www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com
PAGE
2
www.Fullinterview.com

www.Fullinterview.com

[image: image1.wmf]CONTENTS

·

INTRODUCTION

·

WHAT IS DNA

·

DNA : A DATA STRUCTUERE

·

THE PROBLEM

·

ADLEMAN EXPERIMENT

·

DNA Vs SILICON

·

APPLICATION

·

THE FUTURE

·

CONCLUSION

INTRODUCTION

DNA computing, also known as molecular computing, is a new approach to massively parallel computation.The latest computer to come out of the University of Southern California isn’t newsworthy for its small size or computational power. It’s notable because it is made from DNA, the microscopic acids that reside in every cell and are responsible for all life. The DNA computer, which more closely resembles a biochemistry lab than a PC, was the first nonelectronic device-including the human mind-to solve a logic problem with more than 1 million possible answers.
 Computers today all use binary codes - 1’s and 0’s or on’s and off’s. These codes are the basis for all possible calculations a computer is able to perform. DNA is actually quite similar to binary code. Each DNA strand is made up of some combination of A’s, T’s, C’s and G’s that act just like a computer’s 1’s and 0’s. Furthermore, DNA copies, stores and parses information like a human hard drive and processor. “Inside the cell you have all the basic tools,” says Adleman. “It’s just a matter of carrying out the computation.In November of 1994, Dr. Leonard Adleman wrote the first paper on DNA computing. In this paper, he found a way to solve the “Hamiltonian path problem,” which involves finding all the possible paths between a certain number of vertices. It is also known as the “traveling salesman problem.”

WHAT IS DNA

DNA (deoxyribonucleic acid) is the primary genetic material in all living organisms - a molecule composed of two complementary strands that are wound around each other in a double helix formation. The strands are connected by base pairs that look like rungs in a ladder. Each base will pair with only one other: adenine (A) pairs with thymine (T), guanine (G) pairs with cytosine (C). The sequence of each single strand can therefore be deduced by the identity of its partner.

Genes are sections of DNA that code for a defined biochemical function, usually the production of a protein. The DNA of an organism may contain anywhere from a dozen genes, as in a virus, to tens of thousands of genes in higher organisms like humans. The structure of a protein determines its function. The sequence of bases in a given gene determines the structure of a protein. Thus the genetic code determines what proteins an organism can make and what those proteins can do. It is estimated that only 1-3% of the DNA in our cells codes for genes; the rest may be used as a decoy to absorb mutations that could otherwise damage vital genes.

mRNA (Messenger RNA) is used to relay information from a gene to the protein synthesis machinery in cells. mRNA is made by copying the sequence of a gene, with one subtle difference: thymine (T) in DNA is substituted by uracil (U) in mRNA. This allows cells to differentiate mRNA from DNA so that mRNA can be selectively degraded without destroying DNA. The DNA-o-gram generator simplifies this step by taking mRNA out of the equation.

The genetic code is the language used by living cells to convert information found in DNA into information needed to make proteins. A protein’s structure, and therefore function, is determined by the sequence of amino acid subunits. The amino acid sequence of a protein is determined by the sequence of the gene encoding that protein. The “words” of the genetic code are called codons. Each codon consists of three adjacent bases in an mRNA molecule. Using combinations of A, U, C and G, there can be sixty four different three-base codons. There are only twenty amino acids that need to be coded for by these sixty four codons. This excess of codons is known as the redundancy of the genetic code. By allowing more than one codon to specify each amino acid, mutations can occur in the sequence of a gene without affecting the resulting protein. The DNA-o-gram generator uses the genetic code to specify letters of the alphabet instead of coding for proteins.

DNA COMPUTING
A DNA computer is a collection of DNA strands that have been specially selected to aid in the search of solutions for some problems. DNA computing results in parallelism, which means that when enough DNA information is given, huge problems can be solved by invoking a parallel search .

THE PROBLEM:

1994, Leonard M. Adleman solved an unremarkable computational problem with a remarkable technique. It was a problem that a person could solve it in a few moments or an average desktop machine could solve in the blink of an eye. It took Adleman, however, seven days to find a solution. Why then was this work exceptional? Because he solved the problem with DNA. It was a landmark demonstration of computing on the molecular level.

