q(t) No change

0 1 0 Reset

1 0 1 Set

1 1 Q’(t) Complement

Q(t) Q(t+1) J K Operation

0 0 0 x No change/reset

0 1 1 x Set/complement

1 0 x 1 Reset/complement

1 1 x 0 No change/set

Excitation tables for all flip-flops
31

Q(t) Q(t+1) J K Operation

0 0 0 x No change/reset

0 1 1 x Set/complement

1 0 x 1 Reset/complement

1 1 x 0 No change/set

Q(t) Q(t+1) D Operation

0 0 0 Reset

0 1 1 Set

1 0 0 Reset

1 1 1 Set

Q(t) Q(t+1) T Operation

0 0 0 No change

0 1 1 Complement

1 0 1 Complement

1 1 0 No change

Back to the example
32

 We can now use the JK excitation table

on the right to find the correct values for

each flip-flop’s inputs, based on its

present and next states.

Present

State Input

Next

State Flip flop inputs Output

Q1 Q0 X Q1 Q0 J1 K1 J0 K0 Z

0 0 0 0 0 0 x 0 x 0

0 0 1 0 1 0 x 1 x 0

0 1 0 1 0 1 x x 1 0

0 1 1 0 1 0 x x 0 0

1 0 0 1 1 x 0 1 x 0

1 0 1 0 1 x 1 1 x 0

1 1 0 0 0 x 1 x 1 0

1 1 1 0 1 x 1 x 0 1

Q(t) Q(t+1) J K

0 0 0 x

0 1 1 x

1 0 x 1

1 1 x 0

Step 4: Find equations for the FF inputs

and output
33

 Now you can make K-maps and find equations for each of the
four flip-flop inputs, as well as for the output Z.

 These equations are in terms of the present state and the inputs.

 The advantage of using JK flip-flops is that there are many
don’t care conditions, which can result in simpler MSP equations.

J1 = X’ Q0

K1 = X + Q0

J0 = X + Q1

K0 = X’

Z = Q1Q0X

Present

State Input

Next

State Flip flop inputs Output

Q1 Q0 X Q1 Q0 J1 K1 J0 K0 Z

0 0 0 0 0 0 x 0 x 0

0 0 1 0 1 0 x 1 x 0

0 1 0 1 0 1 x x 1 0

0 1 1 0 1 0 x x 0 0

1 0 0 1 1 x 0 1 x 0

1 0 1 0 1 x 1 1 x 0

1 1 0 0 0 x 1 x 1 0

1 1 1 0 1 x 1 x 0 1

Step 5: Build the circuit
34

 Lastly, we use these simplified equations to build the

completed circuit.

J1 = X’ Q0

K1 = X + Q0

J0 = X + Q1

K0 = X’

Z = Q1Q0X

