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Finite State Machines (FSMs)

 Finite-state machine (FSM) is a mathematical
model used to design computer programs and digital
logic circuits.

 Any Circuit with Memory Is a Finite State Machine

 Even computers can be viewed as huge FSMs

 Design of FSMs Involves

 Defining states

 Defining transitions between states

Optimization / minimization

 Above Approach Is Practical for Small FSMs Only



State diagram & State assignment

 A state diagram is a type of diagram to describe the

behavior of systems.

 State diagrams require that the system described is

composed of a finite number of states

 State assignment is a specification have been given

to a combination of flip-flops and combinational logic

 State assignment is to the number of present states in

a particular circuit

 N-number of flip flop 2^N state assignment



Types Of FSM’s

There are two basic ways to design clocked sequential 

circuits.

1. Mealy Machine

2. Moore Machine 



Moore FSM

 Output Is a Function of a Present State Only
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Mealy FSM

 Output Is a Function of a Present State and Inputs
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Moore Machine
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output 1

state 2 /

output 2

transition

condition 1

transition

condition 2



Mealy Machine

state 1 state 2

transition condition 1 /

output 1

transition condition 2 /

output 2



Moore vs. Mealy FSM (1)

 Moore and Mealy FSMs Can Be Functionally

Equivalent

 Mealy FSM Has Richer Description and Usually 

Requires Smaller Number of States

 Smaller circuit area



Moore vs. Mealy FSM (2)

 Mealy FSM Computes Outputs as soon as Inputs 

Change

Mealy FSM responds one clock cycle sooner than 

equivalent Moore FSM



Moore FSM - Example 1

 Moore FSM that Recognizes Sequence ―10‖

S0 / 0 S1 / 0 S2 / 1

0
0

0

1

1
1

reset

Meaning 

of states:

S0: No 

elements 

of the 

sequence

observed

S1: “1”

observed

S2: “10”

observed



Mealy FSM - Example 1

 Mealy FSM that Recognizes Sequence ―10‖

S0 S1

0 / 0 1 / 0 1 / 0

0 / 1reset

Meaning 

of states:

S0: No 

elements 

of the 

sequence

observed

S1: “1”

observed



Moore & Mealy FSMs – Example 1

clock

input

Moore

Mealy

0             1              0             0              0

S0           S1           S2           S0          S0

S0           S1           S0           S0          S0



Moore FSM – Example 2: State diagram

C z 1 = 

resetn 

B z 0 = A z 0 = w 0 = 

w 1 = 

w 1 = 

w 0 = 

w 0 = w 1 = 



Present Next state Output
state w = 0 w = 1 

z 

A A B 0 

B A C 0 

C A C 1 

Moore FSM – Example 2: State table



A 

w 0 = z 0 = 

w 1 = z 1 = B w 0 = z 0 = 

resetn 

w 1 = z 0 = 

Mealy FSM – Example 3: State diagram



Present Next state Output z 

state w = 0 w = 1 w = 0 w = 1 

A A B 0 0 

B A B 0 1 

Mealy FSM – Example 3: State table



Sequential circuit design 

18

 Now let’s reverse the process: In sequential circuit design, we turn some 

description into a working circuit.

 We first make a state table or diagram to express the computation.

 Then we can turn that table or diagram into a sequential circuit.



Sequence recognizers
19

 A sequence recognizer is a special kind of sequential circuit that looks for a

special bit pattern in some input.

 The recognizer circuit has only one input, X.

 One bit of input is supplied on every clock cycle. For example, it would

take 20 cycles to scan a 20-bit input.

 This is an easy way to permit arbitrarily long input sequences.

 There is one output, Z, which is 1 when the desired pattern is found.

 Our example will detect the bit pattern ―1001‖:

Inputs: 11100110100 100110…

Outputs: 00000100000 100100…

Here, one input and one output bit appear every clock cycle.

 This requires a sequential circuit because the circuit has to ―remember‖ the

inputs from previous clock cycles, in order to determine whether or not a

match was found.



A basic state diagram
20

 What state do we need for the sequence recognizer?

 We have to ―remember‖ inputs from previous clock cycles.

 For example, if the previous three inputs were 100 and the current input is 1, then 

the output should be 1.

 In general, we will have to remember occurrences of parts of the desired 

pattern—in this case, 1, 10, and 100.

 We’ll start with a basic state diagram:

A B C D
1/0 0/0 0/0

State Meaning

A None of the desired pattern (1001) has been input yet.