The type of problem that Adleman solved is a famous one. It’s formally known as a directed Hamiltonian Path (HP) problem, but is more popularly recognized as a variant of the so-called “traveling salesman problem.” In Adleman’s version of the traveling salesman problem, or “TSP” for short, a hypothetical salesman tries to find a route through a set of cities so that he visits each city only once. As the number of cities increases, the problem becomes more difficult until its solution is beyond analytical analysis altogether, at which point it requires brute force search methods. TSPs with a large number of cities quickly become computationally expensive, making them impractical to solve on even the latest super-computer. Adleman’s demonstration only involves seven cities, making it in some sense a trivial problem that can easily be solved by inspection. Nevertheless, his work is significant for a number of reasons.

· It illustrates the possibilities of using DNA to solve a class of problems that is difficult or impossible to solve using traditional computing methods.

· It’s an example of computation at a molecular level, potentially a size limit that may never be reached by the semiconductor industry.

· It demonstrates unique aspects of DNA as a data structure

· It demonstrates that computing with DNA can work in a massively parallel fashion.

DNA: A unique data structure

The data density of DNA is impressive
 Just like a string of binary data is encoded with ones and zeros, a strand of DNA is encoded with four bases, represented by the letters A, T, C, and G. The bases (also known as nucleotides) are spaced every 0.35 nanometers along the DNA molecule, giving DNA an remarkable data density of nearly 18 Mbits per inch. In two dimensions, if you assume one base per square nanometer, the data density is over one million Gbits per square inch. Compare this to the data density of a typical high performance hard drive, which is about 7 Gbits per square inch—a factor of over 100,000 smaller.

DNA is its double stranded nature

 The bases A and T, and C and G, can bind together, forming base pairs. Therefore every DNA sequence has a natural complement. For example if sequence S is ATTACGTCG, its complement, S’, is TAATGCAGC. Both S and S’ will come together (or hybridize) to form double stranded DNA. This complementarity makes DNA a unique data structure for computation and can be exploited in many ways. Error correction is one example. Errors in DNA happen due to many factors. Occasionally, DNA enzymes simply make mistakes, cutting where they shouldn’t, or inserting a T for a G. DNA can also be damaged by thermal energy and UV energy from the sun. If the error occurs in one of the strands of double stranded DNA, repair enzymes can restore the proper DNA sequence by using the complement strand as a reference. In this sense, double stranded DNA is similar to a RAID 1 array, where data is mirrored on two drives, allowing data to be recovered from the second drive if errors occur on the first. In biological systems, this facility for error correction means that the error rate can be quite low. For example, in DNA replication, there is one error for every 10^9 copied bases or in other words an error rate of 10^-9. (In comparison, hard drives have read error rates of only 10^-13 for Reed-Solomon correction).

Operations in parallel

In the cell, DNA is modified biochemically by a variety of enzymes, which are tiny protein machines that read and process DNA according to nature’s design. There is a wide variety and number of these “operational” proteins, which manipulate DNA on the molecular level. For example, there are enzymes that cut DNA and enzymes that paste it back together. Other enzymes function as copiers, and others as repair units. Molecular biology, Biochemistry, and Biotechnology have developed techniques that allow us to perform many of these cellular functions in the test ube. It’s this cellular machinery, along with some synthetic chemistry, that makes up the palette of operations available for computation. Just like a CPU has a basic suite of operations like addition, bit-shifting, logical operators (AND, OR, NOT NOR), etc. that allow it to perform even the most complex calculations, DNA has cutting, copying, pasting, repairing, and many others. And note that in the test tube, enzymes do not function sequentially, working on one DNA at a time. Rather, many copies of the enzyme can work on many DNA molecules simultaneously. This is the power of DNA computing, that it can work in a massively parallel fashion.

THE ADLEMAN EXPERIMENT
There is no better way to understand how something works than by going through an example step by step. So let’s solve our own directed Hamiltonian Path problem, using the DNA methods demonstrated by Adleman. The concepts are the same but the example has been simplified to make it easier to follow and present.

Suppose that I live in LA, and need to visit four cities:Dallas, Chicago, Miami, and NY, with NY being my final destination. The airline I’m taking has a specific set of connecting flights that restrict which routes I can take (i.e. there is a flight from L.A. to Chicago, but no flight from Miami to Chicago). What should my itinerary be if I want to visit each city only once?

[image: image2.png]Chicago

P AN

Los Angeles New York

N\ /

Dallas |*—— [Miami

It should take you only a moment to see that there is only one route. Starting from L.A. you need to fly to Chicago, Dallas, Miami and then to N.Y. Any other choice of cities will force you to miss a destination, visit a city twice, or not make it to N.Y. For this example you obviously don’t need the help of a computer to find a solution. For six, seven, or even eight cities, the problem is still manageable. However, as the number of cities increases, the problem quickly gets out of hand. Assuming a random distribution of connecting routes, the number of itineraries you need to check increases exponentially. Pretty soon you will run out of pen and paper listing all the possible routes, and it becomes a problem for a computer...

