www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

INDEX

 CHAPTER PAGE NO.

 ABSTRACT 1

 1.INTRODUCTION 2
 1.1 Overview

 1.2 Components for Embedded System Design

 1.3 Component Composition Framework

 2.STRUCTURED DESIGN METHODS 7

 2.1 Types of structured design methods

2.2 Platform based design

2.3 Composition based design

 3.BALBOA PROJECT 10

 3.1 Introduction of BALBOA

 3.2 Component Composition in BALBOA

 3.3 Component design using BALBOA

 3.4 Internal Architecture for BALBOA component

 3.5 An example of component composition in BALBOA

 4.CONCLUSION 21
 5.BIBLIOGRAPHY 22

 6.APPENDIX

 POWER POINT SLIDE PRESENTATION 23
(III)

 ABSTRACT

Many embedded systems have different design constraints. Design culture dysfunction make design difficult to be successfully applying tools to embedded system . Integration of system design is increased. Due this there is a widening gap in size and complexity of chip-level deign and design capabilities. To bridge this gap in design productivity a number of advances have been made in high-level modeling and validation. Specifically advances have been made in ‘Abstraction and Reuse ` and ‘ Structured design methods `. Structured design methods are Component-Based Design and Platform Based Design. There are many trends for design embedded system. Out of that highly programmed platform and UML for embedded software development are recent one. In unified embedded system development methodology, these two can be combined. Though these two concepts are powerful in their own right, their combination magnifies the effective gain in productivity and implementation.

(1)

CHAPTER 1

INTRODUCTION

1.1 Overview:

Fabricating millions of transistors on chip has become easier, due to advances in microelectronics processing and devices. The microelectronic designers through advances in modeling and validation technique are exploring a number of strategies. These are used to improve the design productivity and the quality of design. There is an impact of raising abstraction level at which designs are entered and validated on design quality and design time. Consequently, much of the recent effort in the area has been focused on the specification methodology.

1.2 Components for embedded system design

For a system on chip (SOC) there are virtual components also. SOC represents implementation of a complete application on a single chip. SOC consist of a range of building blocks from processors, memory, to communication and networking elements. There may be top down or bottom up approach to building an application in SOC.

 In the bottom up approach the application functionality can often be structured into various hardware and software components. Top-down approaches yield refinements that are then mapped to various hardware/software components. So, component may then be a piece of functionality implemented in software or

(2)

 as a dedicated piece of silicon hardware or combination of both. A component

 may be virtual in that it represents a well defined functionality without an associated hardware / hardware implementation.

 The phrase “virtual component “ is used to describe reusable IP (Intellectual Property) components. IP components are composed with other components, which are similar to real hardware components plugged into real sockets on the board.

1.3 Component Composition Framework

 A composition framework provides reasoning capabilities and tools. The reasoning capabilities and tools enable a system designer to compose components into a specific application. These capabilities include selection of correct interfaces, simulation of composed design, testing and validation for behavioral correctness and equivalence checks. A limited form of component composition is common in purely software system where environments often known as Integrated Development Environment (IDE).

 IDE’s are used to facilitate component selection and composition. Hardware component composition frameworks are more difficult to build as compare to software IDE’s such as Microsoft Visual Studio. Part of complexity is due to various ways in which the integrated circuit blocks are represented, designed and composed. At higher abstraction levels, often a connection between components is create through limited set of ports and signals in. It is often known

(3)

as, structured design for SOC’s. Such a composition implies a structural representation for the components. Even if a component is not structural, but behavioral, it can often be composed using special components (e.g. protocol modules) interconnecting the components. To ensure systematic compatibility of models, it is important to address how the composition is resolved along each of the dimensions. The dimensions are temporal detail, Structural detail, Functional detail, Data value detail. This is often achieved by creating wrapper around the library components.

 Wrapper are created for enabling communication values between different modules and co-ordination between them. Wrappers here refer to code that enables reuse of existing component models. Using programming languages, there are several ways in which in which such wrappers can be built.