B We’ve already seen the first bit (1) of the desired pattern.

C We’ve already seen the first two bits (10) of the desired pattern.

D We’ve already seen the first three bits (100) of the desired pattern.



Step 1: Making a state table
21

 The first thing you have to figure out is precisely how the use of state will 

help you solve the given problem.

 Make a state table based on the problem statement. The table should 

show the present states, inputs, next states and outputs.

 Sometimes it is easier to first find a state diagram and then convert that 

to a table.

 This is usually the most difficult step. Once you have the state table, the rest 

of the design procedure is the same for all sequential circuits.

 Sequence recognizers are especially hard! They’re the hardest example 

we’ll see in this class, so if you understand this you’re in good shape.



A basic state diagram

22

 What state do we need for the sequence recognizer?

 We have to ―remember‖ inputs from previous clock cycles.

 For example, if the previous three inputs were 100 and the current input 

is 1, then the output should be 1.

 In general, we will have to remember occurrences of parts of the desired 

pattern—in this case, 1, 10, and 100.

 We’ll start with a basic state diagram:

A B C D
1/0 0/0 0/0

State Meaning

A None of the desired pattern (1001) has been input yet.

B We’ve already seen the first bit (1) of the desired pattern.

C We’ve already seen the first two bits (10) of the desired pattern.

D We’ve already seen the first three bits (100) of the desired pattern.



Overlapping occurrences of the 

pattern
23

 What happens if we’re in state D (the last three inputs were 100), and the current 

input is 1?

 The output should be a 1, because we’ve found the desired pattern.

 But this last 1 could also be the start of another occurrence of the pattern! For 

example, 1001001 contains two occurrences of 1001.

 To detect overlapping occurrences of the pattern, the next state should be B.

A B C D
1/0 0/0 0/0

1/1

State Meaning

A None of the desired pattern (1001) has been input yet.

B We’ve already seen the first bit (1) of the desired pattern.

C We’ve already seen the first two bits (10) of the desired pattern.

D We’ve already seen the first three bits (100) of the desired pattern.



Filling in the other arrows
24

 Remember that we need two outgoing arrows for each node, to account for the 

possibilities of X=0 and X=1.

 The remaining arrows we need are shown in blue. They also allow for the correct 

detection of overlapping occurrences of 1001.

A B C D
1/0 0/0 0/0

1/1

0/0

0/0

1/0

1/0

State Meaning

A None of the desired pattern (1001) has been input yet.

B We’ve already seen the first bit (1) of the desired pattern.

C We’ve already seen the first two bits (10) of the desired pattern.

D We’ve already seen the first three bits (100) of the desired pattern.



Finally, making the state table
25

A B C D
1/0 0/0 0/0

1/1

0/0

0/0

1/0

1/0

Present

State Input

Next

State Output

A 0 A 0

A 1 B 0

B 0 C 0

B 1 B 0

C 0 D 0

C 1 B 0

D 0 A 0

D 1 B 1

input/output
present 

state

next 

state

Remember how the state diagram 

arrows correspond to rows of the state 

table:



Sequential circuit design procedure
26

Step 1:
Make a state table based on the problem statement. The table should show the present 
states, inputs, next states and outputs. (It may be easier to find a state diagram first, and 
then convert that to a table.)

Step 2:
Assign binary codes to the states in the state table, if you haven’t already. If you have n 
states, your binary codes will have at least
log2 n digits, and your circuit will have at least log2 n flip-flops.

Step 3:
For each flip-flop and each row of your state table, find the flip-flop input values that 
are needed to generate the next state from the present state. You can use flip-flop 
excitation tables here.

Step 4:
Find simplified equations for the flip-flop inputs and the outputs.

Step 5:
Build the circuit!



Step 2: Assigning binary codes to 

states
27

 We have four states ABCD, so we need at least two flip-flops Q1Q0.

 The easiest thing to do is represent state A with Q1Q0 = 00, B with 01, C with 10, 

and D with 11. 

 The state assignment can have a big impact on circuit complexity, but we won’t 

worry about that too much in this class.

Present

State Input

Next

State Output

A 0 A 0

A 1 B 0

B 0 C 0

B 1 B 0

C 0 D 0

C 1 B 0

D 0 A 0

D 1 B 1

Present

State Input

Next

State Output

Q1 Q0 X Q1 Q0 Z

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 1 1 0 1 0

1 0 0 1 1 0

1 0 1 0 1 0

1 1 0 0 0 0

1 1 1 0 1 1



Step 3: Finding flip-flop input values
28

 Next we have to figure out how to actually make the flip-flops change from their 

present state into the desired next state.