...or perhaps DNA. The method Adleman used to solve this problem is basically the shotgun approach mentioned previously. He first generated all the possible itineraries and then selected the correct itinerary. This is the advantage of DNA. It’s small and there are combinatorial techniques that can quickly generate many different data strings. Since the enzymes work on many DNA molecules at once, the selection process is massively parallel.Specifically, the method based on Adleman’s experiment would be as follows:

· Generate all possible routes.

· Select itineraries that start with the proper city and end with the final city.

· Select itineraries with the correct number of cities.

· Select itineraries that contain each city only once.

All of the above steps can be accomplished with standard molecular biology techniques.

Part I: Generate all possible routes

Strategy: Encode city names in short DNA sequences. Encode itineraries by connecting the city sequences for which routes exist.

DNA can simply be treated as a string of data. For example, each city can be represented by a “word” of six bases:

	Los Angeles
	GCTACG

	Chicago
	CTAGTA

	Dallas
	TCGTAC

	Miami
	CTACGG

	New York
	ATGCCG

The entire itinerary can be encoded by simply stringing together these DNA sequences that represent specific cities. For example, the route from

L.A -> Chicago -> Dallas -> Miami -> New York would simply be

GCTACGCTAGTATCGTACCTACGGATGCCG, or equivalently it could be represented in double stranded form with its complement sequence.

So how do we generate this? Synthesizing short single stranded DNA is now a routine process, so encoding the city names is straightforward. The molecules can be made by a machine called a DNA synthesizer or even custom ordered from a third party. Itineraries can then be produced from the city encodings by linking them together in proper order. To accomplish this you can take advantage of the fact that DNA hybridizes with its complimentary sequence. For example, you can encode the routes between cities by encoding the compliment of the second half (last three letters) of the departure city and the first half (first three letters) of the arrival city. For example the route between Miami (CTACGG) and NY (ATGCCG) can be made by taking the second half of the coding for Miami (CGG) and the first half of the coding for NY (ATG). This gives CGGATG. By taking the complement of this you get, GCCTAC, which not only uniquely represents the route from Miami to NY, but will connect the DNA representing Miami and NY by hybridizing itself to the second half of the code representing Miami (...CGG) and the first half of the code representing NY (ATG...). For example:

[image: image3.png]Hybridized DNA \

+ - coearo
A Yeg Ca(': G \ __Mlaml to NY]

Random itineraries can be made by mixing city encodings with the route encodings. Finally, the DNA strands can be connected together by an enzyme called ligase. What we are left with are strands of DNA representing itineraries with a random number of cities and random set of routes. For example:

[image: image4.png]Lo

We can be confident that we have all possible combinations including the correct one by using an excess of DNA encodings, say 10^13 copies of each city and each route between cities. Remember DNA is a highly compact data format, so numbers are on our side.

Part II: Select itineraries that start and end with the correct cities

Strategy: Selectively copy and amplify only the section of the DNA that starts with LA and ends with NY by using the Polymerase Chain Reaction.

“After Part I, we now have a test tube full of various lengths of DNA that encode possible routes between cities. What we want are routes that start with LA and end with NY. To accomplish this we can use a technique called Polymerase Chain Reaction (PCR), .Polymerase chain reaction (PCR), is a common method of creating copies of specific fragments of DNA. PCR rapidly amplifies a single DNA molecule into many billions of molecules. PCR exploits the remarkable natural function of the enzymes known as polymerases. These enzymes are present in all living things, and their job is to copy genetic material (and also proofread and correct the copies). Sometimes referred to as “molecular photocopying,” PCR can characterize, analyze, and synthesize any specific piece of DNA or RNA. It works even on extremely complicated mixtures, seeking out, identifying, and duplicating a particular bit of genetic material from blood, hair, or tissue specimens, from microbes, animals, or plants, some of them many thousands-or possibly even millions-of years old.

PCR requires a template molecule-the DNA or RNA you want to copy-and two primer molecules to get the copying process started. The primers are short chains of the four different chemical components that make up any strand of genetic material. These four components are like bricks or building blocks that are used to construct genetic molecules; in the lab they are called nucleotides or bases.