 A common strategy for wrapper building is by using inheritance available in most object-oriented programming languages. In this approach wrappers are programmed manually by inserting code inside the inherited class. The wrapper and the component are same as the object.

 An alternative is to use a wrapper that, if needed, delegates to the design component. In this case, component is not modified, the wrapper and the component are two distinct object. Modules from different libraries can be imported as is, and dynamically placed in wrappers at run time.

(4)

[image: image1.png]
(a) (b)

Fig. 1. Wrapper implementation strategies: (a) by inheritance (b) by composition
 Figure 1(a) shows how wrapper is implemented by inheritance. In this case, if a designer wants to reuse a component of class C, the class can be specialized by inheritance to a subclass CW to implement the wrapper functionality. If the class CW is to be reused in a different context, then it can be also inherited into a class CW_W2 that implements more wrapper code to interoperate in the new integration context. The problem in this scenario is that all the three classes have a common self, and the original component has to be modified in every reuse context, via inheritance.

 Figure 1(b) shows the UML diagram of how a wrapper hierarchy can be built for composition (the open arrow indicates an association). In this case, the wrappers are separate from the component object hierarchy, and the interoperability interface remains separated in the wrappers, and any call to functionality of the original component is delegated from the wrapper to the component.

(5)

 A good CCF provides a composition language and capabilities for dynamic composition, simulation and verification. The composition language is either visual or textual. Composition language should be able to ask for components from the component library. Framework must have automated support for selecting the correct type that makes the composition possible.

 The composition should be dynamic i.e. one does not have to go through recompile-test cycle when new components are added or replaced.

 In order to be able to compose components at different levels of abstraction, and/or models of computation, met a information should be available. The meta information is about the components at a meta-level, such that it can allow users to understand implications of composing two arbitrary components.

 Composition language: It is not used for specification of components. The role of composition language instantiate and connect the components. The component model describes the connection by dictating how and when things can be composed. A connection may be “ relation ”among components.

(6)

CHAPTER 2

STRUCTURED DESIGN METHODS

 2.1 Structured design methods types:

 Platform Based Design and Component Based Design

 Platform based design has emerged as one of the key development approaches for complex systems. The choice of platform is done after exploration of both the application and architecture design spaces. The choice of platform is driven by cost and time to market considerations.

 In component based design, components can be distributed or local. Distributed components can be thought of as objects that contain both data and operation. They are small service providers. The key is that they can be used as inputs (or arguments) to operations provided by other components and returned as the output from these operations.

2.2 Platform base design:

Platforms are classified into three abstraction levels: architecture (ARC), application programming interface (APT), and specific programmable (ASP) platforms.

 The ARC layer includes a specific family of micro architecture (physical network). Hence, UML deployment diagram can be used to represent the ARC platform. The API layer is a switch abstraction layer wrapping ARC implementation details. The API should be presented by showing what kind of logical services are provided and how they are grouped together.

(7)

 [image: image2.png]
 Platforms At Different Levels

 ASP is a platform, which makes a group of application domain-specific services directly available to users. For e.g., the function to set up a connection in the Intercom is such domain-specific service. In addition to calling these existing services, users sometimes needs to modify or combine them, or even develop new services to meet certain requirements consequently, unlike API, here it becomes essential to show not only what functionality these services offer, but also how such services are supported by their internal structures, and how they relate to each other. In UML, the class diagram best represents such information.

2.3 Component Based Design:

This approach promotes separation of interface and implementation. It provides a statistical environment built up from smaller components. And allows different algorithms and operations to be performed. This is done in different ways without minimal changes to overall environment. However, an implementation for small

(8)

amounts of data may store it all in memory. For very large quantities of data, it

might be stored in compressed form either in memory or on disk. Alternately, the values may be produced in real-time from a device.

 This approach brings up many different issues such as performance, security, reproduction, discovery etc. While the last of three of these have been dealt with in the context of the Internet, performance has not.

