www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com
1
9

 Seminar Report

 On

 XSL
 (Extensible Stylesheet Language)

Index

 Pg. No.

1. Introduction

5

1.1 What is a Style-sheet?

1.2 The 'Terms'.

1.3 Brief History.

2. What is XML?

7

2.1 Purpose

2.2 Features

2.3 Separation

2.4 Display Options

3. What is XSL?

10

3.1 Introduction

3.2 Necessity

3.3 Components

3.3.1 XSLT

3.3.2 XPATH

4. How does it work?

15

4.1 Introduction

4.2 Rule

5. XSLT

18

5.1 Overview

5.2 Options to Display

6. XSL Templates

24

6.1 What is a template?

6.2 The xsl:apply-templates element

6.3 An Example

7. XSL Formatting Objects

27

7.1 Introduction

7.2 Common formatting objects

7.3 Overall XSL capabilities

 8. Elements

29

9. Some Facts

30

9.1 Difference Between XSL and CSS

9.2 Will XSL replace CSS?

9.3 Difference between XSL and DSSSL and DSSSL-O

9.4 Will XSL replace DSSSL?

9.5 Practical Example

9.6 Conclusion

10.Bibliography

33

1.INTRODUCTION
1.1 What is a Style-Sheet?

Style sheets describe how documents are presented on screens,in print ,or perhaps how they are pronounced.By attaching style sheet to the structured documents on the Web authors and readers can influence the presentation on documents without sacrificing device-independence or adding new HTML tags.
Web style sheets have been around for a number of years, but their power and importance went largely unnoticed since few implementations existed. Web authors, anxious to add creativity to their pages by influencing the presentation, began to use Netscape's proprietary extensions rather than the more powerful style sheets.

Today, more and more browsers are implementing style sheets, opening authors' eyes to unique features that allow influence over presentation while preserving platform independence. The advantages of style sheets became apparent, as did the disadvantages of continually creating more HTML tags for presentation effects.

1.2 The 'Terms'

Knowing XSL includes getting familiar with following acronyms:

· XML - Extensible MarkUp Language - Allows data or content to be marked up using tags invented by the author.

· CSS - Cascading Style Sheets - A technique, that's used to add style to HTML.

· DSSSL - Document Style Semantics and Specification Language - An international standard for associating processing with SGML (Standard Generalized Markup Language) documents (in other words how a printer should process it!).

XSL (Extensible Style Language) is a stylesheet language designed for the Web community. It provides functionality far beyond CSS (e.g. element reordering).

XSL is intended to be accessible to the markup level user by providing a declarative solution to most data description and rendering requirements. Less common tasks are accommodated through a graceful escape to a familiar scripting environment. This approach is familiar to the Web publishing community as it is modeled after the HTML/JavaScript environment. With XSL, the family of XML specifications now includes: XML -- the subset of SGML that is the XML language. XLL --addressing and linking capabilities defined in the XPointer and XLink specs .XSL -- a language to specify the association of presentation style with XML information

1.3 Brief History

Since XSL is very closely related to XML, it is like XML a very new technology. In August 1997 Microsoft, Arbor Text, and Inso submitted a joint proposal for XSL, in order to address the potential problems with presentation that arose with the specification of XML.

In November Docproc, the first XSL processor, was released. It can be used as a standalone converter or as a servlet, and was released by Sean Russell. It is written in Java, and uses a JavaScript-like language. Backends for HTML and for plain text are available; both DSSSL and HTML/CSS flow objects are supported and source is provided.

2.WHAT IS XML?

 2.1 Purpose

A browser knows how to display an HTML document even if no style information is provided. An example of this is as follows:

	<p>This is content in a footer</p>

 In the above code, browser would just pick the default font and size, and print the content within the P elements.

In browser, this looks like:

This is content in footer.

Then, consider this XML-example:

	<footer>This is content in a footer</footer>

Now when someone looks at document, they can better tell the meaning of the string within the tags: it's represents a 'footer'.

Such descriptive mark-up, or "semantic" markup, is a key goal of XML. With XML, Web authors can now mark up their content or data "semantically", according to the meaning of data. Consequently they can better communicate the relevance of their content or data.