DNA itself is a chain of nucleotides. Under most conditions, DNA is double-stranded, consisting of two such nucleotide chains that wind around each other in the famous shape known as the double helix. Primers are single-stranded. They consist of a string of nucleotides in a specific order that will, under the right conditions, bind to a specific complementary sequence of nucleotides in another piece of single-stranded RNA or DNA.

For PCR, primers must be duplicates of nucleotide sequences on either side of the piece of DNA of interest, which means that the exact order of the primers’ nucleotides must already be known. These flanking sequences can be constructed in the lab, or purchased from commercial suppliers.

There are three basic steps in PCR. First, the target genetic material must be denatured-that is, the strands of its helix must be unwound and separated-by heating to 90-96°C. The second step is hybridization or annealing, in which the primers bind to their complementary bases on the now single-stranded DNA. The third is DNA synthesis by a polymerase. Starting from the primer, the polymerase can read a template strand and match it with complementary nucleotides very quickly. The result is two new helixes in place of the first, each composed of one of the original strands plus its newly assembled complementary strand.

All PCR really requires in the way of equipment is a reaction tube, reagents, and a source of heat. But different temperatures are optimal for each of the three steps, so machines now control these temperature variations automatically.

To get more of the DNA you want, just repeat the process, beginning by denaturing the DNA you’ve already made. The amount will double every time.

So to selectively amplify the itineraries that start and stop with our cities of interest, we use primers that are complimentary to LA and NY. What we end up with after PCR is a test tube full of double stranded DNA of various lengths, encoding itineraries that start with LA and end with NY.

Part III: Select itineraries that contain the correct number of cities

Strategy: Sort the DNA by length and select the DNA whose length corresponds to 5 cities.

Our test tube is now filled with DNA encoded itineraries that start with LA and end with NY, where the number of cities in between LA and NY varies. We now want to select those itineraries that are five cities long. To accomplish this we can use a technique called Gel Electrophoresis, which is a common procedure used to resolve the size of DNA. The basic principle behind Gel Electrophoresis is to force DNA through a gel matrix by using an electric field. DNA is a negatively charged molecule under most conditions, so if placed in an electric field it will be attracted to the positive potential. However since the charge density of DNA is constant (charge per length) long pieces of DNA move as fast as short pieces when suspended in a fluid. This is why you use a gel matrix. The gel is made up of a polymer that forms a meshwork of linked strands. The DNA now is forced to thread its way through the tiny spaces between these strands, which slows down the DNA at different rates depending on its length. What we typically end up with after running a gel is a series of DNA bands, with each band corresponding to a certain length. We can then simply cut out the band of interest to isolate DNA of a specific length. Since we known that each city is encoded with 6 base pairs of DNA, knowing the length of the itinerary gives us the number of cities. In this case we would isolate the DNA that was 30 base pairs long (5 cities times 6 base pairs).

[image: image5.png]- voltage

DNA starts here #mms 600 bp

s 400 bp
wisss 200 bp
w100 bp

0
+voltage

Part IV: Select itineraries that have a complete set of cities

Strategy: Successively filter the DNA molecules by city, one city at a time. Since the DNA we start with contains five cities, we will be left with strands that encode each city once.

DNA containing a specific sequence can be purified from a sample of mixed DNA by a technique called affinity purification. This is accomplished by attaching the compliment of the sequence in question to a substrate like a magnetic bead. The beads are then mixed with the DNA. DNA, which contains the sequence you’re after then hybridizes with the complement sequence on the beads. These beads can then be retrieved and the DNA isolated.

So we now affinity purify fives times, using a different city complement for each run. For example, for the first run we use L.A.’-beads (where the ‘ indicates compliment strand) to fish out DNA sequences which contain the encoding for L.A. (which should be all the DNA because of step 3), the next run we use Dallas’-beads, and then Chicago’-beads, Miami’-beads, and finally NY’-beads. The order isn’t important. If an itinerary is missing a city, then it will not be “fished out” during one of the runs and will be removed from the candidate pool. What we are left with are the are itineraries that start in LA, visit each city once, and end in NY. This is exactly what we are looking for. If the answer exists we would retrieve it at this step.