 This depends on what kind of flip-flops you use! 

 We’ll use two JKs. For each flip-flip Qi, look at its present and next states, and 

determine what the inputs Ji and Ki should be in order to make that state change.

Present

State Input

Next

State Flip flop inputs Output

Q1 Q0 X Q1 Q0 J1 K1 J0 K0 Z

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 1 1 0 1 0

1 0 0 1 1 0

1 0 1 0 1 0

1 1 0 0 0 0

1 1 1 0 1 1



Finding JK flip-flop input values
29

 For JK flip-flops, this is a little tricky. Recall the characteristic table:

 If the present state of a JK flip-flop is 0 and we want the next state to be 1, then we 
have two choices for the JK inputs:

 We can use JK=10, to explicitly set the flip-flop’s next state to 1.

 We can also use JK=11, to complement the current state 0.

 So to change from 0 to 1, we must set J=1, but K could be either 0 or 1.

 Similarly, the other possible state transitions can all be done in two different ways as 
well.

J K Q(t+1) Operation

0 0 Q(t) No change

0 1 0 Reset

1 0 1 Set

1 1 Q’(t) Complement



JK excitation table
30

 An excitation table shows what flip-flop inputs are required in order to  make a 

desired state change.

 This is the same information that’s given in the characteristic table, but presented 

―backwards.‖
J K Q(t+1) Operation

0 0 Q(t) No change

0 1 0 Reset

1 0 1 Set

1 1 Q’(t) Complement

Q(t) Q(t+1) J K Operation

0 0 0 x No change/reset

0 1 1 x Set/complement

1 0 x 1 Reset/complement

1 1 x 0 No change/set



Excitation tables for all flip-flops
31

Q(t) Q(t+1) J K Operation

0 0 0 x No change/reset

0 1 1 x Set/complement

1 0 x 1 Reset/complement

1 1 x 0 No change/set

Q(t) Q(t+1) D Operation

0 0 0 Reset

0 1 1 Set

1 0 0 Reset

1 1 1 Set

Q(t) Q(t+1) T Operation

0 0 0 No change

0 1 1 Complement

1 0 1 Complement

1 1 0 No change



Back to the example
32

 We can now use the JK excitation table

on the right to find the correct values for

each flip-flop’s inputs, based on its

present and next states.

Present

State Input

Next

State Flip flop inputs Output

Q1 Q0 X Q1 Q0 J1 K1 J0 K0 Z

0 0 0 0 0 0 x 0 x 0

0 0 1 0 1 0 x 1 x 0

0 1 0 1 0 1 x x 1 0

0 1 1 0 1 0 x x 0 0

1 0 0 1 1 x 0 1 x 0

1 0 1 0 1 x 1 1 x 0

1 1 0 0 0 x 1 x 1 0

1 1 1 0 1 x 1 x 0 1

Q(t) Q(t+1) J K

0 0 0 x

0 1 1 x

1 0 x 1

1 1 x 0



Step 4: Find equations for the FF inputs 

and output
33

 Now you can make K-maps and find equations for each of the 
four flip-flop inputs, as well as for the output Z.

 These equations are in terms of the present state and the inputs.

 The advantage of using JK flip-flops is that there are many 
don’t care conditions, which can result in simpler MSP equations.

J1 = X’ Q0

K1 = X + Q0

J0 = X + Q1

K0 = X’

Z = Q1Q0X

Present

State Input

Next

State Flip flop inputs Output

Q1 Q0 X Q1 Q0 J1 K1 J0 K0 Z

0 0 0 0 0 0 x 0 x 0

0 0 1 0 1 0 x 1 x 0

0 1 0 1 0 1 x x 1 0

0 1 1 0 1 0 x x 0 0

1 0 0 1 1 x 0 1 x 0

1 0 1 0 1 x 1 1 x 0

1 1 0 0 0 x 1 x 1 0

1 1 1 0 1 x 1 x 0 1



Step 5: Build the circuit
34

 Lastly, we use these simplified equations to build the 

completed circuit.

J1 = X’ Q0

K1 = X + Q0

J0 = X + Q1

K0 = X’

Z = Q1Q0X