2.2 Features

XML is not a fixed tag set (like HTML). XML by itself has no (application) semantics. Generic XML processor has no idea what is "meant" by the XML. XML markup does not (usually) include formatting information. The information in an XML document may not be in the form in which it is desired to present it. Therefore there must be something in addition to the XML document that provides information on how to present or otherwise process the XML.
2.3 Separation

Contrary to when style information is hard-coded into the content, separation of style from content allows for the same data to be presented in different ways. This enables:

Reuse of fragments of data: the same content should look different in different contexts

Multiple output formats: different media (paper, online), different sizes (manuals, reports), different classes of output devices (workstations, hand-held devices)

Styles tailored to the reader's preference (e.g., accessibility): print size, color, simplified layout for audio readers

Standardized styles: corporate stylesheets can be applied to the content at any time

Freedom from style issues for content authors: technical writers needn't be concerned with layout issues because the correct style can be applied later.

2.4 Display

The adjoining diagram represents the options for displaying the

XML documents. As shown in the figure XML document can be displayed on the XSL engine using either the XSL style-sheet or the CSS.The advantages and differences of XSL over CSS will be clear later in the report.

[image: image1.png]

Options For displaying XML Document

FIG . 2.1

3.WHAT IS XSL?
3.1 Introduction

The Extensible Stylesheet Language (XSL) includes both a transformation language and a formatting language. Each of these, naturally enough, is an XML application. The transformation language provides elements that define rules for how one XML document is transformed into another XML document. The transformed XML document may use the markup and DTD of the original document, or it may use a completely different set of elements. In particular, it may use the elements defined by the second part of XSL, the formatting objects.

The transformation and formatting halves of XSL can function independently of each other. For instance, the transformation language can transform an XML document into a well-formed HTML file, and completely ignore XSL formatting objects. Furthermore, it's not absolutely required that a document written in XSL formatting objects be produced by using the transformation part of XSL on another XML document. For example, it's easy to imagine a converter written in Java that reads TeX or PDF files and translates them into XSL formatting objects In essence, XSL is two languages, not one. The first language is a transformation language, the second a formatting language. The transformation language is useful independent of the formatting language.

Its ability to move data from one XML representation to another makes it an important component of XML-based electronic commerce, electronic data interchange, metadata exchange, and any application that needs to convert between different XML representations of the same data. These uses are also united by their lack of concern with rendering data on a display for humans to read. They are purely about moving data from one computer system or program to another.

3.2 Necessity

	<footer>This is content in a footer</footer>

Such descriptive mark-up, or "semantic" markup, is a key goal of XML. With XML, Web authors can now mark up their content or data "semantically", according to the meaning of data. Consequently they can better communicate the relevance of their content or data.

However, the manner in which the footer is laid out, is uncertain. Which font and size is chosen, and also how is the footer displayed? Is it displayed on the end of the document, or is it displayed on the end of each screen picture? Is it left aligned, centered, or justified?

Therefore, some style information must be associated with an XML document in order to display it.

If there were two different browsers processing the element, chances are there would be two interpretations of the presentation in the element. Two interpretations of presentation usually results in a document looking considerably different based on each interpretation.

This is where XSL comes in. XSL allows the author to apply formatting operations to XML elements. XSL is a language in which the author can indicate that the 'footer' element should be displayed as a paragraph, in blue and in italic using Arial. XSL is not the only way to display XML data. However, it provides you with a simple declarative solution. Also, because XSL syntax is XML itself, you don't have to learn a whole new syntax to begin writing XSL stylesheets.

3.3 Components

The full XSL language logically consists of three component languages, which are described, in three W3C (World Wide Web Consortium) Recommendations:

1> XPath: XML Path Language--a language for referencing specific parts of an XML document

2>XSLT: XSL Transformations--a language for describing how to transform one XML document (represented as a tree) into another

3>XSL: Extensible Stylesheet Language--XSLT plus a description of a set of Formatting Objects and Formatting Properties
3.3.1 XSLT

XSLT is the most important part of the XSL Standard. It is the part of XSL that is used to transform an XML document into another XML document, or another type of document that is recognized by a browser. One such format is XHTML. Normally XSLT does this by transforming each XML element into an XHTML element.