Reading out the answer

One possible way to find the result would be to simply sequence the DNA strands. However, since we already have the sequence of the city encodings we can use an alternate method called graduated PCR. Here we do a series of PCR amplifications using the primer corresponding to L.A., with a different primer for each city in succession. By measuring the various lengths of DNA for each PCR product we can piece together the final sequence of cities in our itinerary. For example, we know that the DNA itinerary starts with LA and is 30 base pairs long, so if the PCR product for the LA and Dallas primers was 24 base pairs long, you know Dallas is the fourth city in the itinerary (24 divided by 6). Finally, if we were careful in our DNA manipulations the only DNA left in our test tube should be DNA itinerary encoding LA, Chicago, Miami, Dallas, and NY. So if the succession of primers used is LA & Chicago, LA & Miami, LA & Dallas, and LA & NY, then we would get PCR products with lengths 12, 18, 24, and 30 base pairs.
DNA vs. Silicon

DNA, with its unique data structure and ability to perform many parallel operations, allows you to look at a computational problem from a different point of view. Transistor-based computers typically handle operations in a sequential manner. Of course there are multi-processor computers, and modern CPUs incorporate some parallel processing, but in general, in the basic von Neumann architecture computer, instructions are handled sequentially. A von Neumann machine, which is what all modern CPUs are, basically repeats the same “fetch and execute cycle” over and over again; it fetches an instruction and the appropriate data from main memory, and it executes the instruction. It does this many, many times in a row, really, really fast. The great Richard Feynman, in his Lectures on Computation, summed up von Neumann computers by saying, “the inside of a computer is as dumb as hell, but it goes like mad!” DNA computers, however, are non-von Neuman, stochastic machines that approach computation in a different way from ordinary computers for the purpose of solving a different class of problems.

Typically, increasing performance of silicon computing means faster clock cycles (and larger data paths), where the emphasis is on the speed of the CPU and not on the size of the memory. For example, will doubling the clock speed or doubling your RAM give you better performance? For DNA computing, though, the power comes from the memory capacity and parallel processing. If forced to behave sequentially, DNA loses its appeal. For example, let’s look at the read and write rate of DNA. In bacteria, DNA can be replicated at a rate of about 500 base pairs a second. Biologically this is quite fast (10 times faster than human cells) and considering the low error rates, an impressive achievement. But this is only 1000 bits/sec, which is a snail’s pace when compared to the data throughput of an average hard drive. But look what happens if you allow many copies of the replication enzymes to work on DNA in parallel. First of all, the replication enzymes can start on the second replicated strand of DNA even before they’re finished copying the first one. So already the data rate jumps to 2000 bits/sec. But look what happens after each replication is finished - the number of DNA strands increases exponentially (2^n after n iterations). With each additional strand, the data rate increases by 1000 bits/sec. So after 10 iterations, the DNA is being replicated at a rate of about 1Mbit/sec; after 30 iterations it increases to 1000 Gbits/sec. This is beyond the sustained data rates of the fastest hard drives.

Now let’s consider how you would solve a nontrivial example of the traveling salesman problem (# of cities > 10) with silicon vs. DNA. With a von Neumann computer, one naive method would be to set up a search tree, measure each complete branch sequentially, and keep the shortest one. Improvements could be made with better search algorithms, such as pruning the search tree when one of the branches you are measuring is already longer than the best candidate. A method you certainly would not use would be to first generate all possible paths and then search the entire list. Why? Well, consider that the entire list of routes for a 20 city problem could theoretically take 45 million GBytes of memory (18! routes with 7 byte words)! Also for a 100 MIPS computer, it would take two years just to generate all paths (assuming one instruction cycle to generate each city in every path). However, using DNA computing, this method becomes feasible! 10^15 is just a nanomole of material, a relatively small number for biochemistry. Also, routes no longer have to be searched through sequentially. Operations can be done all in parallel.

Applications to Biology, Chemistry and Medicine:

Recently, Bartel and Szostak[5] used the methods of combinatorial chemistry to make a pseudo-enzyme. The goal of their experiment was to find a molecule of RNA which would ligate two substrate molecules of RNA. They used a pool of approximately 4^25 random sequences of RNA to ligate the two substrate molecules, and after isolating the product of the reaction, they were able to sequence the pseudo-enzyme.

The applications of combinatorial chemistry go far beyond this one example. In the above example, the pseudo-enzyme remained bound to the product, making it easy to isolate, but combinatorial chemistry can also be used when anchoring is not physically possible. Protocols have been proposed to find an RNA molecule that truly catalyzes (as an enzyme) the ligation of two DNA molecules. This sort of detection can also be used to isolate an endonuclease, or to find a drug which crosses a cell membrane and then binds a particular host membrane, and therefore cannot be anchored.