 A component-based architecture will more likely lead to increase in performance, with a little work. Suppose we have located and use a component that fits a tree model, but too slowly. Provided that, we can communicate with it only via its operations, we can locate a faster version of this. Due to this substitutability of components it has got potential success.

 A little further thought lead us to see how components can give us what is termed high performance computing. These days multiple processor machines and clusters involving multiple machines are becoming common. In simple terms, we can imagine each processor being associated with a component and one in charge of dispatching the subtasks that make up an overall computation. This task manager invokes operations in these distributed components and awaits the answer and pieces them together, potentially issuing new tasks to idle component.

(9)

 CHAPTER 3

 BALBOA PROJECT FOR

 COMPONENT COMPOSITION

3.1 Introduction Of BALBOA

The goal of BALBOA project is to investigate the usage of high-level methodologies, languages and CAD tools for system-on-chip architectural modeling. The research is divided into three sub-projects. Structured System Composition, Concurrency Exploitation and Simulation Efficiency, Design Composition Visualization and Visual Formalities.

Structured System Composition

 This part is the core of BALBOA component integration environment, which is used to build system models with IP libraries. The environment implements split-programming concepts combined with component based design development. System models are assembled from c++ libraries development. Components can use a simulation library. Here we refer to c++ IP blocks as components. A customize Interface Definition Language named BIDL is used to export c++ components to the BALBOA project. The environment run-time infrastructure is aware of object models of object models of components and uses object-oriented mechanism to compose architectures. A type system keeps the coherency between the interpreted and compiled layer.

Concurrency Exploitation and Simulation Efficiency

 This work investigates simulation efficiency using different threading

(10)

mechanisms at the specification level. Techniques predict simulation efficiency

and target platform analysis in order to reassign concurrency to enhance efficiency.

Design Composition Visualization and Visual Formalities

 This work investigates visual formalities for architecture specification and composition. It also relives on type instance views to help the designer in abstracting architectural details. Although many notations are investigated, a GUI front end implementing an interactive structural tool with extended subsets of UML without block diagram. Style notations is currently being implanted.

3.2 Component Composition in BALBOA

The BALBOA component composition environment is a layered environment. It provides a component model with introspection and partial typing capabilities components are composed dynamically using wrappers. Wrappers use “split-level” interfaces to implement the composition rules, dynamic type determination and type interface algorithm split-level programming relieves the system engineer of programming artifact and software engineering concepts and let them focus on system architecture. The BALBOA component composition framework is used to build system models with an architectural perspective. This framework is used for the following two different tasks,

Architectural Design:

 The system architect builds the overall system architecture by installing, connecting, configuring components and establishing relationship among components.

(11)

Component design:

 The library design implements components or virtual components to populate the IP library using a programming language, such as C++. The implementation is restricted as much as possible on modeling a behavior or a structure.

 A system architect does the design of architecture. In a system architect focus is on model instantiation and interconnection. It is done by using the architectural support in the component integration language (CIL).

 The figure given below shows layers in BALBOA. In this figure languages are on left side and run-time structure on the right side. The description of layers is as follows

 Architecture Definition Layer:

This layer is present where architectural structure is assembled. It is assembled from components using the component integration language. The CIL is very close to an ADL but it implements a component model for component composition and connection, an object model for object compositions, aggregation and associations.

(12)

 [image: image3.png]
Layering in BALBOA environment

Component Definition Layer:

This layer consist of a set of IP components stored in libraries. Any C++ class or object can be placed in this layer. Ideally, this layer can accommodate C++ IP models in a range of libraries without affecting the implementation of two other upper layers. This layer is also called the compiled layer.

Intermediate Wrapper Layer:

This layer is the link between the interpreted and compiled layer. Each C++ objects instantiated in the environment is contained and manipulated by Split Level Interface(SLI). This wrapper provides the mechanism for manipulation of the compiled object by scripting layer. The split-level interface implements the

(13)

reflection and the introspection capabilities of environment. The reflection is capability of the split-level interface to read or write the attributes, and to invoke the methods of the compiled object.