XSLT can also add new elements into the output file, or remove elements. It can rearrange and sort elements, and test and make decisions about which elements to display, and a lot more.

A common way to describe the transformation process is to say that XSL uses XSLT to transform an XML source tree into an XML result tree. An XSLT "stylesheet" transforms the input (source) document's tree into a structure called a result tree consisting of result objects. The adjoining figure gives the graphical representation of the transformation process.

3.3.2 XPATH

In the transformation process, XSLT uses XPath to define parts of the source document that match one or more predefined templates. When a match is found, XSLT will transform the matching part of the source document into the result document. The parts of the source document that do not match a template will end up unmodified in the result document.

One critical capability of a stylesheet language is to locate source elements to be styled. CSS, for example, does this with "selectors." FOSIs do it with "e-i-c's", elements in context. XSLT does it with "match patterns" defined by the XML PATH LANGUAGE XPATH.

XPath has an extensible string-based syntax. It describes "location paths" between parts of a document or documents. One inspiration for XPath was the common "path/file" file system syntax. Pattern matching occurs in a context; XPath expressions and XSLT elements can change the current context and consequently the nodes, which match. XPath is inclusive or greedy; it addresses all matching elements.

[image: image2.png]XML Source Tree XHTML Result Tree

o
AT v Pt I

VAN

- ;f

<head>...</head>

<body> e

e (R

<h3></h3>

<ioody>

FIG. 3.1

4.HOW DOES IT WORK?

4.1 Introduction

The XSL processor uses an XSL stylesheet to transform XML data into an HTML document. From the command line, the XSL processor is given an XML data file followed by an XSL stylesheet. It then takes those two files and uses them to produce an HTML file.

The content of the newly created HTML file comes from the XML data source; the display structure of the newly created HTML file comes from the XSL stylesheet. In processing the two files, the XSL processor examines the XSL stylesheet to discover which display structure applies to which XML source elements. As a result, the XSL processor creates a display structure that is driven by the content of the XML data source, and yet can be wholly independent of that source's structure.

The syntax for XSL is based on XML, and the display structures you will construct with XSL, will consist of many familiar HTML flow object. Learning XSL, therefore, does not require learning a new language. You can build on your existing knowledge of XML and HTML, enabling you to become fluent in XSL quite quickly.

HTML is far from the only possible output format. XSL is designed to apply style independently of the output format. Thus a single stylesheet could be used to generate HTML, RTF, raw text etc.
 4.2 Defining the XSL Rule

The basic building block of XSL is the construction rule. A construction rule describes how a particular element is to be transformed into displayable output. The construction rule consists of two parts: a pattern identifying a type of XML source element and an action describing what to do with elements that match this pattern.

The following stylesheet is an example of an XSL stylesheet's basic structure. The stylesheet in this particular example has a single construction rule, which displays the contents of a <footer> element as a blue, italic paragraph using Arial:

	 <xsl>

 <rule>

 <target-element type="footer"/>

 <P color="blue" font-style="italic" font-famliy="Arial">

 <children/> </P>

 </rule>

 </xsl>

The pattern in the above case (<target-element type="footer">) "targets" (applies to) <footer> elements.

The action in the above case ((<P color="blue" font-style="italic" font-famliy="Arial"><children/></P>) indicates that the contents of the <footer> elements should be placed within a <P> element and that the <P> element should have the attribute style="color: blue; font-style: italic; font family: Arial".

An XML document, which used the above XSL rule, could then contain the following:

	<footer>This is content within a footer</footer>

The <footer> tag would then be rendered in blue italics using Arial

4.3 XSL Style-Sheet

An XSL stylesheet basically consists of a set of templates. Each template "matches" some set of elements in the source tree and then describes the contribution that the matched element makes to the result tree.