The Future

DNA computing is less than two years old (November 11, 1994), and for this reason, it is too early for either great optimism of great pessimism. Early computers such as ENIAC filled entire rooms, and had to be programmed by punch cards. Since that time, computers have since become much smaller and easier to use. It is possible that DNA computers will become more common for solving very complex problems, and just as PCR and DNA sequencing were once manual tasks, DNA computers may also become automated. In addition to the direct benefits of using DNA computers for performing complex computations, some of the operations of DNA computers already have, and perceivably more will be used in molecular and biochemical research.

Despite its promise, the long-term prospects for DNA computing remain uncertain. The notion of full-scale DNA computing systems replacing silicon-based computers anytime soon, if ever, is remote. There are still significant limitations to overcome. For the foreseeable future - and as its pioneer Adleman suggests - DNA computing will likely focus on small-scale applications rather than the building of full-blown computers.[image: image6.wmf]*

Currently, at the University of Wisconsin, a research team is looking into DNA computing. The university team created a crude molecular computer “chip” made of a small glass plate covered with a thin layer of gold Strands of DNA were coded to represent solutions to a computational problem with 16 possible answers. Then, enzymes were applied to the gold slide to strip out all the DNA with the incorrect answers and, and thus, solving the calculation. “It opens up the possibility of ultrahigh-capacity storage and massively parallel searches,” explains Robert Corn, a professor of chemistry and a member of the research team. A DNA computer the size of a penny, for example, could hold up to 10 terabytes of data, far exceeding the capacity of any computer storage medium available today

The research on DNA computers is ongoing still. All over the country, research teams like the one at the University of Wisconsin are concentrating their efforts in order to put this new nanotechnology to good use. And even though Adleman’s DNA computer would have a hard time computing two 100-digit integers - an easy task for a supercomputer - its ability to solve complex problems is unmatched. As this new nanotechnology continues to evolve, we might yet be surprised again. The DNA based system of computing has had millions of years to evolve, while the man-made systems have only been around for a small fraction of that time. The future of DNA computing has yet to be decided. Anne Condon, a computer scientist on the Wisconsin team, likens compares current DNA computing to that of ENIAC computers. Built in 1946, ENIAC computers used punch cards and closets full of vacuum tubes to solve simple arithmetical problems . “It’s possible that we could use DNA computers to control chemical and biological systems in a way that’s analogous to the way we use electronic computers to control electrical and mechanical systems,” Adleman said.

Conclusions

So will DNA ever be used to solve a traveling salesman problem with a higher number of cities than can be done with traditional computers? Well, considering that the record is a whopping 13,509 cities, it certainly will not be done with the procedure described above. It took this only three months, using three Digital AlphaServer 4100s (a total of 12 processors) and a cluster of 32 Pentium-II PCs. The solution was possible not because of brute force computing power, but because they used some very efficient branching rules. This first demonstration of DNA computing used a rather unsophisticated algorithm, but as the formalism of DNA computing becomes refined, new algorithms perhaps will one day allow DNA to overtake conventional computation and set a new record.Thus far, Adleman has only tested his DNA model with six vertices and is uncertain as to how to proceed with paths of more than six vertices. But as far as speed is concerned, DNA clearly wins. The fastest supercomputers today execute about 1,012 operations per second, while the DNA models perform 1,000 times faster than the fasters super computer A clearer picture of this - and probably one that we can relate to better - is that of the typical desktop computer. Our desktops execute 106 operations per second, which is a thousand million times slower than the DNA.DNA computing will likely focus on small-scale applications rather than the building of full-blown computers.

References

Adleman, L. 1994. Molecular computation of solutions to combinatorial problems. Science 266:1021-1024.

· Lipton, R. J. Speeding up computations via molecular biology. (unpublished manuscript)

· Boneh, D., Lipton, R. J. Making DNA computers error resistant. (unpublished manuscript)

· Kari, L. 1997. DNA computing: the arrival of biological mathematics. (unpublished manuscript).

· Adleman, L. 1995. On constructing a molecular computer. (unpublished manuscript)

Los Angeles

Chicago

Miami

New Yark

LA to CH

CH to Mi

MI to NY

Hibridized DNA

New Yark

Compliment

Magnetic bead

www.1000projects.com

www.fullinterview.com

www.chetanasprojects.com

_1125688817

_1129547531.doc
CONTENTS

· INTRODUCTION

· WHAT IS DNA

· DNA : A DATA STRUCTUERE

· THE PROBLEM

· ADLEMAN EXPERIMENT

· DNA Vs SILICON

· APPLICATION

· THE FUTURE

· CONCLUSION

_1125688722

_1125688816