 The information that is being reflected and introspected is generated by the BALBOA Interface Definition Language (BIDL) compiler. The BIDL compiler translates and expands the description of the type of the component to a format that interpreter can understand. The BIDL has a role similar to the CPP preprocessor. However, it does not do macro expansion.

 One of novelties of the BALBOA environment is separation between component definition and architecture elaboration. It is done through split programming to take advantage of weaker typing dependencies for typing abstraction at the architectural level. Typing abstraction means that it is possible to reduce the type dependencies of strongly typed compiled C++ layer. The split-level interface to keep the CIL description focused on component instantiations, compilers and connections.

3.3 Component Design Using BALBOA:

 [image: image4.png]
(14)

The above figure illustrate the tool flow and design process for the component designer. The flow for component implementation in C++ is shown in lower part. The flow for component characterization and the exploration of the interface of components to interpreted domain is shown in upper part of figure. The BIDL generates C++ code. It is done to create and configure the split-level interface of component and to generate the type system information and the specific code for delayed instantiation and delayed typing. The BIDL compiler also generates the object model configuration specific to the component. The principle steps for using BIDL to export C++ class to the interpreter areas given below

 1. Designer uses the header of class into the BIDL description and removes the part to be hidden from the interpreted domain.

 2. Keywords are also added to configure the generation such as component families, versioning and template classes handling and specification available types.

 From the point of view of system architect the component and the split-level interface can be the same entry as shown in figure by the vertical dashed rectangle .

3.4 Internal architecture for a BALBOA component:

A BALBOA component is consist of four blocks:

The internal object, the type system information with an object model, the interpreted attributes/methods and split-level interface routine. The interpreted methods can be reflection of the compiled attributes/methods.

 As shown in figure the split-level interfaces are the links between the interpreted domain and the compiled domain. Composition requests from the

(15)

CIL script language are only interpreted in the System Level Interfaces. However, the simulation commands are delegated to the compiled components, usually the simulation control flow is kept only in the compiled layer. This is because interpreted command execution can become slow in the SLI. The SLI layer can also interact with simulation.

[image: image5.png]
 Internal architecture for a BALBOA component

 Component Integration Language (CIL):

 The CIL is in between a module interconnection language and an architecture description language. This is because the CIL is used to build connections and to build new component or compose attributes or behaviors to existing ones. The basic composition unit in CIL is an entity.

e.g. a component called c1 is instantiated with the command:

 Entity c1

 This component can be composed of a subcomponent c2 by the command:

 Entity c1.c2

(16)

The result of this command is the instantiation of an entity named c2 inside c1. The syntax for the composition is the dot “.” operator. This operator is also used to navigate hierarchies. The BALBOA environment implements and extends the models to add introspection using a query method to the split-level interfaces. The following characteristics of component can be queried; name, SLI type, C++ type, kind, attribute and method.

 c1 query attributes

 (c2

returns the list of attributes for component c1. In this case, there is only the c2 attribute that is returned as result of the command. This attribute is visible in the interpreted domain, but other attributes might be present in compiled domain, but not visible if they were not exported. Complex commands can be built to query each subcomponent for information.

3.5 An example of component composition in BALBOA:

[image: image6.png]
Packet Switch CIL Example

(17)

Figure shows a packet switching system with packet senders s and receivers r.

The parameters of the switch can be configured, e.g., number of ports, up to n by m (4 by 4 on the figure). Secondly, the type of packet processed can be configured for the switch, senders and receivers. Modules for all possible types are stored in the IP library. Note that there is no sender for the first port of the switch since we assume another component to be connected to the first port.