Generally, elements in a stylesheet in the "xsl" namespace are part of the XSLT language, and non-xsl elements within a template are what get put into the result tree.
XSLT stylesheets are XML documents; namespaces are used to identify semantically significant elements. Most stylesheets are stand-alone documents rooted at <xsl: stylesheet> or <xsl: transform>. It is possible to have "single template" stylesheet/documents. <Xsl: stylesheet> and <xsl: transform> are completely synonymous.

 5. XSLT

 5.1 Overview

In an XSL transformation, an XSLT processor reads both an XML document and an XSLT style sheet. Based on the instructions the processor finds in the XSLT style sheet, it outputs a new XML document or fragment thereof. There's also special support for outputting HTML. With some effort most XSLT processors can also be made to output essentially arbitrary text, though XSLT is designed primarily for XML-to-XML and XML-to-HTML transformations.

 Trees

Every well-formed XML document is a tree. A tree is a data structure composed of connected nodes beginning with a top node called the root. The root is connected to its child nodes, each of which is connected to zero or more children of its own, and so forth. Nodes that have no children of their own are called leaves. A diagram of a tree looks much like a genealogical descendant chart that lists the descendants of a single ancestor. The most useful property of a tree is that each node and its children also form a tree. Thus, a tree is a hierarchical structure of trees in which each tree is built out of smaller trees.

For the purposes of XSLT, elements, attributes, namespaces, processing instructions, and comments are counted as nodes. Furthermore, the root of the document must be distinguished from the root element. Thus, XSLT processors model an XML document as a tree that contains seven kinds of nodes:

· The root

· Elements

· Text

· Attributes

· Namespaces

· Processing instructions

· Comments

Following example lists a XML document, which will be transformed into a tree.

Listing: 5-1

<? xml version="1.0"?>

<? xml-stylesheet type="text/xml" href="17-2.xsl"?>
< poems>

<poet gender = "male">

<Name>XYZ</Name>

<Age>50</Age>

<Poem-name>I</Poem-name>

</poet>

<poet gender="female">

<Name>Y</Name>

<Age>24</Age>

<Poem-name>I</Poem-name>

</poet>

Figure displays a tree diagram of this document. It begins at the top with the root node (not the same as the root element!) which contains two child nodes, the xml-stylesheet processing instruction and the root element poem. (The XML declaration is not visible to the XSLT processor and is not included in the tree the XSLT processor operates on.) The poem element contains two child nodes, both poet elements. Each poet element has an attribute node for its gender attribute, and a variety of child element nodes. Each child element contains a node for its contents, as well as nodes for any attributes, comments and processing instructions it possesses. Notice in particular that many nodes are something other than elements. There are nodes for text, attributes, comments, namespaces and processing instructions.

[image: image3.png]Root

<printstyleshest type

texthl hoef="17-2.0'7>

poems

emder="ale”

EY

oet
poet s
Name
poemnan Name | | poom name
vz
v
1
=
e u

2

FIG . 5.1

XSLT operates by transforming one XML tree into another XML tree. More precisely, an XSLT processor accepts as input a tree represented as an XML document and produces as output a new tree, also represented as an XML document. Consequently, the transformation part of XSL is also called the tree construction part. The XSL transformation language contains operators for selecting nodes from the tree, reordering the nodes, and outputting nodes. If one of these nodes is an element node, then it may be an entire tree itself. Remember that all these operators, both for input and output, are designed for operation on a tree.

The input must be an XML document. You cannot use XSLT to transform from non-XML formats such as PDF, TeX, Microsoft Word, PostScript, MIDI, or others. HTML and SGML are borderline cases because they're so close to XML. XSLT can work with HTML and SGML documents that satisfy XML's well-formedness rules. However, XSLT cannot handle the wide variety of non-well-formed HTML and SGML that you encounter on most Web sites and document production systems. XSLT is not a general-purpose regular expression language for transforming arbitrary data.

Most of the time the output of an XSLT transformation is also an XML document. However, it can also be a result tree fragment that could be used as an external parsed entity in another XML document. (That is, it would be a well-formed XML document if it were enclosed in a single root element.) In other words, the output may not necessarily be a well-formed XML document, but it will at least be a plausible part of a well-formed XML document.

Most XSLT processors also support output as HTML and/or raw text, although the standard does not require them to do so. To some extent this allows you to transform to non-XML formats like TeX, RTF, or PostScript. However XSLT is not designed to make these transformations easy. It is designed for XML-to-XML transformations.

5.2 Options to display

There are three primary ways to transform XML documents into other formats, such as HTML, with an XSLT style sheet:

· 1. The XML document and associated style sheet are both served to the client (Web browser), which then transforms the document as specified by the style sheet and presents it to the user.

· 2. The server applies an XSLT style sheet to an XML document to transform it to some other format (generally HTML) and sends the transformed document to the client (Web browser).

· 3. A third program transforms the original XML document into some other format (often HTML) before the document is placed on the server. Both server and client only deal with the transformed document.

Each of these three approaches uses different software, although they all use the same XML documents and XSLT style sheets. An ordinary Web server sending XML documents to Internet Explorer is an example of the first approach. A servlet-compatible Web server using the IBM alphaWorks' XML Enabler is an example of the second approach. A human using Michael Kay's command line SAXON program to transform XML documents to HTML documents, then placing the HTML documents on a Web server is an example of the third approach. However, these all the same XSLT language.

Instead of preprocessing the XML file, you can send the client both the XML file and the XSLT file that describes how to render it. The client is responsible for applying the style sheet to the document and rendering it accordingly. This is more work for the client, but places much less load on the server. In this case, the XSLT style sheet must transform the document into an XML application the client understands. HTML is a likely choice, though in the future some browsers may understand XSL formatting objects as well.

Attaching an XSLT style sheet to an XML document is easy. Simply insert an xml-stylesheet processing instruction in the prolog immediately after the XML declaration. This processing instruction should have a type attribute with the value text/xml and an href attribute whose value is a URL pointing to the style sheet. For example:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xml" href="17-2.xsl"?>

6.XSL TEMPLATES

6.1 What is a template?

Template rules defined by xsl: template elements are the most important part of an XSLT style sheet. These associate particular output with particular input. Each xsl: template element has a match attribute that specifies which nodes of the input document the template is instantiated for.

The content of the xsl: template element is the actual template to be instantiated. A template may contain both texts that will appear literally in the output document and XSLT instructions that copy data from the input XML document to the result. Most templates have the following form:

<xsl: template match="emphasis">

 <i><xsl:apply-templates/></i>

</xsl: template>

 1.The whole <xsl: template> element is a template.

 2.The-match pattern determines where this template applies.

 3.Literal-result element(s) come from non-XSL namespace(s).

 4.XSLT elements come from the XSL namespace.

6.2 The xsl: apply-template element

To get beyond the root, you have to tell the formatting engine to process the children of the root. In general, to include content in the child nodes, you have to recursively process the nodes through the XML document. The element that does this is xsl: apply-templates. By including xsl: apply-templates in the output template, you tell the formatter to compare each child element of the matched source element against the templates in the style sheet, and, if a match is found, output the template for the matched node. The template for the matched node may itself contain xsl: apply-templates elements to search for matches for its children. When the formatting engine processes a node, the node is treated as a complete tree. This is the advantage of the tree structure. Each part can be treated the same way as the whole.

6.4 An Example

<? xml version="1.0"?>

<xsl:stylesheetversion="1.0" xmlns:xsl="http://www.uy.org">

 <xsl:template match="/">

 <html>

 <xsl:apply-templates/>

 </html>

 </xsl:template>

 <xsl:template match="poems">

 <body>

 <xsl:apply-templates/>

 </body>

 </xsl:template>

 <xsl:template match="poet">

 A Poet!!

 </xsl: template>

</xsl:stylesheet>

When this style sheet is applied to Listing 5-1, here's what happens:

· 1. The root node is compared with all template rules in the style sheet. It matches the first one.

· 2. The <html> tag is written out.

· 3. The xsl:apply-templates element causes the formatting engine to process the child nodes of the root node of the input document.

A. The first child of the root, the xml-stylesheet processing instruction, is compared with the template rules. It doesn't match any of them, so no output is generated.