1 set NUMBER_OF_PORTS 4X4

2 set PACKET_TYPE Pkt

3 Pkt_Switch pkt_switch -number_of_ports $NUMBER_OF_PORTS

4 Signal pkt_in0 -subtypes {$PACKET_TYPE}

5 Clock clock1 -period 75 -duty_cycle 0.5 -start_time 0.0

6 Clock clock2 -period 30 -duty_cycle 0.5 -start_time 10.0

7 Clock clock3 -period 15 -duty_cycle 0.5 -start_time 0.0

8 connect pkt_switch.CLK to clock2

9 for {set i 0} {$i<$NUMBER_OF_PORTS} {incr i} {

10 if {$i>0} {

11 Sender s$i -id $i

12 Signal pkt_in$i

13 connect s$i.CLK to clock1

14}

15 Receiver r$i -id $i

16 Signal pkt_out$i

17 connect s$i.pkt_out to pkt_in$i

18 connect r$i.pkt_in to pkt_out$i

19 connect r$i.CLK to clock3

20 connect pkt_switch.in$i to pkt_in$i

21 connect pkt_switch.out$i to pkt_out$i

22 }

 CIL listing for a 4 ports packet switch composition

Above set of instruction shows the CIL listing for a switch topology composition. Line 1 sets a variable to ”4” for the number of ports. Line 3 instantiates the switch

(18)

packets component, parameterized for 4 ports. Line 2 sets a variable to Pkt for the type of processed, and line 4 instantiates a signal with that sub-type. Lines 5-7 instantiate clocks for the senders, the switch and the receivers and lines 8, 13 and 19 connect the clocks to those components. The for loop on line 9 is parameterized to iterate for every port to instantiate a sender and receiver and connect them to the input and output ports of the switch. Lines 11 and 15 instantiate a sender and a receiver, lines 12 and 16 instantiate the signal connectors and lines 17, 18, 20 and 21 establish the connections between the components. When the pkt in0 signal is connected to the switch, the split-level interface of the switch will pick the packet switch type with four ports that processes the Pkt packet type, among all possible switch implementation types in the library. The types for the signals, senders and receivers will be inferred to transmit and process the Pkt types. It is required that these types be defined in the libraries for the split-level interface to instantiate them. Of course, the same topology can be built using only C++. By comparison the description in C++ can be quite large (above 100 lines). One can find the

 1. Static parameterization for regular structures:

In this example, the design structure generation is parameterized with respect to

the number of ports and use the static for loop of the CIL in the parameterization.

The for loop instantiates and connects the surrounding signals, sender and receiver components for every port of the switch.

2. Name expansion for regular structures:

The interpreter with interpreted variable values expands names. Component names for the signals, senders and receivers are expanded by the interpreter: pkt in$i is expanded with the value of the iteration counter pkt in0, pkt in1, etc. for the design structure of the example.

(19)

3. Type inference:

The components and connections are introspected by the environment and the split-level interfaces. In this example, the components will be picked by the environment to process the Pkt data type for the switch, the signals, and the senders and receivers.

(20)

 CHAPTER 4

CONCLUSION

Component Composition Frameworks (CCFs) represent an exciting development in the area of high-level modeling of complex SOC functionalities. A successful adoption of CCF is likely to have a direct impact on the successful management of complexity of the new generations of SOC designs. However, there are several technical challenges that must be overcome. The chief among them are: ensuring inherent composability and reuse of SOC components. The problem extends beyond large-scale program constructions in software engineering where several advances in architectural modeling and design environments have occurred. The challenge is due to the diversity of the computation models, levels of abstractions used and the notion of correctness applicable to SOC components. Challenges remain, however, in aspects related to encapsulation and reusability of components. The BALBOA framework addresses this aspect of the problem by essentially deconstructing the task of component creation from component composition. The underlying programming and automatic wrapper generation capabilities are built upon known advances in software engineering, namely, reflection and introspection of the components and composition by delegation.

(21)

CHAPTER 5

BIBLIOGRAPHY

Sandeep K. Shukla, Frederic Doucet and Rajesh K. Gupta, “Structured Component Composition Frameworks for Embedded System Design”, Electrical and Computer Engineering Department, Virginia Tech, Blacksburg, VA 24061
Www.cecs.uci.edu/~balboa/pubs/shukla_hipc02.pdf

(22)

www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