B. The second child of the root node of the input document, the root element poems, is compared with the template rules. It matches the second template rule.

C. The <body> tag is written out.

D. The xsl:apply-templates element in the body element causes the formatting engine to process the child nodes of poems.

a. The first child of the poems element, that is the XYZ poet element, is compared with the template rules. It matches the third template rule.

b. The text "A Poet!" is output.

c. The second child of the poems element, that is the Y poet element, is compared with the template rules. It matches the third template rule.

d. The text "A Poet!" is output.

E. The </body> tag is written out.

· 4. The </html> tag is written out.

· 5. Processing is complete.

The end result is:

<html>

<body>

 A poet!

 A Poet!

</body>

</html>

 There are other tags provided in xsl such as xsl: value of, xsl: for-each for pattern matching on various nodes going to the children. Also select attributes can be used to select particular nodes. The select attribute is used in xsl: apply-templates, xsl: value-of, xsl: for-each, xsl: copy-of, xsl: variable, xsl: param, and xsl: sort to specify exactly which nodes are operated on. The value of this attribute is an expression written in the XPath language. The XPath language provides a means of identifying a particular element, group of elements, text fragment, or other part of an XML document.

7.XSL FORMATTING OBJECTS

7.1 Introduction

As mentioned earlier in the text the XSL basically consists of the XSL transformations which was discussed in the previous chapter and the formatting objects which will be discussed next.So we can say:

XSL = XSLT + vocabulary of FOs and properties .

XSL defines a powerful set of formatting objects.XSL uses (and extends) a set of Common Formatting Properties developed jointly with the CSS&FP (Cascading Style Sheet and Formatting Property) Working Group.

When a result tree uses this standardized set of formatting objects and properties, then an XSL-compliant formatter can process that result tree to produce the specified output.

 7.2 Common Formatting Objects

Following list gives the common formatting objects used in XSL:

1>Page-sequence--a major part (such as front or body) in which the basic page layout may differ from other parts

2>Flow--a chapter- or section-like division within a page-sequence

3>Block--a paragraph (or title or block quote, etc.)

4>Inline--e.g., a font change within a paragraph

5>Wrapper--a "transparent" object usable as either a block or inline object that has no effect other than to provide a place to hang inheritable properties

6>List FOs--list-block, list-item, list-item-label, list-item-body

7>Graphic--references an external graphic object

8>Table FOs--mostly analogous to the standard (CALS, OASIS, HTML) table models

7.3 Overall XSL capabilities

XSL FO formatting capabilities in XSL 1.0 are approximately the union of:

HTML + CSS capabilities

They have most high quality print output capabilities including internationalization features

Also there are complex page layouts (e.g., magazine and newspaper layout), complex layout-driven formatting (e.g., copyfitting and complex floats), and looseleaf pagination (change page production).

Transformation is independent of the target result type. XSLT is a tree-to-tree transformation process. Serialization may vary depending on the selected output method. There is a distinction between HTML element names and HTML.

8.ELEMENTS

Following table gives some of the elements of the XSL and their use or description:

	Element
	Description

	<xsl:stylesheet>
	Identifies the entire stylesheet

	<xsl:template>
	It constructs a portion of the result tree.

	<xsl:apply-template>
	Indicates where additional templates should be used to construct a portion of a result tree.

	<xsl:for-each>
	Loop which processes each of the selected nodes using the template that it contains

	<xsl:call-template>
	Allows one template to explicitly invoke another template by name

	<xsl:text>
	Inserts literal text into the result tree.

	<xsl:copy>
	Lists the names of attribute sets to be copied into the result tree.

	<xsl:choose>
	Multiway switching element.

	<xsl:if>
	Simple if conditional.

	<xsl:message>
	Mechanism for the stylesheet author to communicate with the person running the stylesheet.

	<xsl:variable>
	Named storage location holding the results of a runtime evaluation of the variable content or select expression

	<xsl:value-of>
	Inserts the string value of an expression in the result tree.

9. SOME FACTS

9.1 Difference Between XSL and CSS:

XSL uses a XML notation, CSS uses its own. In CSS, the formatting object tree is almost the same as the source tree, and inheritance of formatting properties is on the source tree. In XSL, the formatting object tree can be radically different from the source tree, and inheritance of formatting properties is on the formatting object tree.

Aside from these technical differences, mature implementations of CSS1 and (parts of) CSS2 are available, whilst XSL is currently too new to have mature browser and content-authoring support. The important thing to remember is that CSS can be used for both XML and HTML, whereas XSL is mainly for XML.

9.2 Will XSL replace CSS?

No. They are likely to co-exist since they meet different needs. XSL is intended for complex formatting where the content of the document might be displayed in multiple places; for example the text of a heading might also appear in a dynamically generated table of contents. CSS is intended for dynamic formatting of online documents for multiple media; its strictly declarative nature limits its capabilities but also makes it efficient and easy to generate and modify in the content-generation workflow. So they are two different tools; for some tasks, CSS is the appropriate choice and for some tasks, XSL. They can also be used together - use XSL on the server to condense or customize some XML data into a simpler XML document, then use CSS to style it on the client.

9.3 Difference between XSL and DSSSL and DSSSL-O:

DSSSL is an International Standard style sheet language. It is particularly used for formatting of print documents. DSSSL-O is a profile of DSSSL, which removes some functionality and adds capabilities to make it more suited for online documentation. XSL draws on DSSSL and the DSSSL-O work and continues the trend towards a Web-oriented style sheet language by integrating experience with CSS.

9.4 Will XSL replace DSSSL?

DSSSL has capabilities that XSL does not, and continues in use in the print publishing industry. Experience with XSL might be used in a future revision of DSSSL, but it is too early to say.

9.5 Practical Example:

To get an idea why XSL is so important to E-Commerce consider a fictional example . Imagine that there are two companies working together, sharing information over the Internet. Company A is a store ,which sends purchase orders to company B ,who fulfills those orders.Let’s assume that we have already decided to use XML.

Unfortunately , the chances are that company A will need different set of information than company B does. In this scenario we have three options:

1>Company A can use the same structure for their XML that Company B uses. The disadvantage is now we need a separate XML document to accompany the first one,for their own additional information. However business to business communication is much easier since they use the same format.

2> Company B can use the same format for their XML that company A uses.This would have the same result as the previous choice.

3> Both companies can use whatever XML format they wish internally,but transform their data to a common format whenever they need to transmit the information outside. This option provides the most flexibility for both companies , and still allows cross-company communication.

With XSLT this kind of transformation is very easy;it is probably one of the more exciting areas where XML is making its presence felt.
9.6 Conclusion:

When trying to look forward, XSL and CSS are likely to co-exist (just as HTML and XML are likely to co-exist), since they meet different needs. XSL is intended for complex formatting, where the content of the document might be displayed in multiple places; for example the text of a heading might also appear in a dynamically generated table of contents. CSS is intended for dynamic formatting of online documents for multiple media; its strictly declarative nature limits its capabilities but also makes it easy to generate and modify in the content-generation workflow.

Many pieces will have to fall into place before XML becomes a living, breathing technology. One such piece is a mechanism for rendering, XML-based material in a browser.

XSL is expected to be used where more powerful formatting capabilites are required or for formatting highly structured information such as XML structured data or XML documents that contain structured data.

Considering the lack of a solid specification, not to mention browser support, it might be a bit early to start converting the company site to XSL. Nevertheless, XSL is to XML, what CSS is to HTML.

10.BIBLIOGRAPHY

� EMBED Word.Picture.8 ���

� EMBED MSPhotoEd.3 ���

� EMBED PBrush ���

www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

[image: image4.png]Root

<printstyleshest type

texthl hoef="17-2.0'7>

poems

emder="ale”

EY

oet
poet s
Name
poemnan Name | | poom name
vz
v
1
=
e u

2

[image: image5.png]

[image: image6.png]XML Source Tree XHTML Result Tree

o
AT v Pt I

VAN

- ;f

<head>...</head>

<body> e

e (R

<h3></h3>

<ioody>

_1089908684.bin

_1089977951

_1089891525.doc
[image: image1.png]

